Theory and Applications of Weighted Least Squares Surface Matching for Accurate Spatial Data Registration

Robert Jean Marc Pâquet
BE Civil (Hons), BSurv (Hons)

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

The School of Engineering

The University of Newcastle
New South Wales, 2308 Australia

August 2004
I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution.

Robert Pâquet
Acknowledgments

I would like to thank the Newcastle City Council and AAM GeoScan who provided respectively the photogrammetric and the ALS data used in this thesis and the Australian Research Council for funding the project.

I would like to thank Prof. John Fryer, who assumed the interim supervision in Harvey’s absence, Maria and Julio for their assistance with \LaTeX, with which this thesis was typeset, and the staff (academic and clerical) and postgraduates of this department for their help and support.

Finally I want to thank my supervisor Dr. Harvey Mitchell for his patience, advice and friendship, Lili, Louis and my beautiful wife Miriam for their love and encouragement.
A Emilienne Léontine et Robert Léon.
Contents

Abstract 1

1 Introduction 2
 1.1 Evolution of Spatial Data Information 2
 1.2 Data Acquisition 4
 1.2.1 Theodolites, EDMIs and Levels 4
 1.2.2 Photogrammetry 5
 1.2.3 Airborne and Terrestrial Laser Scanning (ALS and TLS) 5
 1.2.4 Global Positioning Systems (GPS) 6
 1.3 Processing and Storage 6
 1.3.1 Regular Networks 7
 1.3.2 Irregular Networks 7
 1.4 Fusion 8
 1.5 Registration 8
 1.5.1 Short Note on Data Quality 8
 1.5.2 Importance of the Registration 9
 1.5.3 Existing Methods 9
 1.6 Research Background and Proposal 10
 1.6.1 Surface Matching as a Registration Tool 10
 1.6.2 Accuracy Assessment 12
 1.6.3 Research Outline 12
 1.6.4 Formal Research Statement 13
 1.6.5 Thesis Plan 13

2 The Matching Programme 15
 2.1 Theory 15
 2.1.1 Concept and Aim 15
 2.1.2 Delaunay Triangulation 17
 2.1.3 Least Squares Techniques 17
 2.1.4 Blunders and Outliers 19
 2.2 Programme Structure 20
 2.2.1 Point Correspondence 20
 2.2.2 Equation of a Plane Defined by a Triangle 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>Transformation Equation</td>
<td>22</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Normal Distance from a Point to a Plane</td>
<td>24</td>
</tr>
<tr>
<td>2.2.5</td>
<td>First Order Derivatives</td>
<td>24</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Formation of Vector of Observables and of Design Matrix</td>
<td>26</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Iteration Termination</td>
<td>27</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Algorithm Optimisation</td>
<td>28</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Matching Validation</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Verification</td>
<td>32</td>
</tr>
<tr>
<td>2.3.1</td>
<td>“Perfect” Data Generation</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Testing and Results</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Comments on Matching: Numerical Errors</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Comparison of Iteration Termination Criteria</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Chapter Summary</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Weighting Techniques Applied to Surface Matching</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>44</td>
</tr>
<tr>
<td>3.1.1</td>
<td>About Interpolation</td>
<td>44</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Philosophy of Weighted Algorithm</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Weighting Techniques</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Weights Based on the Surface Area of Triangles</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Weights Based on Semivariances</td>
<td>48</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Weights Based on Covariances</td>
<td>51</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Implementation of Weighting Techniques in the Algorithm</td>
<td>52</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Note on Dimensions and Units</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Tools</td>
<td>54</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Data Generation</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Controlled Matching</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Experiment and Results</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Data Description</td>
<td>58</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Production of The Variograms of the Experiment</td>
<td>58</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Variogram Modelling</td>
<td>60</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Results</td>
<td>63</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Comments</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Prediction of Matching Accuracy</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Definition</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Theory about Density of Reference Surface</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Statistical Re-sampling Methods</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Cross-validation and Bootstrapping</td>
<td>77</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Adaptation of Re-sampling Method</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Density of S_1: Experiment and Results</td>
<td>79</td>
</tr>
</tbody>
</table>
Contents

6.1.2 Applications .. 126
6.2 Surface Matching ... 126
 6.2.1 Matching Algorithm 126
 6.2.2 Iteration Termination 127
6.3 Weight Techniques ... 128
6.4 Bootstrapping and Predictions 129
 6.4.1 The Normal Distances 129
 6.4.2 The Mismatches ... 130
 6.4.3 Inference of Registration Accuracy 130
6.5 Research Extensions ... 131
6.6 Conclusion Summary ... 132

Appendices ... 134

A Least Squares Estimation by the Parametric Method 135

B Derivation of the First Order Derivatives 137
 B.1 Derivative of D with respect to ω 138
 B.2 Derivative of D with respect to ϕ 139
 B.3 Derivative of D with respect to κ 140
 B.4 Derivative of D with respect to T_X 140
 B.5 Derivative of D with respect to T_Y 141
 B.6 Derivative of D with respect to T_Z 141
 B.7 Derivative of D with respect to s 141

C Coordinates of “Perfect” Sets 143

D Derivation of the Weights of the Semivariance 144

E Coordinates of the Intersection of a Plane and a Normal Line 146

F Calibration of Criteria for Iteration Termination for ALS Data Set 148

Bibliography ... 151

Abbreviations ... 156

Notation ... 157

Index ... 160
List of Figures

1.1 Ramsden Theodolite ... 3
1.2 Mismatched Overlay of Road Data 9

2.1 Typical Distribution of Matching Normal Distances 19
2.2 Surface Matching Programme Flowchart 21
2.3 “Perfect” Data Sets .. 34

3.1 Interpolation Methods; Example 1 45
3.2 Interpolation Methods; Example 2 47
3.3 Configurations of Synthetic Reference Data 56
3.4 Measures of Separation between Matched and True Surface 57
3.5 Experimental Variograms ... 59
3.6 pchip and Spline Interpolations 61
3.7 pchip Model Fitted on Experimental Covariogram 62
3.8 Models Fitted on Experimental Semivariogram 62
3.9 Models Fitted on Experimental Covariogram 64
3.10 Results: Mismatch Versus Surface Coverage 68
3.11 Registration Failure Using Semivariogram Spherical Model 70
3.12 Matching with Covariogram Exponential Model 72

4.1 Accuracy Versus Density of S_1 81
4.2 Accuracy-Density Curve Modelling 83
4.3 Comparison between Fitting and Standard Error 84
4.4 Histograms of Means of 50 Re-samplings 85
4.5 Accuracy Versus Density of S_2 87

5.1 View of Throsby Creek ... 92
5.2 Area Map ... 93
5.3 Data Sets Sampled at Throsby Creek, Islington Park 94
5.4 GPS Data Set: Detail along Water 95
5.5 Aerial Photography of Islington Park 95
5.6 Experimental Covariogram of ALS Data 98
5.7 Experimental and Modelled Covariograms 100
5.8 Bootstrapping of ALS Data: Experimental Results 103
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>Accuracy-Density Curve Modelling</td>
<td>104</td>
</tr>
<tr>
<td>5.10</td>
<td>Comparison between Fitting and Standard Errors</td>
<td>105</td>
</tr>
<tr>
<td>5.11</td>
<td>Photogrammetric-ALS: Histograms after 6 Iterations</td>
<td>108</td>
</tr>
<tr>
<td>5.12</td>
<td>Photogrammetric-ALS: Maps of Normal Distances</td>
<td>109</td>
</tr>
<tr>
<td>5.13</td>
<td>Photogrammetric-ALS: Histograms after 9 Iterations</td>
<td>110</td>
</tr>
<tr>
<td>5.14</td>
<td>Photogrammetric-ALS: 3D Map of the Distances after Nine Iterations</td>
<td>112</td>
</tr>
<tr>
<td>5.15</td>
<td>Photogrammetric-ALS: Distances Amplitude and Position</td>
<td>114</td>
</tr>
<tr>
<td>5.16</td>
<td>ALS-GPS: Histograms of Normal Distances</td>
<td>116</td>
</tr>
<tr>
<td>5.17</td>
<td>ALS-GPS Matching: Configuration and Magnitude of Distances</td>
<td>118</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Verification; Initial Transformations ... 33
2.2 Verification; Matching Results .. 36
2.3 Example 1; Iteration Termination Criteria Comparison 38
2.4 Example 1; Iteration Termination Criteria Comparison (cont.) 39
2.5 Example 2; Iteration Termination Criteria Comparison 43

3.1 Mean Values in Bins of Experimental Variograms 59
3.2 Matching Results: “Corners Deleted” Configuration 65
3.3 Matching Results: “Corners Kept” Configuration 66
3.4 Matching Results: “Centre Deleted” Configuration 67

4.1 Variation of Density of S_1: Experiment Layout 80
4.2 Variation of Density of S_1: Bootstrapping Results 81
4.3 Variation of Density of S_1: Predictions and Results Obtained 85
4.4 Variation of Density of S_1: Statistics of 50 Re-samplings 85
4.5 Variation of Density of S_2: Experiment Layout 86
4.6 Effect of Roughness on the Matching Accuracy 89

5.1 Approximate Precision and Characteristics of Real Data Sets 93
5.2 Range of Coordinates of Data Sets .. 97
5.3 Values of Experimental and Modelled Covariances 98
5.4 ALS Subsets Used for Bootstrap Simulation 102
5.5 ALS Training Sets: Mean Accuracy Results versus Density 102
5.6 ALS Training Sets: Comparison between Predictions and Results 106
5.7 Photogrammetric-ALS: Parameters after 6 Iterations 106
5.8 Photogrammetric-ALS: Covariance Matrix after 6 Iterations 107
5.9 Photogrammetric-ALS: Correlation Coefficients after 6 Iterations 107
5.10 Photogrammetric-ALS Matching: Parameters after 9 Iterations 110
5.11 Photogrammetric-ALS: Covariance Matrix after 9 iterations 111
5.12 Photogrammetric-ALS: Correlation Coefficients after 9 Iterations 111
5.13 ALS-GPS Matching: Preparation Matching 115
5.14 GPS-ALS: Covariance Matrix ... 115
5.15 ALS-GPS: Correlation Coefficients ... 116
5.16 GPS and ALS Matching: Case 1 Results .. 119
5.17 GPS and ALS Matching: Case 2 Results .. 119
5.18 GPS and ALS Matching: Case 3 Results .. 120
5.19 GPS and ALS Matching: Case 4 Results .. 120
5.20 ALS Accuracy supplied by data provider .. 123

F.1 ALS Data Set; Iteration Termination Criteria Comparison 149
F.2 ALS Data Set; Iteration Termination Criteria Comparison (cont.) 150
Abstract

This thesis discusses matching of 3D surfaces, in particular, their registration in a common coordinate system. This differs from object recognition in the sense that the surfaces are generally close to registration, sometimes so close that the mismatch cannot be detected on visual inspection. The surface matching algorithm, based on least squares theory, is therefore an estimation of the matching parameters, sometimes very small, which provides the most statistically accurate registration.

High redundancy is achieved with the algorithm, as each point of one surface can potentially participate in the formation of an observation equation for the least squares adjustment. The algorithm minimises the separation between the surfaces. The surfaces are defined by sets of points represented by their cartesian coordinates in \(\mathbb{R}^3 \) space, without restrictions on the mode of sampling used in the capture of the data. The registration is executed without control points. Modern non-thematic sampling methods, for instance airborne laser scanning, can benefit from such an algorithm. Other applications include processes where permanent control markers cannot be used, for example, medical applications or coastal erosion.

Surface matching has been used previously by a small number of people. The particular interest of this thesis, however, has been to test the accuracy and other characteristics of the matching, especially when weighting is used with the surface separations. This thesis presents and compares several weighting techniques including one technique based on the covariance function.

In addition, a statistical method to model matching accuracy as a function of the density of the control surface is formulated. The method is useful to ascertain the interpolation component of the matching error. The remaining component of the error can be deducted and analysed according to the project under consideration. Examples of project might be filtering in data fusion assessment, or volume displacement in landslide analysis.

The theory is developed using artificial data. This helps to isolate and analyse in turn the various characteristics of the surface matching. The thesis is then illustrated with examples involving real data sampled in Newcastle, NSW, Australia, using methods such as ALS, photogrammetry and GPS.