Folate and vitamin D: The role of nutritional status and nutrigenetics in predicting levels of extracellular microRNA and circulating DNA methylation status

Emma Louise Beckett
BBiomedSc (Hons I) (Newcastle)
GDipClinEpid (Newcastle)
MScMgt (Newcastle)

Thesis submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy in Food Science

Department of Applied Sciences, School of Environmental and Life Sciences, Faculty of Science and Information Technology, The University of Newcastle

April, 2016
Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

Ms Emma Beckett
Statement of collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of this thesis a statement clearly outlining the extent of the collaboration, with whom and under what auspices.

Chapter 2: Circulating tumour-suppressor and oncogenic microRNA: The relationships to dietary intake, methyl-donor biochemistry and vitamin D status, implications for use as a biomarker of adenomatous colon polyps, and Chapter 3: Polymorphisms in vitamin D receptor and key folate metabolism enzyme genes: Relationship between risk for adenomatous polyps and plasma expression of selected tumour-suppressor and oncogenic microRNA.

Ms Emma Beckett Statistical analysis; miRNA isolation and assays; study design; homocysteine assays; quality control and data cleaning, vitamin D and folate intake in food frequency questionnaires (adenomatous polyp case-control cohort); folate intake in food frequency questionnaires (RHLS cohort); haplotype reconstruction.

A/Prof Mark Lucock Supervisor; involved in study design and oversight.

A/Prof Martin Veysey Supervisor; involved in study design and oversight; coordinated colonoscopy collection and diagnosis.

Dr Zoe Yates Supervisor; involved in study design and oversight; involved in collection of blood samples and patient interviews; oversaw genetic analysis.

Dr Konsta Duesing Supervisor; involved in study design and oversight.

Mrs Charlotte Martin Conducted genotyping (RHLS cohort); processed food frequency questionnaires (RHLS cohort); assisted with homocysteine assays (RHLS cohort).

Ms Teagan Porter Assisted with data entry quality control (RHLS cohort).

Ms Kathleen Le Gras Conducted VDR genotyping (adenomatous polyp case-control cohort); assisted with homocysteine assays (adenomatous polyp case-control cohort).

Dr Jeong Hwa Choi Involved in collection of blood samples, patient interviews and genotyping in adenomatous polyp case-control cohort.

Dr Xiaowei Ng Involved in collection of blood samples and patient interviews and genotyping in adenomatous polyp case-control cohort.

Dr Virginia Skinner Involved in collection of blood samples and patient interviews and genotyping (adenomatous polyp case-control cohort).
Dr Lyndell Boyd Involved in collection of blood samples and patient interviews and genotyping (adenomatous polyp case-control cohort).

Dr Katrina King Involved in data collection and management (RHLS cohort).

Dr Suzie Nibblett Involved in data collection and management (RHLS cohort).

Ron Wai Involved in genotyping (adenomatous polyp case-control cohort).

Jeremy Koh Involved in genotyping (adenomatous polyp case-control cohort).

Funding Sources Commonwealth Scientific and Industrial Research Organisation (CSIRO); Australian Research Council (ARC); Associate Professor Martin Veysey Trust; Northern Sydney Central Coast Health.

Chapter 4: Folate and vitamin D stimulation of malignant cell lines; a potential role for DNA methylation in the modulation of microRNA expression.

Ms Emma Beckett Statistical analysis; miRNA isolation assays; RNA isolation and assays; study design; cell culture.

A/Prof Mark Lucock Supervisor; involved in study design and oversight.

A/Prof Martin Veysey Supervisor; involved in study design and oversight.

Dr Zoe Yates Supervisor; involved in study design and oversight.

Dr Konsta Duesing Supervisor; involved in study design and oversight.

Dr Janet Sakoff Donated Cell lines.

Funding Sources CSIRO.

Chapter 5: DNA methylation status of CpG Islands of the vitamin D receptor and vitamin D metabolism genes; relationships to genotype, methyl-group diet, plasma vitamin D status and selected systemic circulating microRNA.

Ms Emma Beckett Plasma 25(OH)D assays; DNA isolation and DNA methylation assays; statistical analysis; miRNA isolation and assays; study design; homocysteine assays; quality control and data cleaning, vitamin D and folate intake in food frequency questionnaires (adenomatous polyp case-control cohort); folate intake in food frequency questionnaires (RHLS cohort).

A/Prof Mark Lucock Supervisor; involved in study design and oversight.

A/Prof Martin Veysey Supervisor; involved in study design and oversight.
Dr Zoe Yates Supervisor; involved in study design and oversight; involved in collection of blood samples and patient interviews; oversaw genetic analysis.

Dr Konsta Duesing Supervisor; involved in study design and oversight.

Mrs Charlotte Martin Conducted genotyping (RHLS cohort); processed food frequency questionnaires (RHLS cohort); assisted with homocysteine assays (RHLS cohort).

Dr Katrina King Involved in data collection and management (RHLS cohort).

Dr Suzanne Niblett Involved in data collection and management (RHLS cohort).

Dr John Furst Supervised collection and analysis of solar irradiance data.

Ms Patrice Jones Collection and analysis of solar irradiance data.

Funding Sources CSIRO and ARC.

Ms Emma Beckett A/Prof Mark Lucock
Statement of authorship

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Ms Emma Beckett

Chapter 1 is based partly on two published review articles. Chapters 2, 3 and 5 are each partly formed by portions of data contained within the 2 published and 1 submitted papers. The details of these manuscripts listed below. Contributions of the candidate as an author are listed following each article below. Articles are included in full as appendices as listed and full citations are included at the commencement of each chapter.

Review Articles

Beckett EL, Yates Z, Veysey M, Duesing K, Lucock M. “The role of vitamins and minerals in modulating the expression of microRNA”. Nutrition Research Reviews. 2014 Jun;27(1):94-106. doi: 10.1017/S0954422414000043 (Appendix A) – EL Beckett researched and prepared the manuscript under the supervision of the co-authors.

Original Research Articles

Beckett EL, Martin C, Choi JH, King K, Niblett S, Boyd L, Duesing K, Yates Z, Veysey M, Lucock M. “Folate status, folate-related genes and serum miR-21 expression: Implications for miR-21 as a biomarker.” BBA Clinical, 2015 Jul 7;4:45-51. doi: 10.1016/j.bbacli.2015.06.006. (Appendix C) – EL Beckett was responsible for the design of the study, data collection, statistical analysis, and preparation of the manuscript. Co-authors supervised this work, were involved in the original cohort design and/or provided data to be used in the analysis in this manuscript.

Beckett EL, Le Gras K, Martin C, Boyd L, Ng X, Duesing K, Yates Z, Veysey M, Lucock M. “Vitamin D receptor polymorphisms relate to risk of adenomatous polyps in a sex specific
manner”, *Nutrition and Cancer*, 2016, Feb-Mar;68(2):193-200, doi: 10.1080/01635581.2016.1142584 (Appendix F) – EL Beckett was involved in the design of the study, data collection and, was responsible for statistical analysis and manuscript preparation. Co-authors supervised this work, were involved in the original cohort design and/or provided data or laboratory work to be used in the analysis in this manuscript.

**Beckett EL, Duesing K, Martin C, Jones P, Furst J, King K, Niblett S, Yates Z, Veysey M, Lucock M. “Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry,” *Journal of Nutrition & Intermediary Metabolism*, Volume 6, December, 2016, 8–15, doi:10.1016/j.jnim.2016.04.010 (Appendix G) – EL Beckett was responsible for the design of the study, data collection, statistical analysis and preparation of the manuscript. Co-authors supervised this work, were involved in the original cohort design and/or provided data to be used in the analysis in this manuscript.

I attest to the statements above, A/Prof Mark Lucock

Conference Abstracts

**Beckett EL, le Gras KC, Veysey M, Boyd L, Ng X, Yates Z, Duesing K, Lucock M. Vitamin D receptor polymorphism FokI alters risk of adenomatous polyps in Australian males, International

Acknowledgments and dedications

I would like to respectfully acknowledge the Darkinjung people, the traditional custodians on whose traditional land this Ourimbah campus of The University of Newcastle is located, and where the majority of the work contributing to this thesis was conducted.

Thank you to my supervisors Mark Lucock, Zoe Yates, Martin Veysey, and Konsta Duesing for supporting me through an interesting and rewarding PhD experience. I have learned many lessons from you all, and you have helped me develop personally as well as academically. Thank you for your patience, encouragement and kindness during my PhD journey.

I am grateful that my PhD project was positioned within two larger cohort studies, which enhanced the scope of my work. I would like to acknowledge all researchers, students, support staff and cohort participants who made this project possible. Particularly, I would like to thank Suzanne Niblett and Katrina King for their efforts in data and project management.

My sincere thanks to Charlotte Martin, whose PhD project ran parallel to mine, the data you shared allowed a much broader analysis in my project than would have been possible alone. Thank you Charlotte, Chloe Goldsmith, and all the other PhD students and academics in the department for lunches, tea breaks, and birthday cakes, and for being wonderful peers through this experience. Thank you to all my friends who have let me miss events and given me wine and tea whenever I have needed it!

I would like to acknowledge the support and funding I have received from the CSIRO, which added greatly to my work and achievements. Thank you also to the Australian Academy of Science who sponsored my travel to the National Institute of Environmental and Health Sciences in the USA, the 65th Lindau Nobel Laureates meeting and the 8th HOPE meeting. These were unique PhD experiences that I will never forget. Linda Drummond (UoN media team), thanks for encouraging me to share my work with the public throughout this project.

I could not have completed my PhD project without the love and support of my partner, Brett Allen, who let me put my dreams and career ahead of his at this point in our lives. Thanks for putting up with me when the days were long and the work was stressful.

Finally, I would like to thank my family for encouraging me to continue my academic studies and raising me to be the critical and analytical thinker I am today. Thank you to my Dad, Jeff, for your emotional and financial support, during my PhD and the undergraduate studies that led me to it. I would like to dedicate this thesis to Michael James Beckett, my beautiful little brother who saw me start, but not complete this work.
Table of Contents

Chapter 1: General Introduction

1.1 Overview ... 1

1.2 Gene-nutrient interactions ... 2
 1.2.1 Nutrigenomics .. 3
 1.2.2 Nutritional epigenetics ... 4
 1.2.3 Nutrigenetics .. 6

1.3 microRNA .. 6
 1.3.1 Systemic circulating microRNA ... 8
 1.3.2 Oncogenic and tumour-suppressor microRNA .. 9

1.4 DNA methylation ... 9

1.5 microRNA-DNA methylation interactions ... 11

1.6 Nutritional regulation of DNA methylation and microRNA 12
 1.6.1 Folate and related vitamins involved in methyl group metabolism 13
 1.6.1.1 Folate and related vitamins in DNA methylation 15
 1.6.1.2 Folate and related vitamins in the modulation of microRNA 18
 1.6.2 Vitamin D .. 19
 1.6.2.1 Vitamin D and DNA methylation .. 22
 1.6.2.2 Vitamin D in the modulation of microRNA levels 23

1.7 Polymorphisms of VDR and enzymes of one-carbon metabolism 25
 1.7.1 Well characterised VDR polymorphisms ... 25
 1.7.2 Key enzymes of the one carbon metabolism pathway 25
 1.7.2.1 Methylene tetrahydrofolate reductase .. 25
 1.7.2.2 Methionine synthase .. 27
 1.7.2.3 Methionine synthase reductase .. 27
 1.7.2.4 Serine hydroxymethyltransferase ... 27
 1.7.2.5 Dihydrofolate reductase .. 28
 1.7.2.6 Relationships between key enzymes of the one carbon metabolism pathway and DNA methylation status ... 28

1.8 Adenomatous colorectal polyps and colorectal cancer 29
 1.8.1 Incidence and risk factors ... 29
 1.8.2 Colorectal cancer, adenomatous polyps and microRNA 31

1.9 Literature review conclusion and project rationale 31

1.10 Overview of study design and research questions 32
 1.10.1 General study design ... 32
 1.10.2 Research questions ... 34

Chapter 2: Circulating tumour-suppressor and oncogenic miRNA: The relationships to dietary intake, methyl-donor biochemistry and vitamin D status, implications for use as a biomarker of adenomatous colon polyps

2.1 Chapter abstract ... 35

2.2 Introduction .. 36
 2.2.1 Circulating microRNA as potential biomarkers for cancer and pre-cancerous lesions 36
 2.2.1.1 miR-21 ... 37
 2.2.1.3 let-7a ... 39
 2.2.1.4 miR-15a ... 39

2.3 Aims and experimental design .. 40

2.4 Methods .. 41
 2.4.1 Subjects ... 41
 2.4.1.1 Adenomatous polyp case-control cohort 41
Chapter 3: Polymorphisms in vitamin D receptor and key folate metabolism enzyme genes: relationship between risk for adenomatous polyps and plasma expression of selected tumour-suppressor and oncogenic miRNA.

3.1 Chapter abstract ... 73

3.2 Introduction ... 74

3.2.1 Polymorphisms in key genes involved in folate-related methyl-group metabolism and adenomatous polyp and colorectal cancer risk ... 74

3.3 Aims and experimental design ... 79

3.4 Methods .. 80

3.4.1 Subjects, blood nutrient biochemistry and microRNA analysis 80
Chapter 4: Folate and vitamin D stimulation of malignant cell lines; a potential role for DNA methylation in the modulation of microRNA expression

4.1 Chapter abstract ... 116
4.2 Introduction .. 117
4.3 Aims and experimental design .. 118
4.4 Methods ... 120
4.4.1 Cell culture models .. 120
4.4.1.1 Comparison of folate deficient, normal and excess environments .. 120
4.4.1.2 Vitamin D stimulation ... 120
4.4.1.3 5-aza-2'-deoxycytidine treatment 121
4.4.2 Isolation of microRNA from cells, and cell culture supernatants .. 121
4.4.3 Cell proliferation assay ... 122
4.4.4 Statistics ... 122
4.5 Results .. 122
4.5.1 microRNA expression in varies by colorectal cancer cell lines, under normal culture conditions .. 122
4.5.1.1 Intracellular microRNA expression ... 122
4.5.1.2 Extracellular microRNA expression ... 123
4.5.2 Modulation of miRNA expression under folate deficient and excess conditions, varies by colorectal cancer cell line .. 124
4.5.2.1 Intracellular microRNA expression ... 124
4.5.2.2 Extracellular microRNA expression ... 125
4.5.2.3 5-aza-2'-deoxycytidine treatment influences folate mediated modulation of microRNA expression profiles .. 128
4.5.2.3.1 Intracellular microRNA expression ... 128
4.5.2.3.2 Extracellular microRNA expression ... 130
Chapter 5: DNA methylation status of CpG islands of the vitamin D receptor and vitamin D metabolism genes; relationships to genotype, methyl-group diet, plasma vitamin D status and selected systemic circulating microRNA

5.1 Chapter abstract ... 147

5.2 Introduction .. 148

5.3 Aims and experimental design ... 150

5.4 Methods .. 151
5.4.1 Subjects and sample collection ... 151
5.4.2 DNA methylation .. 152
5.4.3 Sun exposure: cumulative solar irradiance 153
5.4.4 Statistics ... 153

5.5 Results ... 154
5.5.1 Distribution of percentage methylation and description of variables ... 154
5.5.1.1 Percentage methylation of CpG islands of vitamin D metabolism genes in peripheral blood cells is low, but highly variable .. 154
5.5.1.2 Percentage methylation status is not well correlated between CpG islands 156
5.5.2 Methylation of CpG islands in CYP2R1, CYP24A1 and VDR are related to plasma 25(OH)D ... 156
5.5.3 Methyl donor biochemistry does not influence the relationship between plasma 25(OH)D and methylation, but may be an independent predictor in some cases .. 157
5.5.4 Methylation status of genes of vitamin D metabolism enzymes may explain some of the variance in the relationship between vitamin D intake and plasma 25(OH)D levels 158
5.5.5 Multiple significant, but varied, relationships exist between methylation status and VDR and folate metabolism related genotypes ... 159
5.5.5.1 VDR ... 159
5.5.5.2 CYP2R1 ... 161
5.5.5.3 CYP24A1 ... 163
5.5.5.4 CYP27B1 ... 165
5.5.6 Relationships may exist between VDR methylation status and candidate microRNA profiles .. 166

5.6 Discussion ... 167
5.6.1 Modulation of gene-specific methylation by nutritional and lifestyle variables 167
5.6.2 Influence of polymorphisms of the VDR and enzymes of the folate metabolism pathway on DNA methylation in the vitamin D metabolism pathway ... 169

xii
5.6.3 The correlation between DNA methylation in the vitamin D metabolism pathway and systemic circulating levels of candidate microRNA .. 171
5.6.4 Limitations .. 171
5.6.5 Summary and conclusions ... 173

Chapter 6: Overall Discussion... 174

6.1 Overall Discussion ... 174
6.1.1 Novel interactions between systemic circulating microRNA, adenomatous polyps, folate, folate and vitamin D related polymorphisms, and potential sex dimorphisms 174
6.1.2 Novel interactions between folate status, extracellular expression of microRNA, and DNA methylation in human cohorts and cell culture studies .. 176
6.1.3 Novel observations of the links between vitamin D, DNA methylation, folate status, and extracellular microRNA levels ... 178
6.1.4 The first observations of the relationships between extracellular microRNA expression and polymorphisms in key genes of folate metabolism.. 179
6.1.5 Links between VDR polymorphisms, extracellular microRNA expression and DNA methylation .. 181
6.1.6 Limitations ... 183
6.1.7 Summary and conclusions ... 184

Bibliography ... 185

7.1 References ... 185

Appendices

Appendix D: Contains food frequency questionnaires.

Appendix E: Contains additional tables for Chapter 2.

Synopsis

miRNA in systemic circulation are proposed as potential biomarkers for disease diagnosis and prognosis. However, miRNA profiles may also be modulated by other exposures such as nutritional status, and this may have consequences for use of miRNA as biomarkers, particularly in diseases for which diet is a modifiable determinant. Furthermore, little is known about the interactions that exist between these relationships and underlying variance in genes related to the processing of nutrients that may influence these relationships, or how these miRNA interact with other modifiers of gene expression, such as DNA methylation.

This thesis focuses on folate and vitamin D, two key micronutrients known to have the potential to influence gene expression. The data presented here investigates the relationships between these micronutrients and related nutrigenetics in predicting levels of extracellular miRNA and circulating DNA methylation status. The studies presented here were designed to capitalise on the availability of two well-characterised human cohorts; a case-control cohort of adenomatous polyp patients and healthy controls (n=263), and an elderly cross-sectional cohort (n=649). These are appropriate cohorts in which to investigate these relationships, as systemic circulating miRNA have been proposed as biomarkers for adenomatous polyps and colorectal cancer (CRC), diseases with known dietary modifiers of risk (including folate and vitamin D) which accumulate over a lifetime of exposures. Four candidate miRNA (let-7a, miR-15a, miR-21 and miR-155) were selected due to a combination of factors; each has known oncogenic or tumour-suppressor properties and each had existing evidence to suggest potential regulation by nutritional factors.

The first results chapter (Chapter 2) presents novel observations on the levels of systemic circulating levels of let-7a, miR-15a and miR-155 in adenomatous polyp cases relative to controls. Furthermore, by adding a sex specific level of analysis, it adds to the body of knowledge surrounding these miRNA and miR-21, which is currently proposed as a biomarker for adenomatous polyps. Novel data on the correlations between blood levels of folate and related micronutrients and the candidate miRNA are presented, with key findings including a positive correlation between red blood cell folate levels and all candidate miRNA, regardless of their tumour-suppressor or oncogenic properties. Stepwise regression analyses investigating the correlations between systemic circulating miRNA levels and multiple dietary intakes, including vitamin D, are also presented.

Chapter 3 builds upon these results by incorporating common folate and vitamin D related genetic polymorphisms into the analyses. The relationships between these polymorphisms, systemic circulating miRNA levels, and risk for adenomatous polyps were assessed, as well as interactions with nutrient status. Statistically significant relationships were identified between multiple
polymorphisms and risk for adenomatous polyps, and miRNA levels, as well as potential interactions between folate status and genotype in predicting miRNA levels. These are the first reported observations of the potential relationships and interactions between miRNA profiles and nutrigenetic variance.

As the human cohorts used can only demonstrate correlation and not causation, Chapter 4 contains data obtained from cell culture models. Three CRC cell lines were used to demonstrate that miRNA are differentially expressed intracellularly and extracellularly under folate excess or deficient conditions, and following stimulation with the active vitamin D metabolite. Treatment with a DNA demethylating agent was also used to demonstrate that some of these processes are dependent on DNA methylation.

The relationships between vitamin D and DNA methylation were further investigated in Chapter 5. A sub-cohort was used to conduct a pilot study investigating the relationships between vitamin D status, methyl donor-related micronutrients and DNA methylation in genes of vitamin D metabolism. The relationship between methylation status in this pathway and the systemic circulating levels of the candidate miRNA were also assessed, and provides new information demonstrating the potential complexity of the complementary pathways for the regulation of cellular processes and pathways.

Together, the data in this thesis constitute a significant contribution to the body of knowledge surrounding the extracellular levels of miRNA, and how this may relate to vitamin D and folate status, related polymorphisms, DNA methylation, and intracellular miRNA expression levels. Relationships were identified between folate status, nutrient intake and systemic circulating levels of multiple candidate miRNA. Relationships identified between polymorphisms in related genes and systemic circulating miRNA levels support these observations, and these observations may link dietary factors to modified risk for disease.

This thesis expands our understanding of how nutrition and nutrigenetics can interact to modify nutrigenomics and disease risk. The data presented here for the candidate miRNA and two key nutrients, provides an impetus to investigate these relationships for other nutrients and miRNA, particularly those known to modify disease risk. These results have implications for the use of systemic circulating miRNA as biomarkers, and may also have implications for the future of personalised nutrition and personalised medicine.
List of Abbreviations

1,25(OH)\textsubscript{2}D – calcitriol
25(OH)D – calcidiol
5-Aza – 5-aza-2’-deoxycytidine
AML – acute myeloid leukaemia
APC – adenomatous polyposis coli
Bcl2 – B-cell lymphoma 2 (Bcl2)
BMI – body mass index
Bmi-1 – B lymphoma mouse Moloney leukemia virus insertion region
bp – base pair
cDNA – copy DNA
C/EBPB – CCAAT/enhancer binding protein beta
C. elegans – Caenorhabditis elegans
CEU – Centre d’Etude du Polymorphisme Humain; Utah Residents with Northern and Western European Ancestry)
CNRQ – log(x) transformed calibrated normalised relative quantification units
CRC – colorectal cancer
CVD – cardiovascular disease
DHF – dihydrofolate
DHFR – dihydrofolate reductase
DHFR-19bp del – DHFR-19 base-pair deletion
DMR – differentially methylated region
DNMT – DNA methyltransferase
dTMP – deoxythymidine monophosphate
dUMP – deoxyuridine monophosphate
HAT – histone acetyltransferases
HCC – hepatocellular carcinoma
HDAC – histone deacetylases
HDL – high density lipoprotein
HMGA – high-mobility group A
Igf2 – insulin-like growth factor 2
INPP5D – phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1
KRAS – V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
LOD – logarithm of odds
LS – least squares
MBP – methyl-CpG-binding proteins
Md – methylation-dependent
miRNA – microRNA/s
mRNA – messenger RNA
Ms – methylation-sensitive
MSP – methyl specific PCR
MTHFR – methylenetetrahydrofolate reductase
MTR – methionine synthase
MTRR – methionine synthase reductase
TOMS – total ozone mapping spectrometer
PBCs- Peripheral blood cells
PCR – polymerase chain reaction
PDCD4 – programmed cell death 4
pre-miRNA – precursor miRNA
pri-miRNA – primary miRNA
PTEN – phosphatase and tensin homolog
qPCR – quantitative PCR
snRNA – small nucleolar RNA
RFLP – restriction fragment length polymorphism
RHLS – retirement health and lifestyle study
RISC – the RNA-induced silencing complex
RXR – retinoic acid receptor
RFLP – restriction fragment length polymorphism
SAH – S-adenosylhomocysteine
SAM – S-adenosylmethionine
SERPINB5 – mammary serine protease inhibitor clade 5
SHMT – serine hydroxymethyltransferase
SOX5 – Sex Determining Region Y-Box 5
STAT3 – signal transducer and activator of transcription 3
THF – tetrahydrofolate
TPM1 – tropomyosin 1
VDR – vitamin D receptor
VDRE – vitamin D response element
List of Figures

Figure 1.1	The links between nutrients and gene expression	3
Figure 1.2	Schematic of vitamin D regulation of gene transcription	4
Figure 1.3	Schematic of microRNA biogenesis	7
Figure 1.4	microRNA mechanisms of action	8
Figure 1.5	Mechanisms of methylation mediated gene suppression	10
Figure 1.6	The complex interactions between microRNA and DNA methylation to modulate gene expression	12
Figure 1.7	Involvement of dietary micronutrients in one-carbon metabolism and the generation of methyl groups for DNA methylation	14
Figure 1.8	Simplified flow chart of vitamin D metabolism	20
Figure 1.9	Simple overview of the role of vitamin D functions and pathways	21
Figure 2.1	Plasma expression of microRNA in adenomatous polyp cases vs. healthy control	47
Figure 2.2	Plasma expression of microRNA in adenomatous polyp cases vs. healthy controls, stratified by sex	48
Figure 2.3	The correlations between red blood cell folate levels and systemic circulating microRNA	51
Figure 2.4	The correlations between serum folate levels and miRNA and systemic circulating microRNA	52
Figure 2.5	The correlations between serum vitamin B₁₂ levels and systemic circulating microRNA	54
Figure 2.6	The correlations between serum cysteine levels and systemic circulating microRNA	56
Figure 2.7	The correlations between plasma homocysteine levels and systemic circulating microRNA	57
Figure 3.1	Graphic depicting linkage disequilibrium analysis results (Haploview) for MTHFR polymorphisms	87
Figure 3.2	Graphic depicting linkage disequilibrium analysis results (Haploview) for VDR polymorphisms	88
Figure 3.3	Plasma microRNA expression by genotype for relationships identified by stepwise regression analysis in the adenomatous polyp case-control cohort	97
Figure 3.4	Plasma microRNA expression by genotype, stratified by sex, for relationships identified by stepwise regression analysis in the adenomatous polyp case-control cohort	98
Figure 3.5	Plasma microRNA expression by genotype, with stratification by sex, in the RHLS elderly cross-sectional cohort	100
Figure 3.6	Plasma microRNA expression by VDR-BsmI and VDR-FokI genotype in the adenomatous polyp case-control cohort	104
Figure 3.7	Plasma microRNA expression by VDR-BsmI and VDR-FokI genotype in the adenomatous polyp case-control cohort, stratified by sex	105
Figure 3.8	Plasma microRNA expression by VDR-BsmI and VDR-FokI genotype in the adenomatous polyp case-control cohort, with cases excluded	106
Figure 3.9 Plasma microRNA expression by VDR-BsmI and VDR-FokI genotype in the RHLS elderly cross-sectional cohort……………………………………………………………………107

Figure 3.10 Plasma microRNA expression by VDR-BsmI and VDR-FokI genotype in the RHLS elderly cross-sectional cohort, stratified by sex………………………………………………………………………………108

Figure 3.11 Schematic depiction of the interaction between VDR polymorphism and sex in determining risk for adenomatous polyps, in this study cohort………………………………………………………………………………110

Figure 3.12 The observed correlations between polymorphisms in VDR and folate metabolism related genes and systemic circulating microRNA expression observed in the adenomatous polyp cohort………xix
Figure 5.1 Outlier box plots illustrating distribution of DNA methylation at assayed CpG islands. ...154

Figure 5.2 Linear bi-variable correlations between the methylation density of the CpG island assessed...156

Figure 5.3 The bi-variable correlations between plasma 25(OH)D and DNA methylation in CpG islands of vitamin D metabolism genes...157

Figure 5.4 Varied methylation of the VDR gene by VDR and folate related genotypes, selected for inclusion by stepwise regression analysis..157

Figure 5.5 Varied methylation of CYP2R1 by VDR and folate related genotypes, selected for inclusion by stepwise regression analysis...161

Figure 5.6 Varied methylation of CYP24A1 by VDR and folate related genotypes, selected for inclusion by stepwise regression analysis...162

Figure 5.7 Varied methylation of CYP27B1 by VDR and folate related genotypes, selected for inclusion by stepwise regression analysis...164

Figure 5.8 Potential points of methylation mediated regulation in the vitamin D metabolism pathway...165

Figure 6.1 The potential relationships between systemic circulating microRNA levels (let-7a, miR-15a, miR-21, miR-155), adenomatous polyps, and polymorphisms of VDR and key folate metabolism enzyme genes, identified in the adenomatous polyp case control cohort..169

Figure 6.2 The potential relationships between systemic circulating microRNA levels (let-7a, miR-15a, miR-21, miR-155), and polymorphisms of VDR and key folate metabolism enzyme genes, identified in the RHLS elderly cross-sectional cohort..175

Figure 6.3 The hypothesised potential relationships between plasma 25(OH)D, folate and the methylation status of VDR, CYP2R1 and CYP24A1...179

Figure 6.4 Potential modulation of the folate metabolism pathways by polymorphisms by DHFR and MTHFR polymorphisms...181
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Epi-miRNA with identified vitamin or mineral regulators</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Quantitative PCR primers for microRNA analysis</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Distribution of plasma levels of candidate microRNA, by cohort</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Plasma expression of candidate microRNA in adenomatous polyp cases and controls, with and without adjustment for age and sex</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Plasma expression of selected miRNA in adenomatous polyp cases vs. controls, stratified by sex, with and without adjustment for age</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>The significance of the influence of sex, and the interaction between sex and polyp status, on miRNA levels in plasma</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>The potential of candidate microRNA in predicting adenomatous colon polyps</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>The potential of candidate microRNA in predicting adenomatous colon polyps, stratified by sex and adjusted for smoking history and alcohol intake</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>The correlation between red blood cell folate and plasma levels of candidate microRNA, adjusted for and stratified by sex</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>The correlation between serum folate and plasma levels of candidate microRNA, adjusted for and stratified by sex</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>The correlations between serum vitamin B_{12} (log(x) transformed) and plasma levels of candidate microRNA, adjusted for and stratified by sex</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>The correlations between serum cysteine and plasma levels of candidate microRNA, adjusted for and stratified by sex</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>The correlations between plasma homocysteine and plasma levels of candidate microRNA, adjusted for and stratified by sex</td>
<td>58</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Multivariable regression analysis: the combined prediction of methyl-donor micronutrient biochemistry and plasma microRNA expression, adjusted for and stratified by sex in an adenomatous polyp case-control cohort</td>
<td>60</td>
</tr>
<tr>
<td>Table 2.14</td>
<td>Multivariable regression analysis: the combined prediction of methyl-donor micronutrient biochemistry and plasma microRNA levels, adjusted for and stratified by sex in a cross-sectional elderly cohort</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.15</td>
<td>The correlations between plasma 25(OH)D levels and the plasma microRNA levels</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.16</td>
<td>Variables identified by stepwise regression for inclusion in models of vitamin and mineral prediction of the plasma levels of candidate miRNA in an adenomatous polyp case-control cohort</td>
<td>64</td>
</tr>
<tr>
<td>Table 2.17</td>
<td>Variables identified by stepwise regression for inclusion in models of macronutrient and other energy sources prediction of the plasma levels of candidate microRNA in an adenomatous polyp case-control cohort</td>
<td>65</td>
</tr>
<tr>
<td>Table 2.18</td>
<td>Variables identified by stepwise regression for inclusion in models of vitamin and mineral prediction of plasma level of candidate microRNA in a cross-sectional elderly cohort</td>
<td>66</td>
</tr>
</tbody>
</table>
Table 2.19 Variables identified by stepwise regression for inclusion in models of macronutrient and energy source prediction of plasma level of candidate microRNA in a cross-sectional elderly cohort.

Table 3.1 Assessed polymorphisms in genes of key enzymes of folate metabolism.

Table 3.2 Assessed polymorphisms in the VDR gene.

Table 3.3 Cycle conditions for PCR amplification of polymorphic regions.

Table 3.4 Restriction digestion and electrophoresis gel details.

Table 3.5 Allelic and genotypic frequencies for polymorphisms of genes for key enzymes of folate metabolism.

Table 3.6 Allelic and genotypic frequencies for VDR polymorphisms.

Table 3.7 Assessment for deviation from Hardy Weinberg equilibrium for all polymorphisms.

Table 3.8 Frequencies of reconstructed MTHFR haplotypes.

Table 3.9 Frequencies of reconstructed VDR haplotypes.

Table 3.10 Linkage disequilibrium analysis for MTHFR and VDR polymorphisms in the experimental cohorts and reference database cohorts.

Table 3.11 Odds ratios (95% confidence intervals) for risk for adenomatous polyps by presence of ancestral and presence of polymorphic alleles for MTHFR.

Table 3.12 Odds ratios (95% confidence intervals) for risk of adenomatous polyps by presence of two common MTHFR haplotypes.

Table 3.13 Odds Ratios (95% confidence intervals) for risk for adenomatous polyps by presence of ancestral and polymorphic alleles for VDR polymorphisms.

Table 3.14 Odds ratios (95% confidence intervals) for risk of adenomatous polyps by presence of the two most frequent VDR-BsmI/ApaI/TaqI haplotypes.

Table 3.15 Results from stepwise regression analyses for the genotypes predicting microRNA plasma levels in the adenomatous polyp case control cohort, with and without stratification by sex.

Table 3.16 The relationship between red blood cell folate and candidate microRNA in the adenomatous polyp cohort, stratified by relevant genotypes.

Table 3.17 The relationship between red blood cell folate and candidate microRNA in the RHLS elderly cross-sectional cohort, stratified by relevant genotypes.

Table 4.1 Expression of candidate microRNA under folate deficient culture conditions, relative to folate normal culture conditions.

Table 4.2 Expression of candidate microRNA in folate excess culture conditions, relative to normal culture conditions.

Table 4.3 Direction of modulation of candidate microRNA by 5-aza-2'-deoxycytidine treatment relative to non-treated control with the same folate culture conditions.

Table 4.4 Expression of microRNA following 1,25(OH)_{2}D treatment relative to normal culture conditions.

Table 4.5 Direction of modulation of microRNA by 5-aza-2'-deoxycytidine treatment relative to non-treated control with the same 1,25(OH)_{2}D culture conditions.
Table 5.1 Details of CpG islands targeted by Qiagen EpiTect II assays

Table 5.2 Comparison of the distribution of age, blood micronutrients and estimated dietary intakes in the sub-cohort relative to the complete RHLS cross-sectional cohort

Table 5.3 Multivariable regression analyses of the relationships between plasma 25(OH)D, serum folate, vitamin B₁₂ and plasma homocysteine with methylation status of genes of key vitamin D metabolism enzymes

Table 5.4 Individual predictive value of DNA methylation status for plasma 25(OH)D levels in a model including all assessed methylation sites

Table 5.5 Statistical significance of the interaction between methylation status and vitamin D intake, calcium intake and cumulative solar irradiance in the prediction of plasma 25(OH)D levels

Table 5.6 VDR and folate metabolism related genotypes in the prediction of VDR methylation status, correlation results from stepwise regression analysis

Table 5.7 VDR and folate metabolism related genotypes in the prediction of VDR methylation status, pairwise comparisons of back transformed means

Table 5.8 VDR and folate metabolism related genotypes in the prediction of CYP2R1 methylation status, correlation results from stepwise regression analysis

Table 5.9 VDR and folate metabolism related genotypes in the prediction of CYP2R1 methylation status, pairwise comparisons of back transformed means

Table 5.10 VDR and folate metabolism related genotypes in the prediction of CYP24A1 methylation status, correlation results from stepwise regression analysis

Table 5.11 VDR and folate metabolism related genotypes in the prediction of CYP24A1 methylation status, pairwise comparisons of back transformed means

Table 5.12 VDR and folate metabolism related genotypes in the prediction of CYP27B1 methylation status, correlation results from stepwise regression analysis

Table 5.13 VDR and folate metabolism related genotypes in the prediction of CYP27B1 methylation status, pairwise comparisons of back transformed means

Table 5.14 The relationships between methylation of VDR and vitamin D metabolism genes and circulating levels of candidate microRNA

Table 5.15 The direction of correlation between DNA methylation of the VDR and vitamin D metabolism genes with the presence of the polymorphic allele of VDR and folate metabolism related genotypes (in fully adjusted models)

Table 6.1 Comparison of the correlations between extracellular microRNA expression and folate in human cohorts and cell culture models