Longitudinal Data Analysis: statistical methods for analysing longitudinal changes in health related quality of life which account for deaths and impute for longitudinal missing data.

Steven J Bowe
Master of Medical Statistics,
Bachelor of Education (mathematics)

Thesis submitted for fulfilment of the award of Doctor of Philosophy
Faculty of Health
The University of Newcastle

Centre for Clinical Epidemiology and Biostatistics, October 2010
This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.
Dedicated to Frankie Bowe
(4-2-1936 to 16-2-2008)

&

Leo Bowe

Born 10-03-2009

In memory of my father who passed away while I was completing this thesis.
Dearly loved and sadly missed.

He always encouraged me to see things differently and he would be very proud of the
“doctor” as he always called me from childhood.

I would also like to dedicate this thesis to my beautiful nephew Leo who has brought so
much joy to my family since the passing of his grandfather.
Acknowledgements

First and foremost, I would like to acknowledge and thank my PhD supervisors, Associate Professor David Sibbritt, Dr Patrick McElduff and Associate Professor Anne Young who have provided invaluable guidance and support along what has been a long journey.

This thesis would not have been possible had it not been for the use of the data from Australian Longitudinal Study on Women’s Health (ALSWH) at the Universities of Newcastle and Queensland. I would like to thank the very helpful and time generous researchers and staff at ALSWH. I would also like to thank Professor Gita Mishra for encouraging me to tackle this topic and thank you to Professor Annette Dobson and Professor Julie Byles for their valuable advice along the way. Big thanks to Dr Adrian Barnett and Dr Hiro Furuya for their valuable input into parts of my research.

Thanks to my colleagues and the staff at The Centre for Clinical Epidemiology and Biostatistics both past and present, who have encouraged me to finish over the past six and half years (part-time). I would especially like to acknowledge Professor Catherine D’Este and Dr Kerry Inder who have both been very supportive.

To my wonderful friends, who have supported and encouraged me through an extremely difficult period in my life.

Finally, I would like to thank my mum Helen and my sisters Julie, Louise and Katie for their encouragement and support through what has been a very tough time for us all.
Published Papers

Bowe SJ, Young AF, Sibbritt DW & Furuya H (2006) Transforming the SF-36 to account for death in longitudinal studies with three year follow-up Med Care 44: 956-959.

This paper is based on the contents in Chapter 4 (see Appendix 8.1 for paper).

The statistical methods used in this paper have contributed to the methods applied in Chapters 6 and 7 (see Appendix 8.1 for paper).

Conference Presentations

This conference presentation is based on the contents in Chapter 5.

Bowe SJ, Young AF, Sibbritt DW, & Furuya H. Transforming the SF-36 to account for death in longitudinal studies: does length of time between surveys and cohorts composition matter? Australasian Epidemiological Association Annual Conference, Newcastle, Australia October 2005 Oral presentation.
TABLE OF CONTENTS

LIST OF FIGURES .. VI

LIST OF TABLES .. VIII

SYNOPSIS .. IX

CHAPTER 1: .. 1

1.0 INTRODUCTION ... 3
1.1 THESIS AIM AND OBJECTIVES .. 4
1.2 OUTLINE OF THESIS .. 5

CHAPTER 2: .. 7

2.0 INTRODUCTION ... 10
2.1 A COMPARISON OF HEALTH RELATED — QUALITY OF LIFE INSTRUMENTS 11
2.2 HEALTH PROFILES VS HEALTH UTILITY INDEXES .. 13
2.3 GENERIC MEASURES AND DISEASE SPECIFIC MEASURES .. 14
2.3.1 Examples of Generic Measures ... 14
2.3.2 Examples of Disease-Specific Measures ... 14
2.4 A BRIEF HISTORY OF GENERIC HEALTH PROFILES USING SUMMATED RATING SCALES 15
2.4.1 MOS Short Form-36 (SF-36) .. 15
2.4.2 RAND-36 Item Health Survey .. 20
2.4.3 Developments of SF-12 and VR-12 from SF-36 and VR-36 .. 21
2.4.4 The emergence of SF-12 as a possible replacement of SF-36 .. 21
2.4.5 The Veteran RAND-12 (VR-12) ... 22
2.4.6 Short Form-12 version 2 (SF-12v2) ... 22
2.4.7 SF-8 Health Survey ... 23
2.5 WORLD HEALTH ORGANISATION QUALITY OF LIFE (WHOQOL-BREF) 23
2.6 BRIEF HISTORY OF GENERIC HEALTH UTILITY INDEXES ... 24
2.6.1 Direct and Indirect Utility Techniques ... 25
2.6.2 Indirect utility techniques ... 26
2.7 MAPPING FROM THE SF-36 AND SF-12 TO THE SF6D ... 30
2.8 USAGE OF TRANSLATING NINE GENERIC HRQOL INSTRUMENTS FOR USE IN AFRICA 32
2.9 DEVELOPMENT OF THE AUSTRALIAN STANDARDISED SF-36 ... 33
2.9.1 THE AUSTRALIAN LONGITUDINAL STUDY ON WOMEN’S HEALTH (ALSWH) 34
2.9.2 ALSWH PCS and MCS standardised using a formula relevant to Australian population 35
2.9.3 Measures .. 35
2.9.4 Analysis ... 36
2.9.5 Norms of the PCS and MCS scores for older Australian women ... 36
2.10 VALIDITY OF THE SF-12 COMPARED WITH THE SF-36 IN ALSWH PILOT STUDIES 38

CHAPTER 3: .. 39

3.0 INTRODUCTION ... 41
3.1 CONCEPTS AND TERMINOLOGY OF MISSING DATA ... 41
3.1.1 Theories and Concepts .. 41
3.1.2 Attrition in longitudinal studies .. 46
3.1.3 Dealing with Missing Data .. 57
3.1.4 Developments in Imputation Theory and Methodology .. 59
3.1.5 Single imputation — longitudinal methods (LVCF) ... 63
3.1.6 Weighting Methods ... 63
3.1.7 Multiple Imputation ... 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.8</td>
<td>Likelihood-based Approaches</td>
<td>65</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Bayesian Approaches</td>
<td>66</td>
</tr>
<tr>
<td>3.1.10</td>
<td>Pros and Cons of imputation methods</td>
<td>67</td>
</tr>
<tr>
<td>3.1.11</td>
<td>Non-ignorable missing data methods</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>LITERATURE REVIEWS</td>
<td>68</td>
</tr>
<tr>
<td>3.2.1</td>
<td>A Review of the Literature – Accounting for Deaths</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2</td>
<td>A Review of the Literature – Missing Data</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>DISCUSSION</td>
<td>97</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Treatment of Deaths in SF-36 by Kazis et al 2007</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Treatment of missing SF-36 items</td>
<td>98</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Use of simulation models - Suggestion from Kazis et al (2007)</td>
<td>98</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Methods for dealing with informative (non-ignorable) missing data</td>
<td>99</td>
</tr>
<tr>
<td>4.0</td>
<td>INTRODUCTION</td>
<td>103</td>
</tr>
<tr>
<td>4.1</td>
<td>BACKGROUND</td>
<td>103</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Two Approaches for incorporating deaths into Health status</td>
<td>104</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Approach 1 - “Healthy” Versus “Not healthy”</td>
<td>104</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Approach 2 - Transformation of Self-rated health (EVGGFP) into a Probability of being healthy in the future (PHF)</td>
<td>105</td>
</tr>
<tr>
<td>4.1.4</td>
<td>An approach for the Transformation of PCS and MCS</td>
<td>106</td>
</tr>
<tr>
<td>4.2</td>
<td>AIMS AND OBJECTIVES</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>METHOD</td>
<td>108</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Sample</td>
<td>108</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Data</td>
<td>109</td>
</tr>
<tr>
<td>4.3.3</td>
<td>ALSWH - Response, Retention Rates and Deaths</td>
<td>109</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Measures</td>
<td>113</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Definition of “Healthy”</td>
<td>113</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Derivation of the value of APCTD</td>
<td>113</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Validation of APCTD</td>
<td>115</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Definition Diabetes Status at Survey 1 and Survey 2</td>
<td>115</td>
</tr>
<tr>
<td>4.4</td>
<td>STATISTICAL ANALYSIS</td>
<td>117</td>
</tr>
<tr>
<td>4.5</td>
<td>RESULTS</td>
<td>117</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Application of Equation 4.1 using ALSWH data</td>
<td>117</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Development of the Transformation Equation APCT</td>
<td>117</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Comparisons of Distributions for Diehr and ALSWH equations</td>
<td>118</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Example of Comparing Diehr and ALSWH Equations</td>
<td>120</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Development of the ALSWH Equation using Survey 1 and Survey 2</td>
<td>121</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Validation of ALSWH Equation using Survey 2 and Survey 3</td>
<td>123</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Comparing the Changes in health of Women with and without Diabetes</td>
<td>125</td>
</tr>
<tr>
<td>4.6</td>
<td>DISCUSSION</td>
<td>128</td>
</tr>
<tr>
<td>5.0</td>
<td>INTRODUCTION</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>BACKGROUND</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>AIMS AND OBJECTIVES</td>
<td>134</td>
</tr>
<tr>
<td>5.3</td>
<td>METHODS</td>
<td>134</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Subjects</td>
<td>134</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Measures</td>
<td>135</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Outcome</td>
<td>135</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Covariates</td>
<td>136</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Attrition</td>
<td>136</td>
</tr>
<tr>
<td>5.4</td>
<td>STATISTICAL ANALYSIS</td>
<td>137</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Multiple Imputation</td>
<td>137</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Gibbs Sampling and Missing Data</td>
<td>139</td>
</tr>
</tbody>
</table>
CHAPTER 6: ... 165

6.0 INTRODUCTION ..167

6.1 BACKGROUND .. 167

6.1.1 HALex Approach to account for death ..168

6.1.2 Estimation of Health Utility Index scores ..169

6.1.3 Pros and Cons of the HALex Approach .. 173

6.1.4 Usage of Other Health Utility Indexes ...174

6.1.5 Using another Health Utility Index- Converting SF-36 to SF-6D174

6.1.6 Further Developments of the SF-6D health utility index .. 175

6.1.7 Death as a changing Quality of Life value ...176

6.2 AIMS AND OBJECTIVES ... 178

6.3 METHODS .. 179

6.3.1 Subjects .. 179

6.3.2 Measures ... 179

6.3.3 Development of the Outcome Variable PCSD ... 184

6.3.4 Covariates ... 186

6.4 STATISTICAL ANALYSIS .. 186

6.4.1 Developments of SF-6D and PCS death value ...186

6.4.2 Cross-sectional Analysis .. 186

6.4.3 Longitudinal Data Analysis .. 187

6.5 RESULTS .. 195

6.5.1 Descriptive Statistics – SF-6D at Surveys 1-4 ... 195

6.5.2 Correlations between PCS and SF-6D at Survey 1-4 ... 196

6.5.3 Comparing Results from R-squared (R²) and Y-intercepts (a) and beta (b) estimates 197

6.5.4 Calculation of the PCS Death scores using a Linear Equation at each survey 205

6.5.5 Considerations of the PCS value for death ...205

6.5.6 Comparisons using general Australian populations aged 65 years older 209

6.5.7 What PCS value then to use for death? .. 211

6.5.8 Cross-Sectional Data Analysis ... 214

6.5.9 Longitudinal Data Analysis .. 220

6.6 DISCUSSION ... 228

6.6.1 Cross-Sectional comparisons of death values ... 228

6.6.2 Comparisons to Trisolini et al’s PCS value for death of 14 ... 228

6.6.3 The Use of Decreasing PCS Values for Death (7, 5, 5) ... 229

6.6.4 The Impact of Using of Multiple Imputation ... 229

CHAPTER 7: ... 231

7.0 INTRODUCTION .. 233

7.1 BACKGROUND ... 233

7.1.1 Original and Current HOS Case-Mix methodology ... 235
CHAPTER 8:

8.1 METHOD ONE ... 307
Transforming the SF-36 to account for death in longitudinal studies with three year follow-up 307
8.1.1 Strengths and Limitations ... 307
8.1.2 Recommendations .. 309
8.1.3 Future Research .. 309

8.2 METHOD TWO .. 310
Accounting for deaths in longitudinal studies – Generating a PCS value for death using a health utility index (SF-6D) .. 310
8.2.1 Strengths and Limitations ... 311
8.2.2 Recommendations .. 311
8.2.3 Future Research .. 312

8.3 METHOD THREE .. 313
Accounting for deaths in longitudinal studies – Using the adapted HOS Methodology (Same or Better Vs Worse) .. 313
8.3.1 Strengths and Limitations ... 314
8.3.2 Recommendations .. 315
8.3.3 Future Research .. 315

8.4 METHOD FOUR ... 316
Analysing longitudinal changes in health related quality of life: A method to adjust for longitudinal missing data ... 316
8.4.1 Strengths and Limitations .. 316
8.4.2 Recommendations .. 318
8.4.3 Further Research .. 319
8.5 Conclusions .. 320
REFERENCES .. 321
APPENDICES .. A1
APPENDIX 2.1 ... A2
APPENDIX 2.2 ... A3
APPENDIX 2.3 ... A4
APPENDIX 4.1 ... A5
APPENDIX 4.2 ... A6
APPENDIX 4.3 ... A8
APPENDIX 5.1 ... A12
APPENDIX 5.2 ... A16
APPENDIX 6.1 ... A18
APPENDIX 6.2 ... A20
APPENDIX 6.3 ... A24
APPENDIX 6.4 ... A25
APPENDIX 6.5 ... A26
APPENDIX 6.6 ... A27
APPENDIX 7.1 ... A28
APPENDIX 7.2 ... A30
APPENDIX 8.1 ... A32
LIST OF FIGURES

FIGURE 2.1 HEALTH RELATED QUALITY OF LIFE: TAXONOMY ... 12
FIGURE 2.2 SF-36® SCALES MEASURE PHYSICAL AND MENTAL COMPONENTS OF HEALTH 17
FIGURE 2.3 DIRECT VS INDIRECT TECHNIQUES ACCORDING TO BRAZIER ET AL (1999) AND ARNOLD ET AL (2009) 25
FIGURE 3.1 ILLUSTRATION OF INTERMITTENT MISSING DATA AND DROP-OUTS ... 48
FIGURE 3.2 EXAMPLE OF THE MISSING DATA MECHANISMS .. 53
FIGURE 4.1 MEAN PCS SCORES AT SURVEYS 1 AND 2 BY GENERAL HEALTH CLASSIFICATION AT SURVEY 3 112
FIGURE 4.2 A COMPARISON OF EQUATION 4.1 AND ALSWH EQUATION ... 120
FIGURE 4.3 PREDICTED PERCENT HEALTHY VERSUS OBSERVED PERCENT HEALTHY AT SURVEY 2 122
FIGURE 4.4 OBSERVED PERCENT ‘HEALTHY’ (AT SURVEY 3) VS PREDICTED PERCENT ‘HEALTHY’ 125
FIGURE 5.1 MEAN APTC AND REASON FOR ATTENTION BETWEEN SURVEY 2 AND 3 BY DIABETES GROUPS 156
FIGURE 5.2 APTC – MEAN PROBABILITY OF BEING HEALTHY IN 3 YEARS (DEATHS EXCLUDED), WITH 95% CONFIDENCE INTERVALS .. 157
FIGURE 5.3 APTCD – MEAN PROBABILITY OF BEING HEALTHY IN 3 YEARS (COMPLETE CASE DEATHS INCLUDED), WITH 95% CONFIDENCE INTERVALS ... 158
FIGURE 5.4 APTCDI – MEAN PROBABILITY OF BEING HEALTHY IN 3 YEARS (DEATHS AND IMPUTED VALUES INCLUDED), WITH 95% CONFIDENCE INTERVALS ... 159
FIGURE 6.1 ERICKSON (1998) ORIGINAL MATRIX FOR SCORING THE HALEX .. 171
FIGURE 6.2 TRISOLINI ET AL MATRIX FOR SCORING THE HALEX UTILITY SCORERS BY ACTIVITY LIMITATION AND PERCEIVED HEALTH UTILITY SCORES .. 171
FIGURE 6.3 REGRESSION RESULTS FROM SMITH, ET AL (2005) CONFERENCE PRESENTATION 172
FIGURE 6.4 THE SF-36 ITEMS AND SUB-SCALES USED FOR PCS AND MCS ... 180
FIGURE 6.5 REGRESSION RESULTS OF PCS ON SF-6D AT SURVEY 1 USING LINEAR, LOGARITHMIC AND POLYNOMIAL REGRESSION MODELS ... 199
FIGURE 6.6 REGRESSION RESULTS OF PCS ON SF-6D AT SURVEY 2 USING LINEAR, LOGARITHM AND POLYNOMIAL REGRESSION MODELS ... 200
FIGURE 6.7 REGRESSION RESULTS OF PCS ON SF-6D AT SURVEY 3 USING LINEAR, LOGARITHM AND POLYNOMIAL REGRESSION MODELS ... 201
FIGURE 6.8 REGRESSION RESULTS OF PCS ON SF-6D AT SURVEY 4 USING LINEAR, LOGARITHM AND POLYNOMIAL REGRESSION MODELS ... 202
FIGURE 6.9 REGRESSION RESULTS OF PCS ON SF-6D AT SURVEY 1 USING THE STEVENSON (1996) SUBSCALE WEIGHTINGS FOR LINEAR, LOGARITHM AND POLYNOMIAL REGRESSION MODELS ... 210
FIGURE 6.10 CROSS-SECTIONAL COMPARISONS OF PCS AT SURVEY 1, 2, 3 AND 4 ... 216
FIGURE 6.11 CROSS-SECTIONAL COMPARISONS OF PCS6D9 AT SURVEY 1, 2, 3 AND 4 ... 218
FIGURE 6.12 CROSS-SECTIONAL COMPARISONS OF PCS6D7,5,5 AT SURVEY 1, 2, 3 AND 4 220
FIGURE 6.13 LONGITUDINAL ANALYSIS – MEAN PCS WHEN DEATH=9 BUT WITHOUT OTHER IMPUTATION OF PCS 223
FIGURE 7.1 DIFFERENCE IN PCS BEFORE MULTIPLE IMPUTATION ... 270
FIGURE 7.2 DIFFERENCE IN PCS AFTER MULTIPLE IMPUTATION (5 DATASETS) .. 271
FIGURE 7.3 DIFFERENCE IN PCS AFTER MULTIPLE IMPUTATION ... 271
FIGURE 7.4 ALSWH MEAN PROBABILITY OF BEING ALIVE AND IN SAME OR BETTER HEALTH AT EACH SURVEY BY DIABETES GROUPS WITHOUT DEATHS ... 285
FIGURE 7.5 ALSWH MEAN PROBABILITY OF BEING ALIVE AND IN SAME OR BETTER HEALTH AT EACH SURVEY BY DIABETES GROUPS WITH DEATHS ... 285
FIGURE 7.6 ADJUSTED MEAN PROBABILITIES OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (NO DEATHS AND NO INTERACTION) ... 289
FIGURE 7.7 ADJUSTED MEAN PROBABILITIES OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (NO DEATHS BUT AN INTERACTION) ... 289
FIGURE 7.8 ADJUSTED MEAN PROBABILITIES OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (DEATHS INCLUDED BUT NO INTERACTION) ... 291
FIGURE 7.9 ADJUSTED MEAN PROBABILITIES OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (DEATHS INCLUDED AND TIME INTERACTION) ... 296
FIGURE 7.10 MEAN PROBABILITY OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (WITH DEATHS INCLUDED AND IMPUTED APASBD NO INTERACTION) ... 298
FIGURE 7.11 MEAN PROBABILITY OF BEING ALIVE AND IN SAME HEALTH OR BETTER HEALTH OVER TIME BY DIABETES GROUPS (DEATHS AND IMPUTED APASBD AND AN INTERACTION) ... 299
FIGURE 7.12 ADJUSTED MEAN PROBABILITY OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (DEATHS AND NO IMPUTED APASBD AND NO INTERACTION) ... 296
FIGURE 7.13 ADJUSTED MEAN PROBABILITY OF BEING ALIVE AND IN SAME OR BETTER HEALTH OVER TIME (DEATHS AND IMPUTED APASBD AND NO INTERACTION) .. 297
FIGURE 7.14 MEAN PROBABILITY OF BEING ALIVE AND BETTER HEALTH AT EACH SURVEY BY DIABETES GROUPS WITH DEATHS INCLUDED ... 298
FIGURE 7.15 MEAN PROBABILITY OF BEING ALIVE AND SAME HEALTH AT EACH SURVEY BY DIABETES GROUPS WITH DEATHS INCLUDED .. 299
FIGURE 7.16 ADJUSTED PROBABILITY OF BEING ALIVE AND BETTER HEALTH AT EACH SURVEY BY DIABETES GROUPS WITH DEATHS INCLUDED WITH MULTIPLE IMPUTATION .. 301
FIGURE 7.17 MEAN PROBABILITY OF BEING ALIVE AND BETTER HEALTH AT EACH SURVEY BY DIABETES GROUPS WITH DEATHS INCLUDED AND TIME INTERACTION WITH MI ... 301
LIST OF TABLES

Table 2.1 NORMS FORPCS AND MCS scores for three groups of Australian women compared with US
norms for females ... 37
Table 3.1 Eight strategies of handling deaths suggested by Diehr et al (1995) ... 73
Table 4.1 Response, Retention Rates and Deaths of Older Cohort ... 110
Table 4.2 Descriptive Statistics – Comparisons of equations at surveys 1-3 ... 119
Table 4.3 Predicted percent healthy vs Observed percent healthy at survey 2 ... 121
Table 4.4 Observed percent ‘healthy’ after 3 years (at survey 3) vs Predicted percent ‘health’ 124
Table 4.5 Changes in health between surveys 1 and 2 for Diabetes Groups ... 126
Table 4.6 Comparison of mean scores between survey 1 and survey 2 ... 126
Table 5.1 Diabetes status defined retrospectively from 2005 .. 153
Table 5.2a Overall Mortality and withdrawals ... 153
Table 5.2b Cumulative number (%) of deaths by diabetes status .. 154
Table 5.3 Probability of being healthy in 3 years by attrition classifications for existing cases 155
Table 5.4 Comparisons of regression coefficients for predicting APCTD .. 161
Table 6.1 Descriptive Statistics – SF-6D at surveys 1, 2, 3 and 4 .. 195
Table 6.2 Correlations for PCS and SF-6D at Surveys 1, 2, 3 and 4 ... 196
Table 6.3 Comparisons of linear, logarithmic and polynomial regression estimates for Survey 1 198
Table 6.4 Approaches for imputing PCS values for death .. 212
Table 6.5 Descriptive Statistics of Approach 1 – Comparisons of PCS and PCSD at surveys 1-4 213
Table 6.6 Cross-sectional comparisons of PCS at survey 1, 2, 3 and 4 ... 215
Table 6.7 Cross-sectional comparisons of PCSD9 (death = 9) and surveys 1-4 ... 217
Table 6.8 Cross-sectional comparisons of PCSD7, 5, 5 at Surveys 1-4 ... 219
Table 6.9 Comparisons of regression coefficients using WinBUGS and STATA (PCSD9) 226
Table 6.10 Comparisons of regression coefficients using WinBUGS and STATA (PCSD7-5-5) 227
Table 7.1 Missing data – proportion of missing covariates at each survey for original cohort 264
Table 7.2 No multiple imputation (N=7010) ... 266
Table 7.3 Multiple imputation “averaged coefficients” (N=8790) ... 267
Table 7.4 Difference in PCS before and after imputation .. 269
Table 7.5 ALSWH and Rogers’ cut-offs (Same or Better Vs Worse) ... 270
Table 7.6 Logistic regression model for Same or Better no multiple imputation .. 272
Table 7.7 Logistic regression model (Same or Better) - MI “averaged coefficients” .. 272
Table 7.8 Using Rogers’ cut-off (5.66) multiple imputation ... 274
Table 7.9 Descriptive statistics – ALSWH cut-off (8.65) APASB at surveys 1-4 .. 276
Table 7.10 Descriptive statistics – ALSWH cut-off (8.65) APASB at surveys 1-4 .. 277
Table 7.11 Descriptive statistics – Rogers’ cut-off (5.66) APASB at surveys 1-4 .. 277
Table 7.12 Descriptive statistics – Rogers’ cut-off (5.66) APASB at surveys 1-4 .. 278
Table 7.13 ALSWH and Rogers’ cut-offs (Better Vs Same Vs Worse) .. 280
Table 7.14 Probability of being alive and Better (with and without deaths) at next survey 282
Table 7.15 Probability of being alive and Same (with and without deaths) at next survey 282
Table 7.16 “Change in health” APASB (no deaths) for Diabetes Groups at Surveys 1 to 4 284
Table 7.17 “Change in health” APASB (Deaths included) for Diabetes at Surveys 1 to 4 286
Table 7.18 (Same or Better) random intercept model No Deaths (No MI) and with a time interaction 288
Table 7.19 (Same or Better) random intercept model (Deaths) without multiple imputation 290
Table 7.20 (Same or Better) random intercept model (Deaths) with multiple imputation of APASB ... 292
Table 7.21 (Same or Better) random slopes and intercepts (Deaths) without MI 294
Table 7.22 (Same or Better) random intercepts and slopes (Deaths) (With MI) .. 295
Table 7.23 (Better) random intercept model (Deaths) with and without multiple imputation 302
SYNOPSIS

Analysis of data from longitudinal studies is made more complex by the death of study participants over time. Many statistical methods depend on complete case analysis, meaning that data for participants who die are often removed from the analysis and reported and/or sometimes analysed separately. This complete case analysis approach limits longitudinal analysis to survivors, who often begin or remain in better health than those who died, and hence researchers may miss important changes over time in the total cohort.

Many longitudinal studies that aim to measure changes in physical and mental health over time use the SF-36 instrument, a 36-item health questionnaire. However, there is no score on the SF-36 to reflect death. In recent years various methods to assign a score for death have been suggested but in most cases need greater validation and development across a variety of longitudinal studies.

This thesis discusses four methods for analysing longitudinal changes in health related quality of life; three methods for incorporating death into longitudinal studies of elderly populations and another method that attempts to deal with longitudinal missing data which may be missing not at random:

- Method 1 - Transforming the SF-36 Physical Component Summary score (PCS) to a probability of being healthy in three years;
- Method 2 - Converting the Short Form - 36 health survey into the Short Form - 6 Domains (SF-6D) to extrapolate a PCS value for death;
- Method 3 - Adapting the Health Outcomes Study (HOS) case-mix method to predict the probability of being Alive and in Same/Better health in 3 years;
method 4 - Longitudinal multiple imputation approach using Fully Bayesian methods.

The four methods were applied to data obtained from the Australian Longitudinal Study on Women's Health (ALSWH). This is a longitudinal, population-based survey that examines the health of three large cohorts of community-dwelling Australian women over a 20 year period (1996-2016) with follow-up surveys every three years. To demonstrate each method, a case study was used to determine whether or not there were statistically significant differences in elderly women with and without diabetes over time. The main focus was the impact of including deaths and other missing data over time. The analyses found that the inclusion of those who died impacted more heavily on those women with diabetes. The difference in predicted health in 3 years for women with and without diabetes became greater over time when deaths were reinstated with a value. Longitudinal multiple imputation of intermittent missing outcome and covariate data reduced the impact of the deaths on both groups over time. Finally, all four methods suggest that ignoring deaths and other missing data can lead to biased results towards study survivors.

The recommendation is that researchers using the SF-36 to study the longitudinal change in quality of life of elderly populations over time need to consider using methods which account for deaths and other missing data. These results can then be compared to analyses which ignore deaths and other missing data. This will result in less biased findings from longitudinal studies of ageing populations.