Appendix A

Solution of the integral in
Section 4.3

We were not able to find a full analytical solution of the integral in (4.42) and (4.51) in standard references [Zwi96, Bur73, Jef94]. Therefore, we attempt to obtain the solution of the integral here.

The integral can be divided into two parts:

\[L = \int_{-\omega_c}^{\omega_c} \frac{\omega^2 - \omega^2}{(\omega_i^2 - \omega^2)^2 + 4\zeta_i^2 \omega_i^2 \omega^2} d\omega \]
\[= \omega_i^2 L_1 - L_2 \]
(A.1)

where

\[L_1 = 2 \int_0^{\omega_c} \frac{1}{(\omega_i^2 - \omega^2)^2 + 4\zeta_i^2 \omega_i^2 \omega^2} d\omega \]
\[L_2 = 2 \int_0^{\omega_c} \frac{\omega^2}{(\omega_i^2 - \omega^2)^2 + 4\zeta_i^2 \omega_i^2 \omega^2} d\omega. \]
(A.2)

Since both integrands are even functions of \(\omega \), it is sufficient to integrate them only from 0 to \(\omega_c \) as in (A.2).

The denominator can be written as:

\[(\omega_i^2 - \omega^2)^2 + 4\zeta_i^2 \omega_i^2 \omega^2 = \omega^4 + 2\omega_i^2(2\zeta_i^2 - 1)\omega^2 + \omega_i^4 \]
\[= (\omega^2 - \omega_{r1}^2)(\omega^2 - \omega_{r2}^2) \]
(A.3)
where

\[
\begin{align*}
\omega_{r_1}^2 &= \omega_i^2 \left(1 - 2\zeta_i^2 - 2\zeta_i \sqrt{1 - \zeta_i^2 j} \right) \\
\omega_{r_2}^2 &= \omega_i^2 \left(1 - 2\zeta_i^2 + 2\zeta_i \sqrt{1 - \zeta_i^2 j} \right)
\end{align*}
\] (A.4)

and \(j = \sqrt{-1}\).

We consider only the under damped case \((\zeta_i < 1)\) since the case captures the majority of resonant systems of interest. However, the solution for critically damped and over damped cases can also be obtained in a more straightforward manner since \(\omega_{r_1}^2\) and \(\omega_{r_2}^2\) will be real numbers.

A.1 First integral, \(L_1\)

The integrand of \(L_1\) can be written as partial fractions:

\[
\frac{1}{(\omega_i^2 - \omega^2)^2 + 4\zeta_i^2 \omega_i^2 \omega^2} = \frac{1}{\Omega_r} \left(\frac{1}{\omega^2 - \omega_{r_1}^2} - \frac{1}{\omega^2 - \omega_{r_2}^2} \right)
\] (A.5)

where

\[
\Omega_r = \omega_{r_1}^2 - \omega_{r_2}^2 = -4\zeta_i \sqrt{1 - \zeta_i^2 \omega_i^2 j}.
\] (A.6)

Consider the following indefinite integral with a complex constant \(a\). The solution to the indefinite integral is [Spi81]

\[
\int \frac{dz}{z^2 - a^2} = \frac{1}{2a} \ln \left(\frac{z - a}{z + a} \right) + c
\] (A.7)

where \(c\) is a constant. The integral \(L_1\) (A.2) can be solved by incorporating (A.5) and (A.7) to give

\[
L_1 = L_1^{\omega_i} - L_1^0
\] (A.8)

where

\[
L_1^{\omega_i} = \frac{1}{\Omega_r} \left\{ \frac{1}{\omega_{r_1}} \ln \left(\frac{\omega - \omega_{r_1}}{\omega + \omega_{r_1}} \right) - \frac{1}{\omega_{r_2}} \ln \left(\frac{\omega - \omega_{r_2}}{\omega + \omega_{r_2}} \right) \right\}.
\] (A.9)
Define:
\[
\cos \alpha = 1 - 2\zeta_i^2. \tag{A.10}
\]
Consequently,
\[
\sin \alpha = 2\zeta_i \sqrt{1 - \zeta_i^2}. \tag{A.11}
\]
From (A.10) and (A.11), the expressions in (A.4) and (A.6) can be re-written as:
\[
\begin{align*}
\omega_{r1} &= \omega_i e^{-j\frac{\alpha}{2}} \\
\omega_{r2} &= \omega_i e^{j\frac{\alpha}{2}} \\
\Omega_r &= -2\sin \alpha \omega_i^2 j. \tag{A.12}
\end{align*}
\]
Using the previous expressions, we obtain
\[
\begin{align*}
\omega - \omega_{r1} &= r_a e^{j\theta_a} \\
\omega + \omega_{r1} &= r_b e^{-j\theta_b} \\
\omega - \omega_{r2} &= r_a e^{-j\theta_a} \\
\omega + \omega_{r2} &= r_b e^{j\theta_b} \tag{A.13}
\end{align*}
\]
where
\[
\begin{align*}
\omega &= \sqrt{\omega^2 - 2\omega \omega_i \cos \frac{\alpha}{2} + \omega_i^2} \\
\omega &= \sqrt{\omega^2 + 2\omega \omega_i \cos \frac{\alpha}{2} + \omega_i^2} \\
\theta_a &= \cot^{-1} \left(\frac{\omega - \omega_i \cos \frac{\alpha}{2}}{\omega_i \sin \frac{\alpha}{2}} \right) \\
\theta_b &= \cot^{-1} \left(\frac{\omega + \omega_i \cos \frac{\alpha}{2}}{\omega_i \sin \frac{\alpha}{2}} \right) \tag{A.14}
\end{align*}
\]
and \(\cot^{-1}(\Gamma)\) denotes the inverse cotangent of \(\Gamma\).

The following expressions can be obtained from (A.13):
\[
\begin{align*}
\ln \left(\frac{\omega - \omega_{r1}}{\omega + \omega_{r1}} \right) &= \ln \left(\frac{r_a}{r_b} \right) + j(\theta_a + \theta_b) \\
\ln \left(\frac{\omega - \omega_{r2}}{\omega + \omega_{r2}} \right) &= \ln \left(\frac{r_a}{r_b} \right) - j(\theta_a + \theta_b). \tag{A.15}
\end{align*}
\]
After some algebraic manipulation, it can be shown that L_1^ω (A.9) is real valued. This is as expected since the optimal feedthrough term will be real valued:

$$L_1^\omega = \frac{-1}{\omega_c^3 \sin \alpha} \left\{ \sin \frac{\alpha}{2} \ln \left(\frac{r_a}{r_b} \right) + \cos \frac{\alpha}{2} (\theta_a + \theta_b) \right\}. \quad (A.16)$$

The next task is to change the variables to the original variables. For this case, $\theta_a + \theta_b$ can be found from trigonometric identities [Zwi96]:

$$\cot (\theta_a + \theta_b) = \frac{\cot \theta_a \cot \theta_b - 1}{\cot \theta_a + \cot \theta_b} = \frac{\omega^2 - \omega_1^2}{2 \omega_1 \sin \frac{\alpha}{2}}. \quad (A.17)$$

Writing $\ln (r_a/r_b)$ as $-0.5 \ln (r_b^2/r_a^2)$ and using (A.17), the indefinite integral (A.9) becomes

$$L_1^\omega = \frac{1}{2 \omega_1^3 \sin \alpha} \left\{ \sin \frac{\alpha}{2} \ln \left(\frac{r_b^2}{r_a^2} \right) - 2 \cos \frac{\alpha}{2} \cot^{-1} \left(\frac{\omega^2 - \omega_1^2}{2 \omega_1 \sin \frac{\alpha}{2}} \right) \right\}. \quad (A.18)$$

Now, L_1 (A.8) can be evaluated from (A.18) by substituting ω with ω_c and 0 respectively:

$$L_1 = \frac{1}{2 \omega_1^3 \sin \alpha} \left\{ \sin \frac{\alpha}{2} \ln \left(\frac{\omega_c^2 + 2 \omega_1 \omega_c \cos \frac{\alpha}{2} + \omega_1^2}{\omega_c^2 - 2 \omega_1 \omega_c \cos \frac{\alpha}{2} + \omega_1^2} \right) - 2 \cos \frac{\alpha}{2} \cot^{-1} \left(\frac{\omega_c^2 - \omega_1^2}{2 \omega_1 \sin \frac{\alpha}{2}} \right) + 2 \pi \cos \frac{\alpha}{2} \right\}. \quad (A.19)$$

By considering the trigonometric identities $\cos \alpha = 2 \cos^2 \frac{\alpha}{2} - 1 = 1 - 2 \sin^2 \frac{\alpha}{2}$ [Bur73] and (A.10):

$$\cos \frac{\alpha}{2} = \sqrt{1 - \zeta_i^2}$$

$$\sin \frac{\alpha}{2} = \zeta_i. \quad (A.20)$$

A.2 Second integral, L_2

We consider the second integral L_2 (A.2). The integrand can again be written as partial fractions:

$$\frac{\omega^2}{(\omega_1^2 - \omega^2)^2 + 4 \zeta_i^2 \omega_1^2 \omega^2} = \frac{1}{\Omega_r} \left(\frac{\omega_{r_1}^2}{\omega^2 - \omega_{r_1}^2} - \frac{\omega_{r_2}^2}{\omega^2 - \omega_{r_2}^2} \right). \quad (A.21)$$
Using (A.7), the integral is

\[L_2 = L_2^\omega - L_2^0 \] \hspace{1cm} (A.22)

where

\[L_2^\omega = \frac{1}{\Omega_r} \left\{ \omega_{r1} \ln \left(\frac{\omega - \omega_{r1}}{\omega + \omega_{r1}} \right) - \omega_{r2} \ln \left(\frac{\omega - \omega_{r2}}{\omega + \omega_{r2}} \right) \right\}. \] \hspace{1cm} (A.23)

\(L_2^\omega \) (A.23) can be shown, after some algebraic simplification, to be real valued as expected:

\[L_2^\omega = \frac{1}{\Omega_r} \left\{ \omega_{r1} \ln \left(\frac{r_a}{r_b} \right) + \cos \frac{\alpha}{2} \beta \right\} \]

\[= \frac{1}{2\omega_1 \sin \alpha} \left\{ - \sin \frac{\alpha}{2} \ln \left(\frac{r_a}{r_b} \right) - 2 \cos \frac{\alpha}{2} \cot^{-1} \left(\frac{\omega^2 - \omega^2}{2\omega_1 \sin \frac{\alpha}{2}} \right) \right\}. \] \hspace{1cm} (A.24)

Then (A.22) can be evaluated using (A.24) after substitution of \(\omega \) with \(\omega_c \) and 0 respectively:

\[L_2 = \frac{1}{2\omega_1 \sin \alpha} \left\{ - \sin \frac{\alpha}{2} \ln \left(\frac{\omega^2 + 2\omega_1 \omega_1 \cos \frac{\alpha}{2} + \omega^2}{\omega^2 - 2\omega_1 \omega_1 \cos \frac{\alpha}{2} + \omega^2} \right) \right. \]

\[- 2 \cos \frac{\alpha}{2} \cot^{-1} \left(\frac{\omega^2 - \omega^2}{2\omega_1 \omega_1 \sin \frac{\alpha}{2}} \right) + 2 \pi \cos \frac{\alpha}{2} \]. \hspace{1cm} (A.25)

The integral \(L \) (A.1) can be solved using (A.19) and (A.25) as follows:

\[L = \frac{1}{\omega_1 \sin \alpha} \sin \frac{\alpha}{2} \ln \left(\frac{\omega_c^2 + 2\omega_1 \omega_1 \cos \frac{\alpha}{2} + \omega^2}{\omega_c^2 - 2\omega_1 \omega_1 \cos \frac{\alpha}{2} + \omega^2} \right) \]

\[= \frac{1}{2\omega_1 \cos \frac{\alpha}{2}} \ln \left(\frac{\omega_c^2 + 2\omega_1 \omega_1 \cos \frac{\alpha}{2} + \omega^2}{\omega_c^2 - 2\omega_1 \omega_1 \cos \frac{\alpha}{2} + \omega^2} \right). \] \hspace{1cm} (A.26)

where \(\cos \frac{\alpha}{2} = \sqrt{1 - \zeta_r^2} \) (A.20).
Bibliography

BIBLIOGRAPHY

Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>dimension of a plate; coefficient in Rayleigh-Ritz solution</td>
</tr>
<tr>
<td>A</td>
<td>cross sectional area; linear transformation matrix; state space matrix</td>
</tr>
<tr>
<td>A_s</td>
<td>enclosed area of a hollow section</td>
</tr>
<tr>
<td>b</td>
<td>dimension of a plate; coefficient in assumed-modes solution</td>
</tr>
<tr>
<td>B</td>
<td>state space matrix</td>
</tr>
<tr>
<td>B</td>
<td>differential operator: boundary conditions</td>
</tr>
<tr>
<td>c^E</td>
<td>elastic coefficient matrix</td>
</tr>
<tr>
<td>C</td>
<td>state space matrix; capacitance; parameter related to sensor outputs</td>
</tr>
<tr>
<td>C_v</td>
<td>parameter related to sensor outputs</td>
</tr>
<tr>
<td>C_w</td>
<td>FE spatial displacement vector</td>
</tr>
<tr>
<td>C</td>
<td>differential operator: damping</td>
</tr>
<tr>
<td>d</td>
<td>dimension of a square; controller damping ratio</td>
</tr>
<tr>
<td>d_{31}, d_{32}</td>
<td>piezoelectric charge constant</td>
</tr>
<tr>
<td>D</td>
<td>flexural rigidity of a plate; electric displacement vector; feedthrough (state space) matrix</td>
</tr>
<tr>
<td>\dot{D}</td>
<td>proportional damping matrix</td>
</tr>
<tr>
<td>e</td>
<td>dielectric permittivity matrix</td>
</tr>
<tr>
<td>E</td>
<td>electric field vector; Young’s modulus; error system</td>
</tr>
<tr>
<td>F</td>
<td>nodal force vector</td>
</tr>
<tr>
<td>f</td>
<td>distributed force/torque; parameter related to modal controllability/observability</td>
</tr>
<tr>
<td>g_{31}, g_{32}</td>
<td>piezoelectric voltage constant</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
</tr>
<tr>
<td>G, G_r</td>
<td>transfer function</td>
</tr>
<tr>
<td>h</td>
<td>thickness; length of an element</td>
</tr>
<tr>
<td>H</td>
<td>step function; transfer function gain</td>
</tr>
<tr>
<td>\hat{H}</td>
<td>Hermite cubic polynomial</td>
</tr>
<tr>
<td>I</td>
<td>second moment of area; unit matrix; number of modes; number of transducers</td>
</tr>
</tbody>
</table>
j imaginary number

J cost function; number of transducers

J_p polar moment of inertia

J_r, J_2, J_∞ cost function

J_t torsional parameter

k proportional term in a feedthrough term; number of modes in an FE model

k_{31}, k_{32} electromechanical coupling factor

K stiffness matrix; constant related to piezoelectric actuator moment; feedthrough term; controller transfer function

\dot{K} global stiffness matrix

\mathcal{K} modal observability

L length; integral; Lagrangian

L_o observability Gramian matrix

L differential operator: stiffness

m distributed mass

M bending moment; number of modes

M global mass matrix

M differential operator: mass; modal controllability

N number of admissible functions; number of elements in an FE model; number of modes

N_c number of controlled modes

p perimeter of a section; pressure

P transfer function gain; solution of Lyapunov inequality

q generalized coordinate; electric charge

Q shear force; generalized force; spatial weighting function

r point coordinate; radius of a circle

R control weight; controller feedthrough term

\mathbb{R} set of real numbers

S strain vector; controllability Gramian matrix

\mathcal{S}_c spatial controllability

\mathcal{S}_o spatial observability

\mathcal{R} Rayleigh’s quotient; spatial domain

T tension; transfer function

T kinetic energy

T^* reference kinetic energy

t time

u displacement; system input

v displacement; sensor signal

V transducer voltage

\mathcal{V} potential/strain energy

V_{max} maximum potential energy
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>displacement; disturbance; low-pass filter</td>
</tr>
<tr>
<td>W</td>
<td>width; weighting function</td>
</tr>
<tr>
<td>W_r</td>
<td>weighting function</td>
</tr>
<tr>
<td>δW</td>
<td>virtual work</td>
</tr>
<tr>
<td>x</td>
<td>point coordinate; state vector</td>
</tr>
<tr>
<td>y</td>
<td>point coordinate; system output</td>
</tr>
<tr>
<td>z</td>
<td>point coordinate; system output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>general actuator parameter; strain gradient; controller modal gain; transfer function gain; parameter related to modal controllability/observability</td>
</tr>
<tr>
<td>α^a</td>
<td>dielectric matrix at constant mechanical strain</td>
</tr>
<tr>
<td>β</td>
<td>parameter related to spatial controllability/observability</td>
</tr>
<tr>
<td>γ</td>
<td>shear strain; upper bound of \mathcal{H}_∞ norm</td>
</tr>
<tr>
<td>Γ</td>
<td>state space matrix</td>
</tr>
<tr>
<td>δ</td>
<td>Dirac/Kronecker delta function</td>
</tr>
<tr>
<td>ϵ</td>
<td>longitudinal strain</td>
</tr>
<tr>
<td>ζ</td>
<td>damping ratio</td>
</tr>
<tr>
<td>θ</td>
<td>angular displacement</td>
</tr>
<tr>
<td>Θ</td>
<td>nodal force parameter; state space matrix</td>
</tr>
<tr>
<td>κ</td>
<td>parameter related to a strain gradient</td>
</tr>
<tr>
<td>λ</td>
<td>eigenvalue</td>
</tr>
<tr>
<td>Λ</td>
<td>eigenvalue matrix</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>Ξ</td>
<td>transfer function gain</td>
</tr>
<tr>
<td>Π</td>
<td>state space matrix</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>σ</td>
<td>stress vector; longitudinal stress</td>
</tr>
<tr>
<td>τ</td>
<td>shear stress</td>
</tr>
<tr>
<td>Υ</td>
<td>transfer function parameter</td>
</tr>
<tr>
<td>ϕ</td>
<td>admissible (trial) function; eigenfunction; eigenvector</td>
</tr>
<tr>
<td>Φ</td>
<td>eigenvector matrix</td>
</tr>
<tr>
<td>Ψ</td>
<td>parameter of piezoelectric transducers</td>
</tr>
<tr>
<td>ω</td>
<td>frequency; resonance frequency</td>
</tr>
<tr>
<td>ω_c, ω_{co}</td>
<td>cut-off frequency</td>
</tr>
<tr>
<td>Ω</td>
<td>piezoelectric sensor parameter</td>
</tr>
</tbody>
</table>
subscripts
\(a\) actuator
\(b\) beam
\(e\) elemental (local)
\(i\) beam mode number
\(m, n\) plate mode numbers
\(n\) \(n^{th}\) element
\(p\) piezoelectric patch
\(s\) sensor

acronyms
FE finite element
LTI linear time-invariant
ODE ordinary differential equation
MIIO multiple-input, infinite-output
MIMO multiple-input, multiple-output
PDE partial differential equation
SISO single-input, single-output
\(\text{Re}(F)\) real part of \(F\)
\(\text{tr}\{M\}\) trace of the matrix \(M\)
\(M^*\) conjugate transpose of the matrix \(M\)
\(M^T\) transpose of the matrix \(M\)
\(\lambda_{\text{max}}(M)\) maximum eigenvalue of the matrix \(M\)
Index

admissible function, 34, 35, 43
aeroelasticity, 5, 60
anti-resonance, 69
approximate method, 5, 10, 11, 50, 94, 138, 207, 209
assumed-modes, 5, 10, 13, 35, 35, 42, 94, 138
authority, 6, 103–105, 110, 131, 156
axial, 10, 15, 19
balanced realization, 5
Balas, 7
Banks, 4
Bernoulli-Euler beam, 21
bridge, 19
building, 19
cantilevered, 22, 136
capacitance, 42, 102
Caughley, 7
charge, 49
clamp, 22
Clark, 6
collocated, 11, 42, 60, 61, 69, 115, 120, 127, 136, 142, 143, 154, 167, 170, 173, 192, 208
complementary, 27
constrained optimization problem, 106, 119
controllability, 136
controllability Gramian, 6, 153
converse piezoelectric effect, 3
corner optimization, 65, 67, 73, 94, 207
crystal, 3
quartz, 3
Rouchelle salt, 3
tourmaline, 3
Curie, Paul-Jacques, 3
Curie, Pierre, 3
curvature, 21, 25
damping, 11, 31
DC, 5, 6, 60, 70, 73
decentralized, 143
Desoer, 9
dielectric permittivity, 4
dimension, 16, 96
Dirac delta function, 40, 47, 101
direct piezoelectric effect, 3
direct truncation, 5, 59, 61, 63
direct velocity feedback, 7, 9
disturbance, 2, 107–110, 128, 129, 143, 170, 173, 188, 203
Doyle, 7
eigenvalue problem, 31, 48, 100
electric charge, 3, 41, 102
electric field, 3, 4
elemental mass matrix, 45
elemental stiffness matrix, 45
equation of motion, 5, 14, 47
Euler-Bernoulli beam, 36
excitation, 2, 108, 109
FE, see finite element
finite element, 5, 10, 11, 13, 35, 42, 50, 127, 128, 130, 140, 207, 209
flexural, 10, 14, 19, 22, 38, 39, 43, 43, 63, 100, 169, 173, 191
flexural rigidity, 19, 26
free end, 22
free strain, 38, 98, 99
frequency domain model, 29
Fu, 8
Gawronski, 6
gemetric constraint, 112
INDEX

global force vector, 46
global mass matrix, 47
global stiffness matrix, 47
Glover, 7
Goh, 7
grid, 43
Gupta, 9

\mathcal{H}_2 control, 7
Hankel singular value, 6
Heath, 6
Hermite cubic polynomial, 44
Hill, 9
\mathcal{H}_∞ control, 7
Hooke’s law, 16, 19, 25, 38, 98

IMSC, see Independent Modal-Space Control
in-bandwidth, 5, 59, 61, 65, 73, 144, 191
in-phase, 15
Independent Modal-Space Control, 7
integral, 74, 76, 77, 94

Joshi, 9

kinetic energy, 34, 45, 48, 141
Kronecker delta function, 29, 100

Lagrange multiplier, 152
Lagrange’s equation of motion, 35
Lagrangian, 152
Laplace transform, 29, 41, 42, 49, 101
lateral, 16
lead zirconate titanate, see PZT
Lee, 4
Lenz, 8
lightweight, 4
Linear Matrix Inequality, 8, 68
linear time-invariant, 9, 11, 13, 14, 52, 56, 146
LMI, see Linear Matrix Inequality
localized, 142
LTI, see linear time-invariant
Lyapunov equation, 153
Lyapunov inequality, 67

main structure, 4
mass, 4, 5, 90–92, 94, 97, 112, 128, 129, 138
materials science, 2
Meirovitch, 7, 127
MIIO, see Multiple-Input, Infinite-Output
MIMO, see Multiple-Input, Multiple-Output
minimum phase, 42
modal analysis, 5, 10, 13, 27, 36, 50, 59, 69, 81, 94, 100, 102, 127, 154, 173, 208
modal observability, 107, 110, 114, 115, 127, 130
modal testing, 5, 14
mode acceleration method, 6, 60, 73
mode shape, 32, 126
model correction, 11
modern, 7
Moheimani, 6
Moon, 4
Moylan, 9
Multiple-Input, Infinite-Output, 41
Multiple-Input, Multiple-Output, 42, 61, 149, 208
multiple-mode, 157
neutral plane, 24
Newton’s second law, 16, 17, 21, 26
non-collocated, 9
non-convex, 153
non-singular, 190
non-uniform, 5, 14, 34, 35
observability, 136
observability Gramian, 6, 153
one-dimensional, 41, 97
optical table, 120
out-of-bandwidth, 5, 59–61, 70, 72, 73, 94, 144, 155, 171, 207
out-of-phase, 19
overlapping, 112
Özbay, 8
INDEX 230

parametric, 12, 144, 145, 208
partial differential equation, 16, 27, 30, 38, 43, 50, 100
passification, 9
passivity, 9, 167, 210
PDE, see partial differential equation
physical, 13, 14, 109, 191
pointwise H_2 control, 183
pointwise H_∞ control, 203, 206
pointwise H_2 controller, 208
pointwise H_∞ controller, 209
pointwise model, 8, 9, 60–62, 73, 77, 81, 87, 207, 209
Poisson’s ratio, 22, 69, 98
polarity, 42
poly-vinylidene fluoride, see PVDF
positive-real, 9, 146
potential energy, 34
PVDF, 3
PZT, 3
quadratic, 7
radial, 16
Rayleigh’s principle, 34
Rayleigh’s quotient, 34, 35
Rayleigh-Ritz, 5, 10, 13, 34, 35, 42, 94, 138
Riccati, 8
robot, 19
robust, 7, 12, 144, 208, 210
robustness, 9, 10, 13, 142, 144, 158, 161, 172, 175, 193, 197, 209
rod, 15
Ryall, 6

Schur complement, 68
self-adjoint, 28
semi-definite, 42
shaft, 17, 18
shear, 21
shear modulus, 25
shim, 120, 126
simply-supported, 22, 30–32, 68, 115, 120, 126, 127, 185
Single-Input, Single-Output, 61, 144

single-mode, 148, 157, 158
SISO, see Single-Input, Single-Output
smart material, 2
electrostrictive, 3
magnetostrictive, 3
shape memory, 2
smart structure, 2, 4, 13, 50, 141, 169, 188, 209
definition, 2
Smith, 6
spatial, 11
H_2 norm
signal, 53
system, 53
weighted, 55
H_∞ norm, 57
induced norm, 56
norm, 52
spatial controllability, 6, 104–106, 113, 115, 119, 120, 125, 127, 128, 133, 138
spatial model, 9, 60–63, 73–75, 77, 78, 81, 84, 91, 92, 94, 103, 207, 209
spatial observability, 107, 110, 111, 114, 115, 125, 127, 130, 138, 208
spatial robustness, 210
spatially-averaged, 9, 10, 12, 104, 107, 109, 151, 169, 188, 208
stability, 9, 12, 59, 70, 145–147, 153, 167
stable, 7, 9, 146
state space, 56
stationary, 13
step function, 39
stiffness, 4, 5, 97, 112
strain energy, 45, 48, 141
strict bounded real lemma, 67
strictly positive-real, 146, 147
strictly proper, 171
structural property, 4, 5, 14
supporting frame, 120
system identification, 5, 14, 140, 208
thin plate assumption, 22
Timoshenko beam, 21
torsional, 10, 15, 17, 19
torsional parameter, 18
 torsional rigidity, 18
 transducer, 3, 13, 14, 170
 truncation error, 5
 two-dimensional, 22, 97
 Tzou, 4

 unconditionally, 7, 9
 undisturbed, 14
 uniform, 22, 27, 30, 32, 34, 38, 43, 50,
 54, 81, 90, 96, 131, 185, 197,
 208, 209
 unmodelled, 12, 144, 145, 167, 208
 update, 5
 updated, 140

 Vidyasagar, 9
 virtual work, 47, 128

 wing, 11, 19, 131

 Young's modulus, 15, 19, 22, 25, 39, 43,
 69, 98, 132
 Yu, 4

 zero-frequency, see DC