MATHEMATICAL THINKING AND MATHEMATICS ACHIEVEMENT OF STUDENTS IN THE YEAR 11 SCIENTIFIC STREAM IN JORDAN

Ma'Moon. Mohammad. Mubark. BSc, MEd

Submitted to the Faculty of Education and Arts
The University of Newcastle, July 2005,
In fulfillment of the requirements for the award of
the degree of Doctor of philosophy
DECLARATION

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution.

ACKNOWLEDGMENTS

Thanks are due to my academic supervisors, Professor Sid. F. Bourke and Kathryn Holmes of the School of Education, The University of Newcastle, for their guidance and excellent counsel in this research. Thank you also to Dr. Frances Rosamond of Faculty of Engineering, The University of Newcastle, for her guidance in early phases of this study.

Thank you to Al-Hussein Bin Talal University which enabled me to complete my PhD studies.

Thank you to the principals, teachers, and students of the Directorates of secondary schools in the Irbid governorate who participated in the study.

Thank you to all members of my family in Jordan – my parents, my soul father and my loving mother, my brothers and sisters for encouraging me during my study, particularly, my oldest brother Ahmad, other brothers Aymen, Ragheb, and my youngest brother Wael.

Thank you to all others who helped me with this study.
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Thesis</td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Content</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xvi</td>
</tr>
</tbody>
</table>

Chapter One: Introduction

1.1 Mathematical Thinking
1.2 The concept of Mathematical Thinking and the Jordanian Mathematics Curriculum
1.3 Achievement in Mathematics
1.4 Study Aims
1.5 Educational System in Jordan
1.5.1 Educational System Aims
1.5.2 Educational Stages
1.6 Irbid Governorate
1.7 Study Design
1.8 Research Questions
1.9 Summary

Chapter Two: Review of Literature

2.1 Gender and Mathematics Learning
2.2 Studies Linking Mathematical Thinking and Gender
2.2.1 Geometry and Mathematical Proof
2.2.1.1 Introduction
2.2.1.2 Gender Differences in Performance in Geometry
2.2.1.2.1 Evidence of Superior Male Performance in
Geometry

2.2.1.2.2 Evidence of Superior Female Performance in Geometry

2.2.1.3 Conclusion

2.2.2 Algebra, Generalization, and Use of Symbols

2.2.2.1 Introduction

2.2.2.2 Studies of Algebra and Gender

2.2.2.3 Conclusion

2.2.3 Reasoning and Logical Thinking

2.2.3.1 Introduction

2.2.3.2 Studies of Reasoning and Gender

2.2.3.3 Conclusion

2.3 Mathematics Achievement

2.3.1 Introduction

2.3.2 Studies of Mathematics Achievement and Gender

2.3.2.1 Studies that Show no Relationship between Gender and Mathematics Achievement

2.3.2.2 Studies that Show a Relationship between Gender and Mathematics Achievement

2.3.2.2.1 Studies that Show Males do better than Females in Mathematics Achievement

2.3.2.2.2 Studies that Show Females do better than Males in Mathematics Achievement

2.3.3 Gender Differences in TIMSS in Jordan

2.3.4 Possible Explanations for Differences in Mathematics Achievement Related to Gender

2.3.5 Conclusion

2.4 Mathematics Achievement and Location
2.4.1 Introduction

2.4.2 Studies of Mathematics Achievement and Location
- 2.4.2.1 Studies that Show that no Relationship between Mathematics Achievement and Location
- 2.4.2.2 Studies that Show that a Relationship between Mathematics Achievement and Location

2.4.3 Conclusion

2.5 Mathematics Achievement and Gender and Location
- 2.5.1 Introduction
- 2.5.2 Studies that Show the Interaction between Gender Differences and Location
- 2.5.3 Conclusion

2.6 Jordan and TIMSS in 1999 and 2003

2.7 Conclusion

Chapter Three: The Instruments and Sample
- 3.1 Scale Development: Mathematical Thinking Scale
 - 3.1.1 Generalization
 - 3.1.2 Induction
 - 3.1.3 Deduction
 - 3.1.4 Use of Symbols
 - 3.1.5 Logical Thinking
 - 3.1.6 Mathematical proof
- 3.2 Administration of the Mathematical Thinking Test (MTT)
- 3.3 Mathematics Achievement Scale
 - 3.3.1 Content of Mathematics Achievement Test
 - 3.3.2 Administration of the Mathematics Achievement Test (MAT)
- 3.4 Population and Sample
- 3.5 Study Sample
- 3.6 Instrument and Administration
 - 3.6.1 Interviews with Students
Chapter Six: The Teacher and Student Interviews

6.1 Introduction

6.2 The Teacher Interviews
 6.2.1 School 1
 6.2.2 School 2
 6.2.3 School 3
 6.2.4 School 6
 6.2.5 School 7
 6.2.6 School 8
 6.2.7 School 9
 6.2.8 School 11
 6.2.9 School 13
 6.2.10 School 14
 6.2.11 School 16
 6.2.12 School 18
 6.2.13 School 20

6.3 General Summary

6.4 The Student Interviews
 6.4.1 School 1
 6.4.1.1 Conclusion
 6.4.2 School 2
 6.4.2.1 Conclusion
 6.4.3 School 5
 6.4.3.1 Conclusion
 6.4.4 School 6
 6.4.4.1 Conclusion

6.5 General Summary

6.6 Conclusion

Chapter Seven: Discussion of Results
Chapter Seven: Discussion of Interview Results

7.1 Study Aims
7.2 Relationship between Scales
7.3 Gender Differences
7.4 Location Differences
7.5 The Interaction between Gender and School Location
7.6 Discussion of Interview Results
 7.6.1 Importance
 7.6.2 Difficulty
 7.6.3 Time spent in Teaching Aspects of Mathematical Thinking
 7.6.4 Teacher Understandings of Mathematical Thinking
7.7 Summary and Conclusion

Chapter Eight: Conclusions and Recommendations

8.1 Overview of Conclusions
8.2 Recommendations
8.3 Limitations
8.4 Suggestions for Future Studies
8.5 Significance of the Study

References

Appendix One
1.1 Future Renewal Projects
1.2 National Educational Processes Projects

Appendix Two
2.1 Test of Mathematical Thinking in both English and Arabic Languages
2.2 Test of Mathematics achievement in both English and Arabic Languages
2.3 Questions of Teachers interviews in both English and Arabic Languages
2.4 Consents Forms
 2.4i Teacher’s Interview Consent Form in both English and Arabic Languages
 2.4ii Students’ Mathematical Thinking Test Consent Form in both English and Arabic Languages
2.4iii Students’ Mathematics Achievement Test Consent Form in both English and Arabic Languages A-35
2.4iv Students’ Interview Consent Form in both English and Arabic Languages A-37
2.5 Information Letters A-39
 2.5i Principals Letter in both English and Arabic Languages A-40
 2.5ii Teachers Letter in both English and Arabic Languages A-45
 2.5iii Students Letter in both English and Arabic Languages A-50

Appendix Three A-56
3.1 Mathematical Thinking Answers A-57
3.2 Examples of Rubrics for Extended-Response items, Multi Choice items and Mathematics Achievement Score A-71
3.3 Mathematical Thinking Test Reliability A-75
3.4 Mathematical Thinking Test (Difficulty and discrimination) A-76
3.5 Factor Analysis for Each Scale of Mathematical Thinking A-77
3.6 Mathematics Achievement Test (Difficulty and discrimination) A-78

Appendix Four A-79
4.1 School Mean Scores A-80
4.2 Location Mean Scores A-83

Appendix Five A-88
5.1 Semi Structured Interview Questions and Transcripts of the Teacher Interviews for each Individual Interview Conducted A-89
5.2 Transcripts of Each Student Group Interview Conducted A-99
List of Tables

Table 1.1 Educational system development from 1987/1988 to 1999/2000 13
Table 1.2 Educational statistics for the Irbid governorate 16
Table 3.1 The comparison between researcher and Shatnawi aspects of mathematical thinking 48
Table 3.2 Content of mathematics achievement 58
Table 3.3 Numbers of students by gender and directorate 60
Table 3.4 Number of students in the classes, type of school, and directorate 63
Table 3.5 Schools and students by location and gender for the mathematical thinking test 64
Table 4.1 Item response rubric for scoring the mathematical thinking test (multiple-choice items) 71
Table 4.2 Item represent rubric for scoring the mathematical thinking test (extended-response items) 72
Table 4.3a Generalization scale (G) 74
Table 4.3b Induction scale (I) 74
Table 4.3c Deduction scale (D) 75
Table 4.3d Use of Symbols scale (S) 76
Table 4.3e Logical thinking scale (L) 77
Table 4.3f Mathematical proof scale (M) 77
Table 4.4 Factor analysis for mathematical thinking test 80
Table 4.5 Item represent rubric for scoring the mathematics achievement test 81
Table 4.6 Description mathematics achievement items 82
Table 4.7 Factor loadings for mathematics achievement test 84
Table 5.1 Correlation matrix for mathematical thinking scales, mathematical thinking (total) and mathematics achievement 90
Table 5.2 Results for gender differences in mathematical thinking and mathematics achievement 91
Table 5.3 Range for school means and significance of scale score differences between schools 92
Table 5.4 Range for location means and significance of scale score differences between locations 93
Table 5.5 Numbers of male and female students by mathematical thinking and mathematics achievement 94
Table 5.6 Summary of significant levels for ANOVA for mathematical thinking scales and mathematics achievement by gender and
school location

Table 5.7 Means scores for mathematical thinking scales, mathematical thinking (total), and mathematics achievement

Table 5.8 Means and standard deviations for mathematical thinking scales and mathematical thinking (total) where interaction was significant between gender and school location

Table 5.9 Standardized and unstandarized coefficients, with T-value and significance level for the mathematical thinking aspects as independent variables and mathematics achievement as dependent variable

Table 5.10 Mathematical thinking scales as dependent variables with gender and school location as independent variables

Table 5.11 Mathematics achievement scale as dependent variable with mathematical thinking scales, gender and school location as independent variables

Table 5.12 Direct, indirect, and total effects of the independent variables on mathematics achievement

Table 5.13 Significant standardized and unstandarized regression coefficients in the model

Table 5.14 Unexplained variance in two models and percentage of explained variance in the independent model

Table 6.1a The comparison between the order of aspects of mathematical thinking in relation to level of importance and difficulty according to students and the teacher in school no.1

Table 6.1b The comparison between the order of aspects of mathematical thinking in relation to level of importance and difficulty according to students and the teacher in school no.2

Table 6.1c The comparison between the order of aspects of mathematical thinking in relation to level of importance and difficulty according to students and the teacher in school no.3

Table 6.1d The comparison between the order of aspects of mathematical thinking in relation to level of importance and difficulty according to students and the teacher in school no.6

Table 6.1e The comparison between the order of aspects of mathematical thinking in relation to level of importance and difficulty according to student and teacher in school no.7

Table 6.1f The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.8

Table 6.1g The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.9

Table 6.1h The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.11

Table 6.1i The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.13

Table 6.1j The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.14

Table 6.1k The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.16

Table 6.1l The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.18

Table 6.1m The comparison between the order of aspects of mathematical
thinking in relation to level of importance and difficulty according
to students and the teacher in school no.20

Table 6.2 Level of importance according to teachers’ opinions

Table 6.3 Level of difficulty according to teachers’ opinions

Table 6.4 Percentage of time spent teaching the aspects according to
teachers’ opinions

Table 6.5 Level of importance, level of difficulty, and time spent for all
teachers

Table A3.1 Mathematical thinking reliability if each individual item deleted

Table A3.2 Mathematical thinking test (facility and discrimination for each
item

Table A3.3 Factor analysis for each mathematical thinking aspect

Table A3.4 Mathematics achievement test facility and discrimination for Each
Item

Table A4.1a Mean scores for individual schools in generalization

Table A4.1b Mean scores for individual schools in induction
Table A4.1c Mean scores for individual schools in logical thinking A-82
Table A4.1d Mean scores for individual schools in mathematical thinking (total) A-83
Table A4.1e Mean scores for individual schools in mathematics achievement A-84
Table A4.2a Mean scores for school locations in generalization A-85
Table A4.2b Mean scores for school locations in induction A-85
Table A4.2c Mean scores for school locations in use of symbols A-86
Table A4.2d Mean scores for school locations in logical thinking A-86
Table A4.2e Mean scores for school locations in mathematical thinking (total) A-86
Table A4.2f Mean scores for school locations in mathematics achievement A-87
Table A5.1a Teacher’s response in questions 3, 5 and 6 in school no.1 A-90
Table A5.1b Teacher’s response in questions 3, 5 and 6 in school no.2 A-90
Table A5.1c Teacher’s response in questions 3, 5 and 6 in school no.3 A-91
Table A5.1d Teacher’s response in questions 3, 5 and 6 in school no.6 A-92
Table A5.1e Teacher’s response in questions 3, 5 and 6 in school no.7 A-92
Table A5.1f Teacher’s response in questions 3, 5 and 6 in school no.8 A-93
Table A5.1g Teacher’s response in questions 3, 5 and 6 in school no.9 A-94
Table A5.1h Teacher’s response in questions 3, 5 and 6 in school no.11 A-95
Table A5.1i Teacher’s response in questions 3, 5 and 6 in school no.13 A-95
Table A5.1j Teacher’s response in questions 3, 5 and 6 in school no.14 A-96
Table A5.1k Teacher’s response in questions 3, 5 and 6 in school no.16 A-97
Table A5.11 Teacher’s response in questions 3, 5 and 6 in school no.18 A-97
Table A5.1m Teacher’s response in questions 3, 5 and 6 in school no.20 A-98
List of Figures

Figure 1.1 The complete model showing potential links between the background variables and mathematical thinking and mathematics achievement 17

Figure 4.1 The complete model linking background variables with mathematical thinking and mathematics achievement 87

Figure 5.1 Multilevel path model explaining variation in mathematics achievement based on aspects of mathematical thinking (only significant standardized paths ×1000 shown) 99

Figure 5.2 Schematic diagram of the full model to be tested 100

Figure 5.3 Full path model explaining variation in mathematics achievement with mathematical thinking, gender, and school location (only significant standardized paths×1000 shown) 104
Abstract

Mathematical Thinking and Mathematics Achievement of Students in the Year 11 Scientific Stream in Jordan

The first aim of this study was to identify important aspects of mathematical thinking, and to investigate the relationships between the different aspects of mathematical thinking and mathematics achievement. The second aim was to examine possible gender and school location (urban, suburban, and rural) differences related to aspects of mathematical thinking and mathematics achievement.

Two assessments were developed that were suitable for students in the Year 11 scientific stream in Jordan. One test was for aspects of mathematical thinking and the other for mathematics achievement, the latter being consistent with typical school achievement tests for these students in Jordan. The researcher chose and developed items to test mathematical thinking and mathematics achievement from the Third International Mathematics and Science Study (TIMSS), the internet, research literature, specialist books in mathematics and his own experience.

The data were collected in the 2003-2004 academic year from over 500 Year 11 scientific stream students (both male and female) at 20 randomly selected schools from six directorates in the Irbid Governorate, Jordan. In addition, 13 teachers were individually interviewed, and four groups of students were interviewed in focus groups to obtain information about their opinions and about different methods of thinking in mathematics.

The teacher interviews were used to identify consistencies and inconsistencies between the test results and the respondents’ opinions of difficulty and importance. In addition, information was obtained about the classroom time teachers devoted to
the different aspects of mathematical thinking and the teaching strategies they employed.

Six aspects of mathematical thinking were identified by the study: Generalization, Induction, Deduction, Use of Symbols, Logical thinking and Mathematical proof. Mathematical proof was also the most difficult aspect, while Logical thinking was the least difficult. Female students had significantly higher mean scores than males on three of the six aspects of mathematical thinking and on the total test scores. Students attending suburban schools had significantly higher mean scores than students at urban and rural schools on four aspects, and on the total scores. Using multiple regression analysis, all six aspects were found to be important for mathematics achievement. Mathematical proof and Generalization were the most important aspects, Use of symbols and Logical thinking were next in importance, and Deduction and Induction were the least important aspects. Approximately 70 per cent of the variance in mathematics achievement was explained by the six aspects of mathematical thinking, gender, and school location.

There was a high level of consistency between teacher opinions of the relative importance of aspects of mathematical thinking and the test results. However, there were some inconsistencies between the teacher opinions and test results with respect to relative difficulty levels of the six aspects.

By clarifying the importance for mathematics achievement of the six aspects of mathematical thinking identified, this study has relevance for the teaching of mathematics to Year 11, scientific stream students in Jordan.