Investigating the correlation between pre- and post-demolition assessments for precast, post-tensioned beams in service for 45 years

Torill Papè
B.E. (Hons)
School of Engineering
Faculty of Engineering and Built Environment
University of Newcastle

A thesis submitted for the degree of
Doctor of Philosophy
2008
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Torill Myra Papè
I dedicate this thesis to my loving and supportive husband Anton, who has put on hold his own dreams to allow me to follow mine.

I’m blessed to share this life with you.
Acknowledgements

Firstly, I am indebted to my supervisor Professor Rob Melchers, a man who over the last few years has continuously challenged me, encouraged me, and taught me to step beyond what I thought was possible to help transform me into a better researcher, if not a better person.

I would like to thank staff from the Department of Infrastructure, Energy and Resources (DIER), in particular Geoff Mulcahy and Graeme Roberts for their provision of project documentation and background information. The contributions of the late Rod McGee and many others to this project is recognised. I would also like to gratefully acknowledge the financial support provided by DIER and the Australian Research Council.

This work would not be possible if not for the Civil Engineering laboratory staff at the University of Newcastle. Thanks go to Ian, Mick, Tim, Dan, Eric, Brett, Shaun, Goran, Roger and Laurie for lending a helping hand with sometimes tedious and laborious tasks. The staff at the University of Newcastle Library deserve a special mention - I never found a book or paper they could not find (believe me, I tried!). I would also like to thank David Phelan and Jenny Zobec for their assistance with the SEM imagery and XRD analyses. I would especially like to thank Jenny for her good friendship, good advice and good coffee breaks.

I am grateful for the assistance provided by Doctor James Mackechnie and colleagues at the University of Canterbury, Alda Villaneuva from the University of Texas, Brad Dockrill from Izzat Consulting, Wayne Burns and John Burton from Anode Engineering and Reuben Barnes from Papworths.

The support and encouragement provided by many friends has been the key to the completion of my thesis. Special mention goes to my wonderful home-group for their prayers and support. Thank you to my office colleagues, who
always cheer me up. I would also like to thank my second mother, Jan Magennis, who was the first to welcome me to Newcastle.

My most sincerest gratitude goes to my family - I could not have achieved any of this without your unquestioning support, encouragement and sacrifice. Thank you Nana for motivating me with the story about dad and his unfinished PhD! To Walter and Barbara, thank you for your support. To my wonderful sister Elise, thank you for believing in me. To my loving and wise mother Susan, I am proud to be your daughter. And to my thoughtful and amazing husband, I am privileged to be your wife. You all deserve so much more praise than what this paragraph merely offers.

Finally, I give thanks to my God for the opportunity and my inspiration - through Him all things truly are possible.
Roads to Sorell

Welcome, to Van Diemans Land
you rogues that humble Britain, who finally made a stand,
to send you to Port Arthur upon the brink of hell
where on the road to Hobart is this little town Sorell.

Founded in the eighteen hundreds, Sorell cant ignore
the bushranger Matt Brady back in eighteen twenty-four,
when he stormed the settlement wreaking havoc on the law.
The most infamous bushranger, roads to Sorell ever saw.

Now the rogues have gone but their history lives today.
Milled wheat is just a memory for the folk up Sydney way.
Stone buildings dare the southerlies gusting up storm bay,
where we cross Pittwater Shallows on the Sorell Causeway.

The first Sorell bridge was built, back in eighteen seventy-two.
Eight years it took to build and many never seen it through,
for they became the bankrupts, and now that bridge has gone
where above sea stars and oyster farms, Sorell’s moving on.

Two years, two long years have passed.
This new Sorell causeway bridge is opened up at last
and McGees bridge to Hobart joins Sorell’s noted days
of bushranging convicts, and two ruined causeways.

Now the rogues have gone but their history lives today
Milled wheat is just a memory for the folk up Sydney way
Stone buildings dare the southerlies gusting up storm bay
Where we cross Pittwater Shallows on the Sorell Causeway.

Where we cross Pittwater Shallows on the Sorell Causeway.
Between Hobart and Port Arthur is this little town Sorell.

Author Unknown
Contents

1 Introduction

2 Project Background

- 2.1 Introduction 4
- 2.2 Bridge Location & Environment 4
- 2.3 The Sorell Causeway Bridge: A Historical Perspective 6
- 2.4 Design Specification of Post-tensioned Beams 9
- 2.5 Deterioration of the Bridge 14
- 2.6 Review of Pre-Demolition Project Data 20
- 2.7 Similar Case Studies 39
- 2.8 Summary 42

3 Corrosion of Steel in Reinforced and Prestressed Concrete 43

- 3.1 Introduction 43
- 3.2 Steel Passivation in Concrete 44
- 3.3 Corrosion Initiation & Propagation 46
- 3.4 Corrosion Mechanisms 48
- 3.5 The Rate of Steel Corrosion in Concrete 55
- 3.6 Summary 56

4 Non-Destructive Testing 57

- 4.1 Introduction 57
- 4.2 Visual Inspection of Beams 58
- 4.3 Covermeter Survey 71
- 4.4 Half-Cell Potential Survey 84
- 4.5 Resistivity Survey 108
CONTENTS

5 Destructive Testing 124

5.1 Introduction .. 124
5.2 Load Testing .. 124
5.3 Chloride Profiles 144
5.4 Carbonation Profiles 164
5.5 Additional Concrete Properties 179

6 Corrosion Observations 182

6.1 Introduction ... 182
6.2 Steel Condition 182
6.3 Observation of Corrosion Products 217
6.4 Other Observations 237
6.5 Summary ... 257

7 Discussion 258

7.1 Introduction .. 258
7.2 Visual Observations & Steel Condition 258
7.3 Non-Destructive Testing & Steel Condition 264
7.4 Chlorides, Carbonation & Steel Condition 285
7.5 Beam Load Performance & Steel Condition 297
7.6 Microbiological Influenced Corrosion 302
7.7 Summary ... 305

8 Conclusions & Recommendations 307

8.1 Conclusions .. 307
8.2 Recommendations 310

Appendices 312

A Beam Selection & Nomenclature 313

A.1 Beam Selection 313
A.2 Nomenclature & Lot Numbering 314
CONTENTS

B Preliminary Information & Methodologies

- B.1 Introduction .. 319
- B.2 Visual Inspections .. 319
- B.3 Covermeter Survey ... 321
- B.4 Half-Cell Potential Survey 323
- B.5 Concrete Resistivity Survey 326
- B.6 Chloride Profiles .. 331
- B.7 Carbonation Measurement 337
- B.8 Load Testing .. 338

C Experimental Results .. 341

References ... 342
List of Figures

2.1 Geographical location of the Sorell Causeway Bridge 5
2.2 Overview of the original Sorell Causeway Bridge from Midway Point .. 7
2.3 Construction of the Sorell Causeway Bridge c. 1956 10
2.4 Example of beam cross-section summarising dimensions and reinforcement details .. 10
2.5 Summary of beam information from DIER drawings 11
2.6 Formation of ducts through the use of rubber tubes 12
2.7 Curing process of beams, near Midway Point 12
2.8 Prestressing strand arrangement 13
2.9 Post-tensioning detail of beams .. 13
2.10 Example of a significant longitudinal web crack in situ 17
2.11 DIER record of longitudinal web cracking frequency 18
2.12 Removal of old bridge beams ... 19
2.13 Location of defects across the bridge 22
2.14 Statistical representation of defects across the bridge 23
2.14 Statistical representation of defects across the bridge (cont’d) 24
2.15 Covermeter survey locations conducted on the Sorell Causeway bridge beams whilst in service 26
2.16 Summary of 1994 covermeter readings - extract from Façade Technology Report .. 28
2.17 Summary of 1997 covermeter readings - extract from DIER M&R Report 28
2.18 Half-Cell Potential survey locations conducted on the Sorell Causeway bridge beams whilst in service 29
2.19 A visual summary of the Façade Technology half-cell potential surveys .. 30
2.20 Resistivity survey location conducted on the Sorell Causeway bridge beams whilst in service .. 31
2.21 Chloride profile test locations conducted on the Sorell Causeway bridge beams whilst in service .. 32
2.22 Summary of 1994 chloride profiles - extract from Fa¸cade Technology Report 33
2.23 Generic location of chloride samples - extract from DIER M&R Report 34
2.24 Summary of 1997 chloride profiles - extract from DIER M&R Report . . . 35
2.25 Placement of strain gauges for insitu load tests across Span 1 38
2.26 Placement of strain gauges for insitu load tests across Span 17 38
2.27 Overview of the old Walnut Lane Memorial Bridge 39

3.1 A simplified Pourbaix diagram for iron and water 45
3.2 Generalisation of the corrosion process 47
3.3 Generalisation of pitting in mild steel 49
3.4 Generalisation of pitting initiated due to microbiological activity 53
3.5 Comparison of corrosion rates for chloride and carbonation scenarios ... 56

4.1 White, “blotchy” surface on the base of Beam 118 61
4.2 Spalling over shear ligatures in Beam 17/4 61
4.3 Corrosion of reinforcement at the base of Bay 6, Beam 118 62
4.4 Corrosion observations at diaphragm bases 62
4.5 Superficial spalling over beam bearing plates 63
4.6 Crack patterns on Bay 5 of Beam 17/3 65
4.7 Crack patterns on Bay 5 of Beam 118 66
4.8 Cracking on soffit of Bay 5, Beam 118 67
4.9 Additional observations of soffit cracking 67
4.10 Instances of cracking along base flange edges 68
4.11 Examples of incomplete grouting of transverse tendons 70
4.12 Summary of shear ligature and prestressing cover requirements 73
4.13 Reinforcement and prestressing layout from drawing specifications 74
4.14 Rotation & displacement of reinforcement 76
4.15 Misplacement and distortion of top shear ligature 76
4.16 Histograph of shear ligature web cover readings, Beam 17/4 77
4.17 Equicover contour plot for Faces C and D of Beam 17/4 77
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.18</td>
<td>Cover contour plots and visual overlay for Face C of Bay 5, Beam 17/4</td>
<td>78</td>
</tr>
<tr>
<td>4.19</td>
<td>Measured vs. observed cover comparison for Beam 17/4</td>
<td>78</td>
</tr>
<tr>
<td>4.20</td>
<td>Histogram of shear ligature web cover readings, Beam 17/3</td>
<td>79</td>
</tr>
<tr>
<td>4.21</td>
<td>Equicover contour plot for Faces C and D of Beam 17/3</td>
<td>79</td>
</tr>
<tr>
<td>4.22</td>
<td>Cover contour plots and visual overlay for Bay 5, Beam 17/3</td>
<td>80</td>
</tr>
<tr>
<td>4.23</td>
<td>Measured vs. observed cover comparison for Beam 17/3</td>
<td>81</td>
</tr>
<tr>
<td>4.24</td>
<td>Histogram of shear ligature web cover readings, Beam 118</td>
<td>81</td>
</tr>
<tr>
<td>4.25</td>
<td>Equicover contour plot for Faces C and D of Beam 118</td>
<td>82</td>
</tr>
<tr>
<td>4.26</td>
<td>Equicover contour plots and visual overlay for Bay 5, Beam 118</td>
<td>82</td>
</tr>
<tr>
<td>4.26</td>
<td>Equicover contour plots and visual overlay for Bay 5, Beam 118 (cont’d)</td>
<td>83</td>
</tr>
<tr>
<td>4.27</td>
<td>Measured vs. observed cover comparison for Beam 118</td>
<td>83</td>
</tr>
<tr>
<td>4.28</td>
<td>Idealisation of half-cell potential method on reinforced concrete</td>
<td>85</td>
</tr>
<tr>
<td>4.29</td>
<td>Half-cell potential histograph for Beam 17/4 (reinforcement)</td>
<td>89</td>
</tr>
<tr>
<td>4.30</td>
<td>Equipotential plot for Beam 17/4 (reinforcement)</td>
<td>90</td>
</tr>
<tr>
<td>4.31</td>
<td>Equipotential plot for Face C of Bay 5, Beam 17/4 (reinforcement)</td>
<td>90</td>
</tr>
<tr>
<td>4.32</td>
<td>Half-cell potential histograph for Beam 17/3 (reinforcement)</td>
<td>92</td>
</tr>
<tr>
<td>4.33</td>
<td>Equipotential plot for Beam 17/3 (reinforcement)</td>
<td>93</td>
</tr>
<tr>
<td>4.34</td>
<td>Half-cell potential histograph for Beam 118 (reinforcement)</td>
<td>94</td>
</tr>
<tr>
<td>4.35</td>
<td>Equipotential plot for Beam 118 (reinforcement)</td>
<td>94</td>
</tr>
<tr>
<td>4.36</td>
<td>Half-cell potential histograph for Beam 17/4 (prestressing)</td>
<td>96</td>
</tr>
<tr>
<td>4.37</td>
<td>Half-cell potential histograph for Beam 17/3 (prestressing)</td>
<td>97</td>
</tr>
<tr>
<td>4.38</td>
<td>Half-cell equipotential plot for Bay 5, Beam 17/3 (prestressing)</td>
<td>99</td>
</tr>
<tr>
<td>4.39</td>
<td>Half-cell potential histograph for Beam 118 (prestressing)</td>
<td>100</td>
</tr>
<tr>
<td>4.40</td>
<td>Half-cell equipotential plot for Bay 5, Beam 118 (prestressing)</td>
<td>101</td>
</tr>
<tr>
<td>4.41</td>
<td>Equipotential plots with varying electrical connections, Beam 17/3</td>
<td>103</td>
</tr>
<tr>
<td>4.42</td>
<td>Equipotential plots with varying electrical connections, Beam 118</td>
<td>104</td>
</tr>
<tr>
<td>4.43</td>
<td>Comparison of equipotential plots along the soffit of Beam 17/3</td>
<td>105</td>
</tr>
<tr>
<td>4.44</td>
<td>Comparison of equipotential plot and visual condition of Bay 5, Beam 17/3</td>
<td>106</td>
</tr>
<tr>
<td>4.45</td>
<td>Comparison of equipotential plot and visual condition of Bay 5, Beam 118</td>
<td>107</td>
</tr>
</tbody>
</table>
| 4.46 | Comparison of equipotential plot and visual condition in relation to longitu-
| | dinal cracking | 107 |
| 4.47 | Measuring concrete resistivity using the Wenner method | 109 |
| 4.48 | Resistivity histograph for Beam 17/4 | 114 |
4.49 Equiresistance plot and visual overlay for Bay 5, Beam 17/4 116
4.50 Resistivity histogram for Beam 17/3 .. 117
4.51 Equiresistance plot and visual overlay for Bay 5, Beam 17/3 118
4.52 Resistivity histogram for Beam 118 .. 120
4.53 Equiresistance plot and visual overlay for Bay 5, Beam 118 121
4.54 Example of environmental influences on resistivity measurements 123
5.1 Stress/strain relationship of prestressing strands 129
5.2 Compressive strength of concrete cylinders 130
5.3 Load-deflection plots for all three beams .. 132
5.4 Load-deflection plot for Beam 17/4 .. 134
5.5 Deflection characteristics for Beam 17/4 under maximum load 135
5.6 Strains measured at midspan for Beam 17/4 136
5.7 Beam 17/4 crack pattern development at failure 136
5.8 Overview of Beam 17/3 failure .. 137
5.9 Close-up of failed strands from Bay 5, Beam 17/3 138
5.10 Load-deflection plot for Beam 17/3 .. 138
5.11 Strains measured at midspan for Beam 17/3 139
5.12 Overview of Beam 118 failure ... 140
5.13 Close-up of failed strands from Bay 5, Beams 118 140
5.14 Load-deflection plot for Beam 118 .. 141
5.15 Strains measured at midspan for Beam 118 141
5.16 An example of poor splice detail over diaphragms 142
5.17 Simplified graph showing the variation of chloride concentration with in-
creasing concrete depth ... 146
5.18 Web chloride profiles for Bay 5, Beam 17/4 154
5.19 Soffit chloride profiles for Bay 5, Beam 17/4 155
5.20 Web chloride profiles for Bay 5, Beam 17/3 156
5.21 Low chloride concentrations adjacent to prestressing, Beam 17/3 157
5.22 Web chloride profiles for Bay 5, Beam 118 159
5.23 Longitudinal chloride profiles for Bay 5, Beam 17/3 161
5.24 Longitudinal chloride profiles for Bay 5, Beam 118 161
5.25 Longitudinal chloride profiles for Bay 5, Beam 17/4 162
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.26</td>
<td>Relative carbonation rate with respect to environmental location</td>
</tr>
<tr>
<td>5.27</td>
<td>Depth of carbonation over time, approximated by $d = K\sqrt{t}$</td>
</tr>
<tr>
<td>5.28</td>
<td>Carbonation profiles for Bay 5, Beam 17/4</td>
</tr>
<tr>
<td>5.29</td>
<td>Carbonated concrete in the vicinity of spalling, Beam 17/4</td>
</tr>
<tr>
<td>5.30</td>
<td>Carbonation profiles for Bay 5, Beam 17/3</td>
</tr>
<tr>
<td>5.31</td>
<td>Carbonation profile of Section C from Bay 5, Beam 17/3 (see Figure 5.30)</td>
</tr>
<tr>
<td>5.32</td>
<td>Examples of low carbonation depths on the base flange</td>
</tr>
<tr>
<td>5.33</td>
<td>Carbonation profiles for Bay 5, Beam 118</td>
</tr>
<tr>
<td>5.34</td>
<td>Carbonation profile of web from Bay 5, Beam 118</td>
</tr>
<tr>
<td>5.35</td>
<td>Examples of grout carbonation at void locations</td>
</tr>
<tr>
<td>5.36</td>
<td>Drop in pH adjacent to strands from Diaphragm (iv), Beam 118</td>
</tr>
<tr>
<td>5.37</td>
<td>Examples of unusual, deep carbonation in core samples</td>
</tr>
<tr>
<td>5.38</td>
<td>Irregular carbonation front development on web from Beam 118</td>
</tr>
<tr>
<td>6.1</td>
<td>Adopted model for assessing steel cross-sectional area losses</td>
</tr>
<tr>
<td>6.2</td>
<td>Examples of corrosion levels adopted for conventional reinforcement</td>
</tr>
<tr>
<td>6.3</td>
<td>Strand grouping for graphical corrosion condition representation</td>
</tr>
<tr>
<td>6.4</td>
<td>Examples of corrosion levels adopted for prestressing steel</td>
</tr>
<tr>
<td>6.5</td>
<td>Condition of conventional reinforcement across Bay 5, Beam 17/4</td>
</tr>
<tr>
<td>6.6</td>
<td>Corrosion on shear ligatures from Bay 5 adjacent to Diaphragm (v)</td>
</tr>
<tr>
<td>6.7</td>
<td>Examples of corrosion profiles observed on reinforcement from Beam 17/4</td>
</tr>
<tr>
<td>6.8</td>
<td>Examples of isolated pits on reinforcement from Beam 17/4</td>
</tr>
<tr>
<td>6.9</td>
<td>Condition of conventional reinforcement across Bay 5, Beam 17/3</td>
</tr>
<tr>
<td>6.10</td>
<td>Examples of corrosion profiles observed on reinforcement from Beam 17/3</td>
</tr>
<tr>
<td>6.11</td>
<td>Examples of cracking on reinforcement within brittle corrosion products from Beam 17/3</td>
</tr>
<tr>
<td>6.12</td>
<td>Deep, isolated, circular pitting on longitudinal rebars from Beam 17/3</td>
</tr>
<tr>
<td>6.13</td>
<td>Unusual pitting observed on longitudinal rebar from Beam 17/3</td>
</tr>
<tr>
<td>6.14</td>
<td>SEM image of unusual pitted area of a longitudinal rebar from Beam 17/3 (see Figure 6.13)</td>
</tr>
<tr>
<td>6.15</td>
<td>Examples of section losses on shear ligatures from Beam 17/3</td>
</tr>
<tr>
<td>6.16</td>
<td>Isolated, concentric pits on shear ligature adjacent to longitudinal cracking, Beam 17/3</td>
</tr>
</tbody>
</table>
6.17 Severe section losses on steel from Diaphragm (iv), Beam 17/3 199
6.18 “Tunnel-like” corrosion on tip of shear ligature from Beam 17/3 200
6.19 Condition of conventional reinforcement across Bay 5, Beam 118 201
6.20 Example of section losses along base of longitudinal rebars, Beam 118 202
6.21 Corrosion profile of shear ligatures retrieved from Bay 5, Beam 118 203
6.22 Deep and irregular pitting on shear ligature from Beam 118 203
6.23 Deep, isolated pitting on shear ligature from Beam 118 203
6.24 Unusual pitting/section losses on rebar from Diaphragm (iv), Beam 118 204
6.25 Condition of prestressing strands across Bay 5, Beam 17/4 205
6.26 Condition of prestressing strands across Bay 5, Beam 17/3 206
6.27 Condition of prestressing strands across Bay 5, Beam 118 207
6.28 Examples showing strand profiles from areas of significant corrosion 209
6.29 Insitu example of “flattened” strand profile subject to severe corrosion 209
6.30 Strand profile with cross-sectional area variations due to corrosion 210
6.31 Insitu example of variable section losses 210
6.32 Strand examples of corrosion adjacent to non-corroded regions 211
6.33 Examples of pitting profiles on prestressing strands 211
6.34 Corrosion profile of strand group from lower tendon of Diaphragm (iv), Beam 118 212
6.35 Corrosion profile of strand group from lower tendon of Diaphragm (iv), Beam 17/3 213
6.36 Failure of strands due to corrosion 215
6.37 Cross-sectional view of strand failure from Beam 118 215
6.38 Example of a transverse tendon with minor grout imperfections 216
6.39 Corrosion of transverse prestressing strands in Diaphragm (iv) from Beam 17/3 217
6.40 Formation process of iron oxides in reinforced concrete 219
6.41 Accumulation of corrosion products in voids adjacent to anodic sites 222
6.42 Estimated relative volumes of corrosion products with respect to metallic iron 223
6.43 Accumulation of corrosion products adjacent to corroding rebar 225
6.44 Corrosion product built up over strand 225
6.45 Corrosion product build-up on underside of strand group from Beam 17/3 226
6.46 Corrosion product from prestressing strands .. 227
6.47 Layers of corrosion product ... 227
6.48 Examples of corrosion product migration (conventional reinforcement) 228
6.49 Examples of corrosion product migration (prestressing strands) 229
6.50 Examples of Green Ruts observed on shear ligatures 230
6.51 Dark green rust occurring on pitting on diaphragm shear ligature 230
6.52 Examples of Green Ruts observed on prestressing strands 230
6.53 Green Ruts adhering to adjacent concrete .. 231
6.54 An unusual form of green rust ... 232
6.55 Pale green and white rust products observed on strands 232
6.56 Examples of dry, black rust .. 233
6.57 Dry, black rust adhering to a pit on shear ligature from Beam 17/3 233
6.58 Small, powdery, black spots covering the surface of steel recently exposed to the atmosphere .. 234
6.59 Examples of wet, black rust on prestressing strands 235
6.60 Bright, metallic steel surfaces adjacent to wet, black rust on shear ligature 235
6.61 Wet, black rust covering a bright, metallic pitted surface 236
6.62 Wet, black rust adhering to concrete adjacent to reinforcement 237
6.63 Corrosion products accumulating around the perimeter of aggregate 238
6.64 Isolated instance of rust staining surrounding aggregate 239
6.65 White deposits bordering aggregate edges ... 240
6.66 Examples of Ferrous Chloride weeping from steel/concrete interfaces 241
6.67 Images showing the aging process of ferrous chloride beads 242
6.68 In situ examples showing the formation of ferrous chloride 242
6.69 Severe case of “chloride weeping” from prestressing strands in Beam 118 . 243
6.70 SEM image for representative ferrous chloride sample 244
6.71 EDS analysis of Points A & B from Figure 6.70b .. 244
6.72 Bright metallic surfaces at the base of pitting on prestressing strands 246
6.73 Observation by SEM of bright, metallic pit bases on prestressing strands . 248
6.74 Close-up of bright, metallic surface on Point B from Figure 6.73 248
6.75 Examples of flat, metallic surfaces on shear ligatures 249
6.76 Bright, metallic, pitted steel surface obscured by wet, black rust 250
6.77 Examples of flat, metallic surfaces on shear ligatures 251
LIST OF FIGURES

6.78 Close-up of metallic surface at Point A of Figure 6.77b 252
6.79 Two surface anomalies at Point A of Figure 6.77b 252
6.80 Observations of pit edge at Point A of Figure 6.77b 253
6.81 An example of a bright, metallic pit with concentric rings or steps 254
6.82 Circular, stepped pit observed on shear ligature from Beam 118 254
6.83 Taking a swab sample from a steel surface for microbiological testing . . 255
6.84 Example of SRB tests for steel samples 256
6.85 Example of IRB tests for steel & concrete samples 256

7.1 Crack width & prestressing steel condition 262
7.1 Crack width & prestressing steel condition (cont’d) 263
7.2 Half-cell potential & reinforcement condition 267
7.2 Half-cell potential & reinforcement condition (cont’d) 268
7.2 Half-cell potential & reinforcement condition (cont’d) 269
7.3 Half-cell potential & prestressing condition 271
7.3 Half-cell potential & prestressing condition (cont’d) 272
7.4 Location of pitting with respect to equipotential contours 274
7.5 Concrete resistivity & rebar condition 277
7.5 Concrete resistivity & rebar condition (cont’d) 278
7.5 Concrete resistivity & rebar condition (cont’d) 279
7.6 Concrete resistivity & prestress condition 280
7.6 Concrete resistivity & prestress condition (cont’d) 281
7.6 Concrete resistivity & prestress condition (cont’d) 282
7.7 Steel condition with respect to carbonation and chloride levels 288
7.7 Steel condition with respect to carbonation and chloride levels (cont’d) . 289
7.7 Steel condition with respect to carbonation and chloride levels (cont’d) . 290
7.8 Prestressing steel condition and Chloride/Carbonation Levels 291
7.8 Prestressing steel condition and Chloride/Carbonation Levels (cont’d) 292
7.8 Prestressing steel condition and Chloride/Carbonation Levels (cont’d) 293
7.9 Possible evidence of Microbiologically Influenced Corrosion 306

A.1 Location of beam specimens in overall schematic of the Sorell Causeway Bridge .. 315
A.2 Allocation of lot numbering for beam geometry - Face C plan view 317
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3</td>
<td>Nomenclature for each beam - Face D plan view</td>
<td>317</td>
</tr>
<tr>
<td>A.4</td>
<td>Beam Cross-section Nomenclature - from Face A</td>
<td>318</td>
</tr>
<tr>
<td>A.5</td>
<td>Numbering of prestressing strands within tendons</td>
<td>318</td>
</tr>
<tr>
<td>B.1</td>
<td>Overview of the Proceq PROFOMETER 4 covermeter</td>
<td>322</td>
</tr>
<tr>
<td>B.2</td>
<td>Half-cell potential equipment configuration</td>
<td>324</td>
</tr>
<tr>
<td>B.3</td>
<td>Resistivity meters used</td>
<td>328</td>
</tr>
<tr>
<td>B.4</td>
<td>Typical examples of test locations for resistivity testing</td>
<td>329</td>
</tr>
<tr>
<td>B.5</td>
<td>Probe placement for resistivity testing</td>
<td>329</td>
</tr>
<tr>
<td>B.6</td>
<td>Resistivity experimental setup for pre-drilled holes using the MEGGER® meter</td>
<td>330</td>
</tr>
<tr>
<td>B.7</td>
<td>Equipment used for crushing core samples</td>
<td>332</td>
</tr>
<tr>
<td>B.8</td>
<td>Equipment used for concrete dust sample collection</td>
<td>332</td>
</tr>
<tr>
<td>B.9</td>
<td>Preparation of samples for chloride concentration analysis</td>
<td>333</td>
</tr>
<tr>
<td>B.10</td>
<td>Chloride sample locations for Beam 17/4</td>
<td>334</td>
</tr>
<tr>
<td>B.11</td>
<td>Chloride sample locations for Beam 17/3</td>
<td>335</td>
</tr>
<tr>
<td>B.12</td>
<td>Chloride sample locations for Beam 118</td>
<td>336</td>
</tr>
<tr>
<td>B.13</td>
<td>Confirming the pH of concrete using a pH indicator stick</td>
<td>338</td>
</tr>
<tr>
<td>B.14</td>
<td>Load test equipment setup</td>
<td>339</td>
</tr>
<tr>
<td>B.15</td>
<td>Strain gauge layout at midspan</td>
<td>339</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Ionic species in Pitt Water Estuary sample 6
2.2 Beams selected for the present investigation 19
2.3 List of investigations carried out on the Sorell Causeway Bridge 21
2.4 Record of crack width growth on Beam 17/3 25

4.1 Summary of grout condition in diaphragm transverse tendons for each beam 100% = fully grouted 69
4.2 Summary of factors affecting covermeter readings 72
4.3 Summary of covermeter survey results 75
4.4 Summary of factors affecting half-cell potential readings 86
4.5 Half-cell potential limits recommended by ASTM C876 87
4.6 Distribution of half-cell potential results measured for conventional reinforcement ... 88
4.7 Distribution of half-cell potential results measured for the prestressing strands ... 95
4.8 Summary of factors affecting concrete resistivity readings 112
4.9 Empirical concrete resistivity limits in assessing corrosion risk 112

5.1 Examples from the literature regarding the corrosion/flexural capacity relationship ... 127
5.2 Summary of load data for each beam 133
5.3 Risk of corrosion due to chloride contamination 148
5.4 Summary of chloride concentrations for cross-sectional profiles 152
5.5 Distribution of chloride concentrations in relation to recommended corrosion risk limits (Cross-sectional profiles) 152
5.6 Summary of chloride concentrations for longitudinal profiles 158
5.7 Distribution of chloride concentrations in relation to recommended corrosion risk limits (Longitudinal profiles) .. 160
5.8 Average concentration of ionic species determine for the grout 163
5.9 Examples of carbonation depths from real-life coastal structures 169
5.10 Suggested durability classifications in relation to the oxygen permeability index .. 180
5.11 Suggested durability classifications in relation to the concrete sorptivity values .. 181
6.1 Steel condition classification system for conventional reinforcement 186
6.2 Steel condition classification system for prestressing steel 187
6.3 Preferential formation of corrosion products with varying Chloride-Hydroxyl ratio .. 222
6.4 XRD analysis of wet, black rust overlaying a smooth, silver pitted area 250
6.5 XRD analysis of bright, metallic surface from Figure 6.77b 253
7.1 Empirical resistivity thresholds ... 283
7.2 Load Test Result Summary ... 297
7.3 Load test results in relation to average steel condition 300
A.1 Test specimen identification and description 314
Abstract

The Sorell Causeway Bridge, located in Tasmania, Australia, was completed in 1957 and was the first precast, post-tensioned bridge constructed in Australia. However after only 45 years of service, the bridge was replaced due to increasing concerns surrounding the level of corrosion of the prestressing strands in the beams. Prior to its decommission, an extensive and costly investigation program was carried out on the bridge in an attempt to determine the rate of deterioration and establish the remaining margin of safety. Despite the number of investigations and the resulting large quantities of information, the questions surrounding the safety of the bridge remained unanswered. The issue is thus raised: what do field investigations of reinforced or prestressed concrete structures with evidence of corrosion deterioration tell engineers about the actual condition of the structure?

Three beams of varying condition (good, average, poor) were salvaged from the bridge demolition for further detailed examination to investigate the degree of correlation between pre-demolition field investigations and the physical condition of the steel post-demolition. The investigations included the use of conventional non-destructive techniques such as cover, half-cell potential and concrete resistivity surveys, and destructive techniques such as chloride profiling, carbonation depth measurement, and full-scale load testing, all of which were used to determine the likely risk of corrosion and likely corrosion rate for each beam. The results of these investigations were subsequently reviewed in relation to the physical condition of the steel.

In general, all non-destructive tests were found to be inconclusive in relation to evidence of steel corrosion and the corrosion risk guidelines recommended in the literature. It was also apparent that these techniques were incapable of detecting steel pitting, a primary concern for the current investigation. Chloride profiles were variable and inconsistent in relation to steel corrosion and
the chloride thresholds recommended in the literature. Carbonation was found to exist at prestressing levels in some locations and appeared to be influenced by the orientation and geometry of the beams. All beams did not achieve the estimated design capacity and corrosion had significantly impaired the ultimate capacity and ductility of beams in the worst condition.

Aerobic and anaerobic corrosion products were identified via XRD analysis. These included Magnetite, Goethite, Akaganeite, Lepidocrocite, chloride-based Green Rust (I), and Iron (III) Oxide Chloride. The phenomenon of “chloride weeping”, or droplets of highly acidic ferrous chloride, was observed forming on some steel/concrete interfaces on freshly cut concrete surfaces. Several other unexplainable observations were made during the course of the present investigations. These included bright, metallic pit surfaces; pits with concentric rings; black, wet rust covering bright, metallic surfaces; and unusual pitting profiles. A possible explanation for these observations may be the implication of microbiological activity in the corrosion process. Further research is required to confirm these observations.

Keywords: prestressed concrete, field investigations, corrosion, non destructive testing, concrete cover, half-cell potential, concrete resistivity, carbonation, chloride profiles, load test, flexural capacity, corrosion products, pitting, ferrous chloride, microbiological activity