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Abstract

Locusts are short horned grasshoppers that exhibit two diametrically opposed

behavioural types depending on their local population density. These are:

solitarious, where they will actively avoid other locusts, and gregarious where

they will seek them out. It is in this gregarious state that locusts can form

massive and destructive flying swarms or plagues. However, these swarms

are usually preceded by the aggregation of juvenile wingless locust nymphs.

In this thesis we develop a mathematical model to understand how and why

the distribution of food resources affect the group formation process.

We do this by first deriving a multi-population partial intergro-differential

equation model that includes non-local locust interactions, local locust and

food interactions, and gregarisation dynamics. The model is studied using a

combination of analytical techniques, such as linear stability theory and gra-

dient flow methods, and numerical simulations. The numerical solutions are

obtained using an adaptive time-stepped finite volume based scheme com-

bined with fast Fourier transforms to efficiently solve the non-local compo-

nent. Our initial results suggest that food acts to increase the maximum

density of locust groups, lowers the percentage of the population that needs
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to be gregarious for group formation, and decreases both the required den-

sity of locusts and time for group formation around an optimal food width.

Further, by considering foraging efficiency within the numerical experiments,

we find that there exists a foraging advantage to being gregarious.

Next, we explore this foraging advantage of gregarisation within increas-

ingly heterogeneous environments. We consider a single two dimensional

simulation of a spatially heterogeneous environment to understand the me-

chanics of gregarious/solitarious foraging. We also investigate the steady

state foraging advantage in environments ranging from homogeneous to very

spatially heterogeneous. Finally, we perform a parameter sensitivity analysis

to determine the model parameters that have the greatest effect on foraging

advantage. We find that during the aggregation stage, prior to the onset of

marching, in increasingly heterogeneous food environments it is better for a

locust to be gregarious than solitarious. In addition, we find that this is in-

trinsic to the gregarious/solitarious behavioural dynamic as it occurs almost

regardless of the model parameters.

In the final part of this thesis, we expand the model to include the effect

of hunger on locust interactions and repeat our analyses. We find that the

results are consistent with the less complex model and that hunger acts to

decrease the maximum density of locust groups and raises the percentage of

the population that needs to be gregarious for group formation.

Overall, this thesis demonstrates the advantages and power of continuum

models in providing insights into biological systems. The results presented
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here provide avenues of future exploration both in the mathematical and

experimental spaces. Finally, it is our intention that this thesis will provide

a guide for the creation and analysis of future models of collective behaviour.
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Chapter 1

Introduction

Locust swarms have plagued humankind for millennia, affecting every con-

tinent except Antarctica and impacting on the lives of 1 in 10 people [91].

A single locust swarm can contain millions of individuals [4] and in a single

day is able to move up to 200 kilometres [38]; with each locust being able

to consume its own body weight in food [99]. Locusts have played a role in

severe famine [39], disease outbreaks [90], and even the toppling of dynas-

ties [63]. More recently, in March 2020 a perfect storm of events caused the

worst locust outbreaks in over 25 years in Ethiopia, Somalia and Kenya dur-

ing the COVID-19 pandemic [57]. Damaging tens of thousands of hectares of

croplands and pasture, these outbreaks presented an unprecedented threat

to food security and livelihoods in the Horn of Africa. In addition, the onset

of the rainy season meant the locusts were able to breed in vast numbers

raising the possibility of further outbreaks [37].

Locusts are short horned grasshoppers that exhibit density-dependent

phase-polyphenism, i.e., two or more distinct phenotype expressions from a

single genotype depending on local population density [71]. In locusts there

are two key distinct phenotypes, solitarious and gregarious, with the pro-

cess of transition called gregarisation. Gregarisation affects many aspects

of locust morphology from colouration [78], to reproductive features [82], to

1
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Figure 1.1: Photo of locusts by Prof Gregory Sword. An exemplary
image of the changes brought about by phase polyphenism. The locust on the
left is in the solitarious phase and has taken on cryptic colouring, whereas the
locust on the right is in the gregarious phase and has aposematic colouring.

behaviour [86] (see Figure 1.1). Behaviourally, solitarious locusts are charac-

terised by an active avoidance of other locusts, whereas gregarious locusts are

strongly attracted to other locusts. Gregarisation is brought about by locusts

crowding together and can be reversed by isolating the individuals [99]. In

the Desert locust (Schistocerca gregaria), gregarisation can take as little as

4 hours with the timeframe for reversal dependant on the length of time the

individual has been gregarious (again, potentially as little as 4 hours) [71].

It is in the gregarious state that locusts exhibit large scale and destructive

group dynamics with flying swarms of adult locusts being perhaps the most

infamous manifestation of this.
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Despite the destruction caused by adult swarms, the most crucial phase

for locust outbreak detection and control occurs when wingless nymphs form

hopper bands, large groups of up to millions of individuals marching in unison

[99]. Depending on the species, these groups may adopt frontal or columnar

formations, the former being comet like in appearance with dense front and

less dense tail [17], and the latter being a network of dense streams [99]. As

a precursor to hopper bands, nymphs will form gregarious aggregations or

groups, i.e. a large mass of gregarious nymphs. Understanding the group dy-

namics of gregarious locusts are key to improving locust surveys and control

by increasing our ability to understand and predict movement.

In addition to the group dynamics, better knowledge of locust interactions

with the environment would help to improve the prediction of outbreaks

[93]. On longer time-scales, environmental conditions such as rain events

synchronize locust lifecycles and can lead to repeated outbreaks [71]. On

shorter time-scales, changes in resource distributions at both small and large

spatial scales have an effect on locust gregarisation [25, 31, 32, 33]. It is

these short time-scale locust-environment interactions that we investigate in

this thesis, using mathematical modelling to further understand both their

effect on group formation and if there is any advantage to gregarisation in

this context.

As all the mentioned behaviours arise from simple inter-individual inter-

actions, understanding the group dynamics of gregarious locusts can also give

deep insight into the underlying mechanisms of collective behaviour. Con-

sequently they are an important subject of mathematical modelling efforts.

Individual based models (IBMs) are the dominant approach in the locust

modelling literature [4, 27]. In IBMs locusts are modelled as discrete indi-

viduals who update their velocity according to simple interaction rules. IBMs

are categorised as second order models if they include particle inertia, and

first order (or kinematic) if inertia is neglected [21]. For example, the second

order model explored by D’Orsogna et al. [30] has individuals update their
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velocity, with self propulsion, friction, and the distance weighted average of

all other individuals. Given N individuals, each at position Xi we would

write

Ẋi = Vi, (1.1)

V̇i = αVi − βVi|Vi|2 −
1

N

N∑
j=1

∇Q(Xi −Xj), (1.2)

where Q is termed the social potential, αVi gives the individuals self propul-

sion and −βVi|Vi|2 represents the drag caused by friction. The social poten-

tial is a function Q : Rd → R that describes how the strength of interaction

between individuals varies with the distance between them. It is worth not-

ing that the distance may be topological and not just spatial distance [51].

Second order IBMs have been used in modelling collective behaviour in fish

[7, 8, 50, 53, 56, 59], birds [26, 51], and abstract organisms [61, 64]. Sec-

ond order IBMs can be constructed to simulate two key behaviours; flocking,

which is the collective movement of individuals in a common direction, and

milling, the collective movement of individuals around a common point (see

Figure 1.2 for examples).

Within the realm of locust modelling, second order IBMs in conjunction

with lab experiments and field data have teased out a variety of locust move-

ment characteristics. In a 2006 paper, Buhl et al. used a combination of

modelling and lab experiments to find that the critical density of locusts for

the transition from disordered to ordered movement was between 17.2 and

24.6 locusts/m2 and that as the density of locusts increases the stability of

the movement direction increases [16]. This was supported using field data

in 2011 [17], where it was additionally found that locust movement is me-

diated by combinations of social interactions such as avoidance, alignment,

and attraction, and that the range of these interaction is 13.5 cm [17]. In

addition, while the onset of collective behaviour may be brought about by
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Figure 1.2: Types of collective movement in 2nd order IBMs. Flock-
ing, which is the collective movement of individuals in a common direction,
and milling, the collective movement of individuals around a common point.
In both plots, N = 800, Q(x) is given by 1.4 with A = 1,R = 10/9,a = 1,
and r = 0.75. Finally, for flocking α = β = 0 and for milling α = 0.1,
β = 0.05.

cannibalism [9] a study by Buhl, Sword, and Simpson showed that this model

of movement was not valid where marching had already begun to occur [15].

An alternative study by Ariel et al. found that pause and go motion may be

pivotal in the onset and maintenance of collective movement [5].

In contrast to second order IBMs, first order IBMs do not have the same

dynamic steady states, instead settling into a crystal like structure (in the

absence of other forces). However, first order IBMs are still useful for mod-

elling the more disordered stages of locust behaviour [11, 96], and can give

insight into the behaviour of higher order IBMs [20, 21]. The simplest first

order IBM is given by,

Ẋi = − 1

N

N∑
j=1

∇Q(Xi −Xj), (1.3)

where again Q is a social potential. A common social potential in locust
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modelling is the Morse potential given by,

Q(x) = −Ae−
|x|
a +Re−

|x|
r , (1.4)

where A, R are the strength of attraction and repulsion, respectively, and

a, r are the characteristic length-scale on which they occur. There are four

possible combinations of A, R, a and r leading to five different behaviours

[67]:

� If R > A and r > a, repulsion dominates attraction and leads to

aggregations failing to form.

� If A > R and a > r, attraction dominates repulsion and leads to densely

packed aggregations regardless of number of individuals.

� If A > R and r > a, attraction is stronger at close range and repulsion

is stronger at long range leading to a combination of the above two

cases.

� If R > A and a > r, repulsion is stronger close range and attraction is

stronger at long range and can result in two differing steady state ag-

gregations; H-stable, where as the number of individuals increases the

spacing between individuals approaches a finite constant, and ‘catas-

trophic’ where the spacing of individuals goes to zero as N → ∞.

We can determine the condition for H-stability by first considering the total

potential energy of the system (in the absence of boundary interactions), this

is total of the pairwise potentials Q, and is given by

E =
1

2N

N∑
i=1

N∑
j=1,i ̸=j

Q(Xi −Xj), (1.5)

we take a factor of 1
2
so that each pair is only counted once. We note that (1.3)

minimises the energy given by (1.5). For H-stability we require E > −NB
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for some B ∈ R ∀N > 0, or equivalently for an absolutely integrable Q [76],∫
Rn

Q(x)dx > 0,

where n is the number of spatial dimensions. Thus, for the Morse potential

given by 1.4, we have the condition in two spatial dimensions

a

r
<

(
A

R

)− 1
2

.

We can then combine the H-Stability condition with the four cases given

previously into one succinct statement, that is, the condition for H-Stable

aggregations in two dimensions is

1 <
a

r
<

(
A

R

)− 1
2

,

with the corresponding condition for the ‘catastrophic’ aggregations being

1 <

(
A

R

)− 1
2

<
a

r
.

Examples of the resulting steady states can be seen in Figure 1.3, for each

type H-Stable and ‘catastrophic’ the red x’s are a simulation of 100 individ-

uals and the blue dots are 1000 individuals.

One downside of IBMs is that there are few analytical tools available to

study their behaviour. In contrast, continuum models, in which locusts are

represented as a population density that is a function of space and time,

can be analysed using an array of tools from the theory of partial differen-

tial equations (PDEs). They are most appropriately employed when there

are a large number of individuals since they do not account for individual

behaviour, instead giving a representation of the average behaviour of the

group. The latter (continuum) approach is adopted in this thesis.



Chapter 1. Introduction 8

Figure 1.3: Example steady states of 1st order IBMs. For each type H-
Stable and ‘catastrophic’ the red x’s are a simulation of 100 individuals and
the blue dots are 1000 individuals. In both plots, the blue dots correspond
to N = 1000 and the red crosses correspond to N = 100. Q(x) is given by
1.4 with R = 1,A = 0.5,r = 1, and a = 1.1 for the H-Stable and a = 10 for
the catastrophic.

It is possible to derive the continuum equivalent of (1.3) following the

work of Bodnar and Velazquez [14]. To begin we divide up the space into

small intervals, with the number of individuals in an interval given by

ρ(y, t) =
#{Xi ∈ [y − h, y + h]}

2h
, (1.6)

where in the continuum limit under consideration, h satisfies

δ ≪ h≪ 1, (1.7)

with δ being the average distance between individuals. We then note by

assuming that in each interval the individuals are locally at equilibrium then
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as h→ 0 the velocity of an individual depends only on its location, i.e.

v(x, t) = −∇
N∑

n=1

[Q(x−Xn)] . (1.8)

This allows us to approximate the velocity field using integrals to give

v(x, t) = −∇
∫
Ω

Q(x− y)ρ(y, t)dy. (1.9)

where Ω is our domain. The evolution of the macroscopic density as δ, h→ 0

is then given by the continuity equation

∂ρ(x, t)

∂t
+
∂j

∂x
= 0,

with particle flux given by

j = ρv.

This results in the equations

∂ρ

∂t
+∇ · (vρ) = 0, (1.10)

with

v = −∇Q ∗ ρ, (1.11)

where Q is again the social potential, ρ is the density (either mass or pop-

ulation per unit area) of the species in question, and ∗ is the convolution

operation defined as

Q(x) ∗ ρ =
∫
Ω

Q(x− y)ρ(y)dy. (1.12)

This is known as the non-local aggregation equation, first proposed by Mogilner

and Edelstein-Keshet [68] who showed the existence and stability of swarms

and found travelling wave solutions. In an analogous behaviour to 1.3 min-
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imising the energy 1.5, 1.10 is a gradient flow of the form

∂ρ

∂t
+∇ ·

(
ρ∇
[
δE

δρ

])
= 0, (1.13)

that minimises an energy functional given by

E[ρ] =

∫
Ω

1

2
ρ[Q ∗ ρ] dx, (1.14)

with δE
δρ

being the functional derivative from calculus of variations. Using the

gradient flow form of 1.11 and the social potential 1.4, Bernoff and Topaz

found analytic expressions for the steady states [11].

One issue that arises with the simple model is that the maximum density

grows unbounded with increasing organism mass, that is as more individuals

are added the maximum density of the resulting aggregation increases rather

than the width (or support) of the aggregation, similar to the ‘catastrophic’

regime of (1.3). This issue of unbounded density can be avoided with the

inclusion of non-linear local repulsion, which leads to compact and bounded

solutions [97]. Accordingly, (1.11) is modified to become

v = −∇(Q ∗ ρ+ γρm), (1.15)

wherem ≥ 2. While we have presented the model a for single population, the

model has been further adapted to consider multiple interacting populations

[47]. In addition, while the kinematic model does not capture complex be-

haviours such as alignment, the steady state solutions determine the spatial

shape and density of flock solutions of second order models (i.e. collective

movement of individuals in the same direction) [20, 21].

In a 2012 paper, Topaz et. al. [98] used a multi-population aggregation

equation to model locusts as two distinct behavioural sub-populations, soli-

tarious and gregarious. By considering the locust-locust interactions and the

transition between the two states, they were able to deduce both the criti-
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cal density ratio of gregarious locusts that would cause a group to form and

visualised the rapid transition once this density ratio had been reached [98].

Similarly, in our work we focus on the formation of aggregations (or groups)

of gregarious locusts, visualised as a clump of gregarious locusts, rather than

on the collective movement dynamics in hopper bands. For simplicity, the

Topaz model focused on inter-locust interactions and ignored interactions

between locusts and the environment. While there exists some continuum

models of locust food interactions to investigate the effect of food on peak

locust density [12] or to consider hopper band movement [13], we are not

aware of any studies that consider locust-locust and locust-food interactions

as well as gregarisation in a continuum setting.

The aims of this thesis are threefold. Firstly, to introduce a new mathe-

matical model that extends the 2012 Topaz model by including both locust-

food dynamics and local repulsion. The model is based on an idealised locust

which has both long and short range locust interactions and only interacts

with food when it comes into direct contact with it. Secondly, we use our

new model to investigate how the spacial distribution of food affects the

gregarisation and group formation process. Finally, we consider under what

conditions being gregarious might confer an advantage compared to being

solitarious in terms of access to food.

With these goals in mind, this thesis is organised as follows. Chapter 2

introduces the model of locust foraging and the concept of foraging advantage

that will be used throughout this thesis. In Chapter 3, we explore a variety

of numerical techniques for non-local problems first in one dimension and

then in two or more dimensions (with discussions on implementing them in

MATLAB in Appendix A). Next, Chapter 4 analyses the model with a vari-

ety of analytic and numerical techniques to understand ‘Does food affect the

required density of locusts for the formation of locust groups?’, ‘Does food

affect the required percentage of the locust population being gregarious for

the formation of locust groups?’, ‘Does food affect the time required for the
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formation of locust groups?’, ‘Does food affect the density of locust groups?’

and ‘Does gregarisation offer some advantage while foraging?’. Chapter 5

then expands upon the last question to explore foraging in increasingly het-

erogeneous environments in two dimensions. Then, in Chapter 6 we expand

our model to include a dimension of hunger and explore how this affects our

previous results. Finally, in Chapter 7 we discuss the important results of

this thesis and avenues of further exploration.



Chapter 2

Model and measures

The aims of this chapter are to introduce a new mathematical model that

extends the 2012 Topaz model by including both locust-food dynamics and

local repulsion. The model is based on an idealised locust which has both

long and short range locust interactions and only interacts with food when it

comes into direct contact with it. In addition, we will introduce the metric

of foraging advantage to measure locust foraging. In Chapter 4, we use

our new model and the numerical techniques developed in Chapter 3 to

investigate how the spatial distribution of food affects the gregarisation and

group formation process and consider under what conditions being gregarious

might confer an advantage compared to being solitarious in terms of access

to food.

Chapters 2 and 4 were originally published as F. Georgiou, J. Buhl, J. E.

F. Green, B. Lamichhane, and N. Thamwattana, ‘Modelling locust foraging:

How and why food affects group formation’, PLOS Computational Biology,

vol. 17, no. 7, p. e1008353, Jul. 2021, doi: 10.1371/journal.pcbi.1008353.

[45]

13
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2.1 Model derivation

In this section we present a PDE model of locust foraging that includes both

local inter-individual and food interactions and non-local inter-individual in-

teractions. In order to simplify the model we make the following assumptions

about locust behaviour:

1. Locusts can be classified as either solitarious or gregarious.

2. Locusts only interact with food resources when they come into direct
contact with them and are interactions the same for solitarious and
gregarious individuals.

3. Local interactions between locusts (both gregarious and solitarious) are
repulsive (i.e. they avoid close physical contact).

4. Solitarious locusts experience a non-local (i.e. longer-ranged) repulsion
from other locusts of either type.

5. Gregarious locusts experience a non-local long-range attraction and
short-range repulsion from other locusts, which is consistent with them
forming a well-spaced aggregation [15].

6. The nature (attractive or repulsive) and strengths of all interactions
are constant in time.

In this model locusts are represented as a density of individuals (number

per unit area) in space and time and are either solitarious, s(x, t), or gregar-

ious g(x, t), with the total local density defined as ρ(x, t) = s(x, t) + g(x, t).

For convenience we will also define the total mass of locusts as

M =

∫
ρ(x, t) dx, (2.1)

and the global gregarious mass fraction as

ϕg(t) =

∫
g(x, t) dx

M
. (2.2)
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We assume that the time-scale of gregarisation is shorter than the life

cycle of locusts, ignoring births and deaths and thus conserving the total

number of locusts. We allow for a transition from solitarious to gregarious

and vice-versa depending on the local population density. Hence, conserva-

tion laws give equations of the form

∂g

∂t
+∇ · (Jglocal + Jgnon-local) = K(s, g), (2.3a)

∂s

∂t
+∇ · (J slocal + J snon-local) = −K(s, g), (2.3b)

where J (s,g)local is the flux due to local interactions, J (s,g)non-local is the flux

due to non-local interactions, and K(s, g) represents the transition between

the solitarious and gregarious states.

In addition to locust densities, we include food resources in our model and

let c(x, t) denote the food density (mass of edible material per unit area).

We assume that locust food consumption follows the law of mass action and

on the time-scale of group formation food production is negligible, giving

∂c

∂t
= −κc(x, t)ρ(x, t), (2.4)

where κ is the locust’s food consumption rate.

2.1.1 Local interactions

We now turn to specifying the local interaction terms in (2.3a) and (2.3b).

These are captured by taking the continuum limit of a lattice model (this

should, however, be only considered an asymptotic approximation [24, 69])

following the work of Painter and Sherratt [70]. We begin by considering

solitarious locust movement on a one-dimensional lattice (we assume that

local gregarious locust behaviour is the same resulting in a similar derivation).

Let sti be the number of solitarious locusts at site i at time t, and let gti , ρ
t
i,

and cti be similarly defined.
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We assume that the transition probabilities for a locust at the ith site

depends on the food density at that site, and the relative population density

between the current site and neighbouring sites. If we let T ±
i be the proba-

bility at which locusts at site i move to the right, +, and left, −, during a

timestep, then our transition probabilities are

T ±
i = F (ci)(α + β(τ(ρi)− τ(ρi±1))), (2.5)

where F is a function of food density, τ is a function related to the local

locust density, and α and β are constants. Then the number of individuals

in cell i at time t+∆t is given by

st+∆t
i = sti + T −

i+1s
t
i+1 + T +

i−1s
t
i−1 − (T −

i + T +
i )sti. (2.6)

Substituting (2.5) into (2.6) gives

st+∆t
i =sti + F (ci+1)(α + β(τ(ρi+1)− τ(ρi)))s

t
i+1

+ F (ci−1)(α + β(τ(ρi−1)− τ(ρi)))s
t
i−1

− [F (ci)(α + β(τ(ρi)− τ(ρi−1))) + F (ci)(α + β(τ(ρi)− τ(ρi+1)))]s
t
i.

(2.7)

We the rearrange (2.7) to take out the common factors α and β, giving

st+∆t
i =sti + α[F (ci+1)s

t
i+1 + F (ci−1)s

t
i−1 − 2F (ci)s

t
i]

+ β
[
F (ci+1)s

t
i+1(τ(ρi+1)− τ(ρi))

+F (ci−1)s
t
i−1(τ(ρi−1)− τ(ρi))

−F (ci)sti(2τ(ρi)− τ(ρi−1)− τ(ρi+1))
]
. (2.8)

We then Taylor expand the terms in (2.8) to obtain the equation in relation
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to the site i at time t only. Beginning with,

st+∆t
i = sti +∆t

∂sti
∂t

+O(∆t2). (2.9)

Then for the terms related to α we get

α[·] =α
[
F (ci)s

t
i +∆x

∂

∂x
(F (ci)s

t
i) +

∆x2

2

∂2

∂x2
(F (ci)s

t
i) +

∆x3

6

∂3

∂x3
(F (ci)s

t
i)

F (ci)s
t
i −∆x

∂

∂x
(F (ci)s

t
i) +

∆x2

2

∂2

∂x2
(F (ci)s

t
i)−

∆x3

6

∂3

∂x3
(F (ci)s

t
i)

−2F (ci)s
t
i +O(∆x4)

]
=α∆x2

∂2

∂x2
(F (ci)s

t
i) +O(∆x4), (2.10)

as the 0th, 1st, and , 3rd order terms of ∆x cancel each other out. We then

turn our attention to our terms involving β, as a matter of readability we

will Taylor expand each multiplication individually. To begin,

R =F (ci+1)s
t
i+1(τ(ρi+1)− τ(ρi))

=

[
F (ci)s

t
i +∆x

∂

∂x
(F (ci)s

t
i) +

∆x2

2

∂2

∂x2
(F (ci)s

t
i) +

∆x3

6

∂3

∂x3
(F (ci)s

t
i)

]
·
[
τ(ρi)− τ(ρi) + ∆x

∂

∂x
(τ(ρi)) +

∆x2

2

∂2

∂x2
(τ(ρi)) +

∆x3

6

∂3

∂x3
(τ(ρi))

]
+O(∆x4)

=F (ci)s
t
i

[
∆x

∂

∂x
(τ(ρi)) +

∆x2

2

∂2

∂x2
(τ(ρi)) +

∆x3

6

∂3

∂x3
(τ(ρi))

]
+∆x

∂

∂x
(F (ci)s

t
i)

[
∆x

∂

∂x
(τ(ρi)) +

∆x2

2

∂2

∂x2
(τ(ρi))

]
+

∆x2

2

∂2

∂x2
(
F (ci)s

t
i

) [
∆x

∂

∂x
(τ(ρi))

]
+O(∆x4), (2.11)
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and

L =F (ci−1)s
t
i−1(τ(ρi−1)− τ(ρi))

=

[
F (ci)s

t
i −∆x

∂

∂x
(F (ci)s

t
i) +

∆x2

2

∂2

∂x2
(F (ci)s

t
i)−

∆x3

6

∂3

∂x3
(F (ci)s

t
i)

]
·
[
τ(ρi)− τ(ρi)−∆x

∂

∂x
(τ(ρi)) +

∆x2

2

∂2

∂x2
(τ(ρi))−

∆x3

6

∂3

∂x3
(τ(ρi))

]
+O(∆x4)

=F (ci)s
t
i

[
−∆x

∂

∂x
(τ(ρi)) +

∆x2

2

∂2

∂x2
(τ(ρi))−

∆x3

6

∂3

∂x3
(τ(ρi))

]
−∆x

∂

∂x
(F (ci)s

t
i)

[
−∆x

∂

∂x
(τ(ρi)) +

∆x2

2

∂2

∂x2
(τ(ρi))

]
+

∆x2

2

∂2

∂x2
(
F (ci)s

t
i

) [
−∆x

∂

∂x
(τ(ρi))

]
+O(∆x4), (2.12)

and finally,

C =− F (ci)s
t
i(2τ(ρi)− τ(ρi−1)− τ(ρi+1))

=− F (ci)s
t
i

[
2τ(ρi)− τ(ρi) + ∆x

∂

∂x
(τ(ρi))−

∆x2

2

∂2

∂x2
(τ(ρi)) +

∆x3

6

∂3

∂x3
(τ(ρi))

−τ(ρi)−∆x
∂

∂x
(τ(ρi))−

∆x2

2

∂2

∂x2
(τ(ρi))−

∆x3

6

∂3

∂x3
(τ(ρi))

]
+O(∆x4)

= ∆xF (ci)s
t
i

∂2

∂x2
(τ(ρi)) +O(∆x4). (2.13)

Adding (2.11), (2.12), and (2.13), gives

L+ C +R =2∆x2
[
∆xF (ci)s

t
i

∂2

∂x2
(τ(ρi)) +

∂

∂x
(F (ci)s

t
i)
∂

∂x
(τ(ρi))

]
+O(∆x4)

=2∆x2
∂

∂x

(
F (ci)s

t
i

∂

∂x
(τ(ρi))

)
+O(∆x4). (2.14)

Combining (2.9), (2.10) and 2.14 into (2.8), gives,

sti+∆t
∂sti
∂t

+O(∆t2) = sti+α∆x
2 ∂

2

∂x2
(F (ci)s

t
i)+2β∆x2

∂

∂x

(
F (ci)s

t
i

∂

∂x
(τ(ρi))

)
+O(∆x4),
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which we rearrange to obtain

∂sti
∂t

= α
∆x2

∆t

∂2

∂x2
(F (ci)s

t
i)+2β

∆x2

∆t

∂

∂x

(
F (ci)s

t
i

∂

∂x
(τ(ρi))

)
+O(∆x4)+O(∆t2).

(2.15)

We now specify our functions, F (ci) and τ(ρi). For F (ci), we assume that

movement decreases as food availability increases and the sensitivity of this

effect decreases with increasing food availability [13, 22]. i.e. when encoun-

tering abundant food locusts are unlikely to move, and adding further food

does little to affect the resulting movement rate. We thus require a mono-

tonically decreasing positive function for ci ≥ 0, we use

F (ci) = e
− ci

c0 , (2.16)

where c0 relates the effect of food on movement to its abundance. For τ(ρi)

we assume that locusts move from areas of higher densities to lower densities

proportional to the number collisions, we turn to the law of mass action to

describe these resulting in,

τ(ρi) = ρ2i . (2.17)

Substituting (2.16) and (2.17) into (2.15), we obtain

∂sti
∂t

= α
∆x2

∆t

∂2

∂x2

(
e
− ci

c0 sti

)
+2β

∆x2

∆t

∂

∂x

(
e
− ci

c0 sti
∂

∂x

(
ρ2i
))

+O(∆x4)+O(∆t2).

(2.18)

We then take the limit as ∆x,∆t→ 0 such that,

lim
∆x→0
∆t→0

α
∆x2

∆t
= D, and lim

∆x→0
∆t→0

2β
∆x2

∆t
=
Dγ

2
,

which we find

∂s

∂t
= D

∂2

∂x2
(e

− c
c0 s) +

Dγ

2

∂

∂x

(
e
− c

c0 s
∂

∂x

(
ρ2
))

. (2.19)
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We then rearrange to find our flux as

Jslocal = −D
[
∂

∂x

(
se

− c
c0

)
+ γsρe

− c
c0
∂ρ

∂x

]
. (2.20)

The derivation of Jglocal follows the same method. In higher dimensions, the

expressions for the fluxes are

Jglocal = −D
[
∇
(
ge

− c
c0

)
+ γgρe

− c
c0∇ρ

]
, (2.21a)

J slocal = −D
[
∇
(
se

− c
c0

)
+ γsρe

− c
c0∇ρ

]
. (2.21b)

2.1.2 Non-local interactions

For our non-local interactions, we adopt the fluxes used by Topaz et. al.

[98]. By considering each locust subpopulation, solitarious and gregarious,

as having different social potentials, we obtain the following expressions for

the non-local flux

Jgnon-local = −∇(Qg ∗ ρ)g, (2.22a)

J snon-local = −∇(Qs ∗ ρ)s. (2.22b)

We also adopt the functional forms of the social potentials used by Topaz

et. al. [98], as they are used extensively in modelling collective behaviour

and are well studied [11]. They are based on the assumption that solitarious

locusts have a long range repulsive social potential and gregarious locusts

have a long range attractive and a shorter range repulsive social potential.

The social potentials are given by,

Qs(x) = Rse
−|x|
rs and Qg(x) = Rge

−|x|
rg − Age

−|x|
ag ,

where Rs and rs are the solitarious repulsion strength and sensing distance

respectively. Similarly, Rg and rg are the gregarious repulsion strength and
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sensing distance. Finally, Ag and ag are the gregarious attraction strength

and sensing distance.

2.1.3 Gregarisation dynamics

For the rates at which locusts become gregarious (or solitarious) we again

follow the work of Topaz et. al. [98]. We assume that solitarious locusts

transition to gregarious is a function of the local locust density (and vice

versa). This gives our equations for kinetics as

K(s, g) = −f1(ρ)g + f2(ρ)s, (2.23)

where f1(ρ) and f2(ρ) are positive functions representing density dependant

transition rates. To make our results more directly comparable we again use

the same functional forms as Topaz et. al. [98]:

f1(ρ) =
δ1

1 +
(

ρ
k1

)2 , (2.24a)

f2(ρ) =
δ2

(
ρ
k2

)2
1 +

(
ρ
k2

)2 , (2.24b)

where δ1,2 are maximal phase transition rates and k1,2 are the locust densities

at which half this maximal transition rate occurs.

2.1.4 A system of equations for locust gregarisation

including food interactions

By substituting our flux expressions (2.21a) - (2.22b) and kinetics term (2.23),

into our conservation equations (2.3a) and (2.3b), and rearranging the equa-

tion into an advection diffusion system, we obtain the following system of
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equations

∂g

∂t
+∇ · (gvg)−D∇ ·

[
e
− c

c0∇g
]
= −f1(ρ)g + f2(ρ)s, (2.25a)

∂s

∂t
+∇ · (svs)−D∇ ·

[
e
− c

c0∇s
]
= f1(ρ)g − f2(ρ)s, (2.25b)

∂c

∂t
= −κc(x, t)ρ(x, t). (2.25c)

with

vg = −∇(Qg ∗ ρ) +De
− c

c0

(
1

c0
∇c− γρ∇ρ

)
,

and

vs = −∇(Qs ∗ ρ) +De
− c

c0

(
1

c0
∇c− γρ∇ρ

)
,

where f1, f2, Qs, and Qg are previously defined.

2.1.5 Non-dimensionalisation

We non-dimensionalise (2.25a), (2.25b), and (2.25c), and the explicit expres-

sions for f1, f2, Qs, and Qg. We rescale length so the gregarious attraction

length scale is 1 and density around k1 as this gives a measure of when the

density is low enough that a gregarious locust would start to become solitari-

ous (we expect that k2, which is a measure of the density at which solitarious

locusts become gregarious, will be larger than k1). Finally, let the timescale

be of the order 1
δ2

as we are looking at the time scale of gregariarization and

our food scale be of the order c0. This gives the following scalings,

t =
1

δ2
t̄, x = agx̄, (ρ, s, g) = k1(ρ̄, s̄, ḡ), and c = c0c̄.
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Then, dropping the bar notation, the dimensionless governing equations are

∂g

∂t
+∇ · (gvg)−D∗∇ ·

[
e−c∇g

]
= −f ∗

1 (ρ)g + f ∗
2 (ρ)s, (2.26a)

∂s

∂t
+∇ · (svs)−D∗∇ ·

[
e−c∇s

]
= f ∗

1 (ρ)g − f ∗
2 (ρ)s, (2.26b)

∂c

∂t
= −κ∗c(x, t)ρ(x, t), (2.26c)

where

vg = −∇Q∗
g∗ρ+D∗e−c (∇c− γ∗ρ∇ρ) ,vs = −∇Q∗

s∗ρ+D∗e−c (∇c− γ∗ρ∇ρ) ,

and

Q∗
g = R∗

ge
−|x|
r∗g − A∗

ge
−|x|, (2.27)

Q∗
s = R∗

se
−|x|
r∗s . (2.28)

Finally,

f ∗
1 (ρ) =

δ∗

1 + ρ2
, f ∗

2 (ρ) =
(ρk)2

1 + (ρk)2
.

Note that we have introduced the following dimensionless parameters,

D∗ =
D

δ2a2g
, k =

k1
k2
, δ∗ =

δ1
δ2
, γ∗ = k21γ, κ

∗ =
κk1
δ2
,

R∗
g =

Rgk1
δ2ag

, A∗
g =

Agk1
δ2ag

, R∗
s =

Rsk1
δ2ag

, r∗g =
rg
ag
, r∗s =

rs
ag
.

For notational simplicity we drop the ·∗ notation in the rest of this thesis.

2.2 Measure of foraging advantage

In order to measure the foraging advantage of gregarious locust we turn to

the work of Tania et. al. [95]. We first calculate the per capita contact with



Chapter 2. Model and measures 24

food for solitarious and gregarious locusts, respectively as

ηs(t) =
1

M

∫ L

0

c(x, t)s(x, t)

(1− ϕg(t))
dx and ηg(t) =

1

M

∫ L

0

c(x, t)g(x, t)

ϕg(t)
dx,

where M is given by (2.1). We then calculate the instantaneous relative

advantage at time t as

B(t) =
ηg(t)

ηs(t)
. (2.29)

This allows us to measure the advantage of being gregarious, when B(t) >

1 gregarious organisms are out-foraging their solitarious counterparts. To

differentiate between the time dependent foraging advantage and the steady

state foraging advantage we label the latter, B∞.

2.2.1 Derivation of foraging advantage

We note that it is possible to derive this quantity from first principle. When

considering foraging within a modelling context a common technique is to

look at an individuals ability to maximise a ‘currency’, here the ‘currency’

considered is ability to extract energy from a food source [92].

The measure we look at, known as foraging efficiency, is the ratio of energy

gained to energy spent and is given mathematically by Laguë et al. [60] as

E(t) =
Egain(t)

Eloss(t)
=

F (t)

p1t+ p2t∗
, (2.30)

where F (t) is the total energy gained by foraging for time t, p1 is the energy

cost per unit time during foraging, p2 is the energy lost per unit time by travel

between food patches for time t∗. Note that the marginal value theorem [22,

60] is a simpler version of (2.30) given by

R(t) =
F (t)

t+ t∗
, (2.31)
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where R(t) is the rate of energy gain, F (t) is the total energy gained by

foraging a patch of food in time t, and t∗ is the time to travel between

patches.

However, (2.30) is not spatially explicit, we thus need to convert our

spatially explicit equations and derive a value for individual energy gain. We

first do this with a more general case before substituting our equation for

consumption (2.25c). To begin, let the subscript ·g denote gregarious locusts
and ·s denote solitarious. Then, let fg(c, s, g) be a function describing the

energy gain for gregarious locusts per unit area per unit time (the derivation

for solitarious is similar and thus omitted here). We can then calculate the

total instantaneous gregarious energy gain, Ig at time t as

Ig(t) =

∫
Ω

fg(c, s, g) dx.

This allows us to calculate the average gregarious individual’s instantaneous

energy gain by dividing Ig(t) by the total number of gregarious locusts,

Ag(t) =

∫
Ω
fg(c, s, g) dx

ϕg(t)M
,

where M and ϕg are given by (2.1) and (2.2), respectively. We can then

calculate the average gregarious individuals total energy gain over the time

interval, [0, t], by integrating, giving rise to

Fg(t) =

∫ t

0

∫
Ω
fg(c, s, g) dx

ϕg(τ)M
dτ. (2.32)

By substituting (2.26c) into (2.32) and taking into account only the gregari-
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ous contribution to ρ we obtain

Fg(t) =

∫ t

0

∫
Ω
κcg dx

ϕgM
dτ

=

∫ t

0

κηg(τ) dτ.

This gives the foraging efficiency as

Eg(t) =

∫ t

0
κηg(τ) dτ

p1t+ p2t∗
. (2.33)

Similarly, for solitarious locusts we obtain

Es(t) =

∫ t

0
κηs(τ) dτ

p1t+ p2t∗
. (2.34)

To compare the two foraging efficiencies, we define the cumulative relative

gregarious foraging advantage as

b(t) =
Eg

Es

=

∫ t

0
ηg(τ) dτ∫ t

0
ηs(τ) dτ

, (2.35)

assuming κ, t∗, p1 and p2 are equal for both solitarious and gregarious. If they

are unequal we would end up with some scalar multiple of b(t). It should be

noted that this is the definition of cumulative relative advantage from Tania

et al. [95].

Finally, as the proportion of the population that is gregarious is changing

in time B(t) becomes difficult to interpret. We instead assume that ϕg(t) is

constant over the short interval [t, t+∆t] for some ∆t≪ 1, we then let b(t)

be the cumulative relative advantage over this interval, which we term the



Chapter 2. Model and measures 27

instantaneous relative advantage to be in line with Tania et al. [95]. We find

B(t) =

∫ t+∆t

t
ηg(τ) dτ∫ t+∆t

t
ηs(τ) dτ

≈ ∆tηg(t)

∆tηs(t)

≈ ηg(t)

ηs(t)
, (2.36)

which is instantaneous relative advantage defined by [95]. We thus find that

an instantaneous relative advantage would lead to a cumulative relative ad-

vantage for a fixed gregarious mass fraction, and this in turn would imply a

foraging advantage to being gregarious.

2.3 Chapter summary

In this chapter we have derived our model of locust foraging that includes

both intra-individual and food interactions as well as the metric of foraging

advantage. In Chapter 3 we will investigate some of the numerical schemes

used in this thesis, before performing a series of analytic analyses and nu-

merical experiments in Chapter 4. Then, in Chapter 5, we will investigate

the concept of foraging advantage in two dimensions.



Chapter 3

Exploring numerical methods

Over the course of this study we investigated a variety of numerical methods

to simulate non-local problems [41, 42, 44]. Here we present the finite volume

based one dimensional scheme used in [45] with a study of error and conver-

gence , as well as a discussion on calculating the non-local component [44].

Finally, we present finite volume based numerical scheme for an arbitrary

number of dimensions and populations used in Chapter 5.

The methods presented in this chapter have been adapted from the fol-

lowing publications:

1. F.Georgiou, B. Lamichhane, and N. Thamwattana. ‘An Adaptive Nu-

merical Scheme for a Partial Integro-Differential Equation’. ANZIAM

Journal 60 (2018): C187–200. doi: 10.21914/anziamj.v60i0.14066.

2. F Georgiou, N Thamwattana, and B P Lamichhane. ‘Modelling Cell

Aggregation Using a Modified Swarm Model’, In Elsawah, S. (ed.) MOD-

SIM2019, 23rd International Congress on Modelling and Simulation.

Modelling and Simulation Society of Australia and New Zealand, De-

cember 2019, doi: 10.36334/modsim.2019.A1.georgiou

3. F. Georgiou, J. Buhl, J. E. F. Green, B. Lamichhane, and N. Thamwat-

tana, ‘Modelling locust foraging: How and why food affects group for-

28
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mation’, PLOS Computational Biology, vol. 17, no. 7, p. e1008353,

Jul. 2021, doi: 10.1371/journal.pcbi.1008353.

4. F. Georgiou, J. Buhl, J. E. F. Green, B. Lamichhane, and N. Thamwat-

tana, ‘A Numerical Scheme for Non-Local Aggregation with Non-Linear

Diffusion and Approximations of Social Potential’. ANZIAM Journal

62 (2020): C242–55. doi: 10.21914/anziamj.v62.16056.

3.1 One dimension

We now derive the numerical scheme for (2.26a) in one dimension using a

finite volume method (FVM). The numerical scheme for (2.26b) is similar

and thus omitted here. For the numerical scheme the terms described in

Table 3.1 are used in relation to an arbitrary cell i with cell boundaries i± 1
2
.

Table 3.1: Definitions of symbols used in one dimensional numerical
scheme at arbitrary cell i.

Symbol Definition

∆x spatial size of cells in the x direction
x vector representing the discretised spatial grid
xi x value of the midpoint of a grid cell
Si, Gi, Ci Approximate function values of s, g, and c
S,G vectors representing the discretised functions s and g
Li Approximate value of the local component of the vg

Ni Approximate value of the non-local component of vg

Ai Approximate value of the advective component of the equation
Di Approximate value of the diffusive component of the equation
Ki Approximate value of the kinetic component of the equation



Chapter 3. Numerical methods 30

Advection. Beginning with the local part of the velocity term (denoted

L )

L = De−c

(
∂c

∂x
− γρ

∂ρ

∂x

)
,

we approximate both derivatives using central differencing schemes, giving

Li ≈ De−Ci

(
Ci+1 − Ci−1

2∆x
− γ(Si +Gi)

Si+1 +Gi+1 − Si−1 −Gi−1

2∆x

)
,

at an arbitrary cell i. Then, for the non-local component of the velocity

term (denoted N ), we approximate this at a grid cell by Ni. We discuss the

various methods of finding Ni in Section 3.1.1. By combining the local and

non-local components and letting

Fi = (Li + Ni)Gi,

we can approximate the wavespeed at a cell boundary, i− 1
2
, as

Pi− 1
2
=


Fi−Fi−1

Gi−Gi−1
Gi ̸= Gi−1,

Fi−Fi−1

∆x
Gi = Gi−1,

(3.1)

and the wave size as

Wi− 1
2
= Gi −Gi−1. (3.2)

From this we can approximate the advection component using an upwinding

scheme, giving

Ai =
1

∆x

(
max{Pi− 1

2
, 0}Wi− 1

2
+min{Pi+ 1

2
, 0}Wi+ 1

2

)
.

It is worth noting that as we multiply Pi− 1
2
with Wi− 1

2
the denominator of

the fraction used to calculate Pi− 1
2
is cancelled out and the only information
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that is used is the sign of Gi −Gi−1, we therefore simplify (3.1) and (3.2) to

Ŝi− 1
2
= (Fi − Fi−1)sign(Gi −Gi−1),

and

Ŵi− 1
2
= sign(Gi −Gi−1),

where

sign(x) =


−1 x < 0,

0 x = 0,

1 x > 0,

giving the upwinding scheme for the advection component as

Ai =
1

∆x

(
max{Ŝi− 1

2
, 0}Ŵi− 1

2
+min{Ŝi+ 1

2
, 0}Ŵi+ 1

2

)
.

Diffusion. Next, for the diffusion term, D

D = D
∂

∂x

[
e−c ∂g

∂x

]
.

We can approximate this using FVM as

Di ≈
D

∆x2

(
e−

Ci−1+Ci
2 (Gi −Gi−1)− e−

Ci+1+Ci
2 (Gi+1 −Gi)

)
.

Then the kinetic component is given by

Ki = −f1(Si +Gi)Gi + f2(Si +Gi)Si.

Combining all the terms we obtain,

Gt+∆t
i = Gt

i −∆t(Ai + Di − Ki).
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Finally, for we use an adaptive Dormand-Prince method [35] for the time

component.

3.1.1 Solving the non-local component

Returning to the non-local component of the advection term, given by

N = −∇(Qg ∗ ρ).

We can use the following property of convolutions

∂

∂x
(f ∗ g) =

((
∂

∂x
f

)
∗ g
)

=

(
f ∗
(
∂

∂x
g

))
,

to turn the convolution component of the advection term into

N =

[
− ∂

∂x
Qg

]
∗ ρ.

We can then find approximations to N using a variety of techniques, the

first being direct calculation.

Direct calculation. It is possible to directly calculate the convolution us-

ing classic numerical integration techniques. For example using the midpoint

rectangle rule we find

N ≈ Ni =
N∑
k=1

Q̇g(xi − xk)(Sk +Gk)∆x, (3.3)

where N is the number of grid cells and

Q̇g(x) =


0 if x = 0,

Ag

ag
e
− |x|

ag − Rg

rg
e
− |x|

rg if x > 0,

−Ag

ag
e
− |x|

ag + Rg

rg
e
− |x|

rg if x < 0.

(3.4)
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However, this method requires a considerable amount of computing power

and even with the inclusion of optimisation techniques such as gradient based

grid refinements (which we explored in a related problem in [42]) the com-

putation time can be prohibitively expensive for high resolution simulations.

It was found that the use of Fourier transforms (and specifically the fast

Fourier transform algorithm) could reduce the computation requirement by

up to 1000 times [41]. Specifically, by moving from direct calculations with

complexity O(n2) (every doubling of points leads to an approximately four-

fold increase in computation time), to the fast Fourier transform with com-

plexity O(n log n) (every doubling of points leads to marginally more than

a doubling of computation time) we are able to greatly reduce computation

time.

Fourier transforms. The key to using Fourier transforms is the convolu-

tion theorem, which states that under suitable conditions the Fourier trans-

form of a convolution of two functions is equal to the point-wise product of

their individual Fourier transforms, i.e.,

F{f ∗ g} = F{f} · F{g},

where F represents the Fourier transform (we also denote the inverse Fourier

transform as F−1). This allows us to turn the convolution component of the

advection term into

N = F−1

{
F

{
− ∂

∂x
Qg

}
· F {ρ}

}
.

We can then approximate the convolution as

N ≈ real

{
ifft

{
DFT

{
− ∂

∂x
Qg(x)

}
· fft {S+G}

}}
,
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where fft and ifft represent the fast Fourier transform and inverse fast Fourier

transform respectively, and DFT represents the discrete Fourier transform.

We take only the real component of the ifft as any imaginary value will

simply be due to error. We also require Qg(x) to be periodic on the domain

x ∈ [0, L]. We therefore need a method of finding F
{
− ∂

∂x
Qg

}
.

The two methods we explore are the discrete time Fourier transform

(DTFT) derived by [98]:

DTFT

{
− ∂

∂x
e−

|x|
r

}
= − i∆x sin(∆xq)

r (cosh(∆x/r)− cos(∆xq))
, (3.5)

where q is our frequency domain. DTFTs are the discrete analog of Fourier

transforms in that they take an infinite sum of discrete points in space and

produce a continuous function in the frequency domain. In contrast DFTs

take a finite sum of points in space and produce a finite set of points in the

frequency domain. With this in mind we can approximate the above DTFT

using the method given by [43],

∂

∂x
e

−|x|
r =

0 if x = 0,

1
r

(
−e−

|x|
r + e−

|(L+∆x)−x|
r

)
if x > 0.

(3.6)

which is then converted to the frequency domain using a DFT. We will term

(3.5) the exact DTFT and (3.6) the approximate.

3.1.2 Error and computation time

In order to test our numerical scheme of (2.26a) with the social potential

(2.27), we ran a series of simulations with 64, 128, 256, 512, 1024, and

2048 grid cells, and only gregarious locusts. The initial density is given

by g(x, 0) = max(2 + µ, 0) where µ is some normally distributed noise with

mean 0 and standard deviation 1. In addition, one set of initial conditions

was created at the lowest resolution and interpolated up to higher resolutions
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to ensure all simulations had the same initial conditions. The spatial domain

was x ∈ [0, 20] with periodic boundary conditions (i.e. g(0, t) = g(20, t)) and

time was run to the pseudo steady state t = 500. We then took both the exact

DTFT and approximate transform (given by (3.5) and (3.6), respectively).

The constants were set as D = 0.01,γ = 0.6,Rg = 0.25,Ag = 1, and rg = 0.5.

We also let c(x, t) = 0. Finally, we let the 2048 grid cells with exact DTFT

be our reference solution; a snapshot at times t = 0, 0.72, 4.80, and 500 can

be seen in Figure 3.1.

The error and computation time can be seen in Figure 3.2, a) and b)

respectively. In order to calculate the error, we interpolated our reference so-

lution down to each lower resolution (denoted Gref), then for each number of

grid cells (64, 128, 256, 512, and 1024) and each social potential (approximate

and exact DTFT) we calculated our total error, ϵ, as

ϵ = ||Gref −G||,

where ||·|| represents the standard L2 norm. Error is calculated at the pseudo

steady state of t = 500. From this we estimated the average convergence

rate as greater than 1.8 for both the exact DTFT and approximate social

potentials (1.8829 and 1.9114 respectively), however the approximated social

potential has a non-uniform convergence. Computation time was comparable

for both approximated and exact DTFT social potentials. The most startling

aspect of this numerical experiment is that for the majority of grid cells the

approximation is closer to the reference solution than the exact DTFT.

To test whether the approximation continues to be more accurate than

the exact DTFT, we ran simulations with a different set of constants. The

constants in (2.27) were changed to Rg = 1, Ag = 1, and rg = 0.1 with

everything else set as before. The error and computation time can be seen

in Figure 3.3, a) and b) respectively. It can again be seen that at certain

resolutions the approximation outperforms the exact DTFT. This time the

average convergence rate is greater than 1.7 for both the exact DFT and
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Figure 3.1: One dimensional reference solution. Reference solution
of (2.26a) with social potential given by (2.27) with D = 0.01, γ = 0.6,
Rg = 0.25, Ag = 1, and rg = 0.5 on the periodic domain x ∈ [0, 20]. We also
let c(x, t) = 0. The reference solution uses the exact DTFT given by (3.5)
and 2048 grid cells.

approximate social potentials (1.7512 and 1.8684 respectively).

In order to better understand this, we turned back to our original values

and looked at the relative error between the high resolution (2048 grid cells)
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Figure 3.2: One dimensional error and computation time. Numerical
error estimates (ϵ) and computation time for 64, 128, 256, 512, and 1024
grid cells at time t = 500 for both the exact DTFT and approximated social
potentials with D = 0.01, γ = 0.6, Rg = 0.25, Ag = 1, and rg = 0.5.

exact DTFT of the social potential and the lower resolution exact DTFT and

approximate social potentials. We then defined the relative error between

social potentials as,

ϵrel =
||Qref −Qapp||
||Qref −Qext||

,

where Qref is high resolution exact DTFT, Qapp is the approximation, and

Qext is the lower resolution exact DTFT (we also calculate the relative error

between simulations in a similar manner). Qref and Qext have been converted

back to the spatial domain using a DFT. The results can be seen in Figure 3.4

(blue line, left axis), with ϵrel < 1 showing that the estimate is more accurate

than the exact DFT for each resolution. While the approximation is closer

to the reference social potential at each resolution it is not a good predictor

of the relative error between simulations (red dashed line, right axis).

While this numerical scheme worked fantastically for one dimension, we

ran into some problems adapting the scheme into higher dimensions. Due

to limits with computation power we needed to derive scheme that could be
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Figure 3.3: Alternate one dimensional error and computation time.
Numerical error estimates (ϵ) and computation time for 64, 128, 256, 512, and
1024 grid cells at time t = 500 for both the exact DTFT and approximated
social potentials with D = 0.01, γ = 0.6, Rg = 1, Ag = 1, and rg = 0.1.

implemented on a graphics processing unit.

3.2 d-dimensions

Here we derive a more general numerical scheme used for the 2D simulations

shown in Chapter 5, we derive it for N interacting populations in d dimen-

sions. The spatial component follows the work of Burger et. al. [19]. We

also adopt their notation, given in Table 3.2. It is the same as for the one

dimensional case with an aribtrary cell i, however i is now a d-dimensional

vector with cell boundaries i± 1
2
el where el d-dimensional unit vector in the

direction l, i.e. e1 = (1, 0, ..., 0).

Given a system of equations of the form

∂uj
∂t

+∇ · (ujVj) = ∇2(ϕj(x)uj),
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Figure 3.4: Relative error in social potential. ϵrel < 1 indicating that the
approximation is more accurate than the exact DTFT for each resolution.
While the approximation is closer to the reference social potential at each
resolution it is not a good predictor of the relative error between simulations
(red dashed line, right axis)

where

Vj = ∇

(
N∑
k=1

Qj ∗ Sj,kuk

)
+ ϕj(x)γj∇ρm,

ϕj(x) = Dje
−c,

and

ρ =
N∑
j=1

uj.

While the numerical method is designed to be two dimensional with periodic

boundary conditions, it can be defined in d-dimensions. Let our domain be

the d-dimensional cube,

Ω := (−L1, L1)× · · · × (−Ld, Ld).
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To begin we can calculate ϱi as

Table 3.2: Definitions of symbols used in d-dimensional numerical
scheme at arbitrary cell i.
Symbol Description

i d-dimensional cell index
xi Midpoint of cell i
el d-dimensional unit vector in the direction l, i.e. e1 = (1, 0, ..., 0)

U
(j)
i approximation of uj over cell i at time t

U
(j)

i+ 1
2
el

approximation of uj at the boundary of cell i in the l direction
at time t

ϱi the value of ρ over cell i at time t

V
(j)
i approximation of Vj over cell i at time t

Ṽ
(j)

i+ 1
2
el

approximation of the derivative of Vj at the boundary of cell i
in the l direction at time t

ϱi =
N∑
k=1

U
(k)
i .

Linear diffusion discretisation. Let D(U (j))i represent the spatial dis-

cretisation of the linear diffusion, ∇2(ϕ(x)uj), then

D(U (j))i =
d∑

l=1

1

∆x2l

(
ϕ(xi+el)U

(j)
i+el

− 2ϕ(xi)U
(j)
i + ϕ(xi−el)U

(j)
i−el

)
. (3.7)

Advection discretisation. In order to solve the convolution component,

we denote

N =
N∑
k=1

Qj ∗ uk.
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Next, taking the d-dimensional Fourier transform and utilising the convolu-

tion theorem we get

N = F−1

{
F
{
Q(x)

}
· F
{ N∑

k=1

Qj ∗ uk
}}

,

which can be solved efficiently using the fast Fourier transform. We can then

find the gradient at the cell boundary as

Ṽ
(j)

i+ 1
2
el
=

1

∆xl

(
Ni+el −Ni +

ϕ(xi−el) + ϕ(xi)

2

(
ϱmi − ϱmi+el

))
.

This then lets us use an upwinding scheme to find the value of U (j) at the

cell boundary as

U
(j)

i+ 1
2
el
=

U
(j)
i , if Ṽ

(j)

i+ 1
2
el
≥ 0,

U
(j)
i+el

, if Ṽ
(j)

i+ 1
2
el
< 0.

Finally this allows us to find the advection component A(U (j)) as

A(U (j))i = −
d∑

l=1

U
(j)

i+ 1
2
el
Ṽ

(j)

i+ 1
2
el
− U

(j)

i− 1
2
el
Ṽ

(j)

i− 1
2
el
. (3.8)

Combining equations (3.7) and (3.8) we get

dU
(j)
i

dt
= A(U (j))i +D(U (j))i.

Finally, we need to derive a method of time integration that can be imple-

mented on GPU.

Time discretisation. Here we derive an adaptive time stepping scheme

that is used in two (and higher) dimensions, the error estimates were first

derived by Horsea and Shampine [52]. Given an initial value problem of the
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form
du

dt
= f(u, t), u(t0) = u0,

we use the standard Runge-Kutta 4 algorithm [77], so let un be the approx-

imation of u at the nth time step of size ∆t, then

un+1 = un +
1

6
∆t (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn +∆t,

where

k1 = f (un, tn) ,

k2 = f

(
un +∆t

k1
2
, tn +

∆t

2

)
,

k3 = f

(
un +∆t

k2
2
, tn +

∆t

2

)
,

k4 = f (un +∆tk3, tn +∆t) .

We then approximate the error of the scheme using the method given by [52].

Let estn be the error estimate of the pair of steps n and n+ 1, then

estn =
∆t

32
= (−k1 + 2k2 − k3 + 3k∗1 − k∗3), (3.9)

where ·∗ denotes belonging to the (n + 1)th step. This error estimate allows

us to update our step size ∆t every second timestep, and accept/reject time

step pairs based on the error. Then if |estn|∞ < maxerr, where | · |∞ is the

infinity norm and maxerr is the maximum error tolerance, we take our error

estimate and look at the ratio of error to max allowed error as [89],

errr = 1.25

(
|estn|∞
maxerr

)1/5

,
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before updating the time-step using

∆t∗ =


5∆t, if errr < 0.2,

∆t
errr

, if 0.2 < errr < 0.8,

∆t. otherwise

If |estn|∞ > maxerr we reject the pair of time steps and let

∆t∗ =
∆t

2
.

Finally if ∆t < ∆tmin (i.e. the minimum timestep) we end the simulation.

3.2.1 Error and computation time

Again, in order to test our numerical scheme of (2.26a) with the social po-

tential (2.27), we ran a series of simulations with 16, 32 64,128,256, and

512 grid cells, and only gregarious locusts. The initial density is given by

g(x, 0) = max(1 + µ, 0) where µ is some normally distributed noise with

mean 0 and standard deviation 1. In addition, one set of initial conditions

was created at the lowest resolution and interpolated up to higher resolutions

to ensure all simulations had the same initial conditions.

The spatial domain was x ∈ [0, 10] with periodic boundary conditions

and time was run to the pseudo steady state t = 20. The constants were

set as D = 0.1, γ = 1, Rg = 0, Ag = 1, and rg = 0.5 (for computational

simplicity, we ignore the short range repulsion in this case). We also let

c(x, t) = 0. Finally, we let the 512 grid cells simulation be our reference

solution; a snapshot at times t = 0, 0.5, 1.2, and 10 can be seen in Figure

3.5.

The error and computation time can be seen in Figure 3.6, a) and b)

respectively. In order to calculate the error, we interpolated our reference

solution down to each lower resolution (denoted Gref), then for each number
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Figure 3.5: Two dimensional reference solution. Reference solution of
(2.26a) with social potential given by (2.27) with D = 0.1, γ = 1, Rg = 0,
Ag = 1, and rg = 0.5 (we ignore the short range repulsion in this case) on
the periodic domain x ∈ [0, 10]. We also let c(x, t) = 0.

of grid cells (16, 32, 64, 128, and 256) we calculated our total error, ϵ, as

ϵ = ||Gref −G||,
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Figure 3.6: Two dimensional error and computation time. Numerical
error estimates (ϵ) and computation time for 16, 32 64,128, and 256 grid cells
at time t = 10 with D = 0.1, γ = 1, Rg = 0, Ag = 1, and rg = 0.5.

where ||·|| represents the standard L2 norm. Error is calculated at the pseudo

steady state of t = 10. From this we estimated the average convergence rate

as 2.7746, however the convergence is non-uniform.

3.3 Chapter summary

In this chapter we introduced two finite volume based numerical scheme for

simulating our equations in one and two (and higher) dimensions. We also

tested their accuracy and convergence using common social potentials. In

addition, in the one dimensional case, we compared an exact DTFT of the

social potential with a method for approximating it and found that under the

tested conditions the approximation outperformed the exact DTFT. While

more work needs to be done to understand why this is the case, the approx-

imation method appears to work well and could be used for social potentials

whose DTFT have no closed-form expression. For a discussion on imple-

menting numerical schemes in MATLAB, see Appendix A.



Chapter 4

How and why food affects

group formation

In this chapter we analyse the model introduced in Chapter 2. In section 4.1,

we begin by analysing (2.26a) using various PDE analysis techniques under

some simplifying assumptions. Then in section 4.2 we investigate how varying

food distributions affect the formation of gregarious aggregations and how

gregarisation affects foraging efficiency, before finally concluding this study

in section 4.3.

4.1 PDE model analysis

In this section we investigate the behaviour of our model with a spatially

uniform and temporally constant food density. This assumption corresponds

to environments where the lengthscale of the food footprint is larger than

the lengthscale over which the locusts are distributed, and where the rate of

food consumption is negligible compared to the speed of locust interactions.

Aside from simplifying the analysis, this assumption also provides a baseline

with which to compare our later results, and hence assess the impact of a

patchy food distribution. Using this and other simplifying assumptions, we

46
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are able to calculate the maximum density and size of gregarious groups for

both small and large numbers of locusts. We then consider the linear stability

of the homogeneous steady states to investigate how the availability of food

affects group formation, before finally investigating how the center of mass

is affected by locust interactions.

4.1.1 Density of gregarious groups

Under some simplifying assumptions we can estimate the maximum density

and width of gregarious locusts for both small and large numbers of locusts

(i.e. as M → 0 and M → ∞, respectively), termed the small and large

mass limits, in one dimension. To begin, we assume that c is constant and

not depleting, there are minimal solitarious locusts present in the group (i.e.

ρ ≈ g), and the effect of phase transitions in the group is negligible (i.e.

f1(ρ)s = f2(ρ)g = 0). Finally, while the support of g is infinite (due to the

linear diffusion) the bulk of the mass is contained as a series of aggregations;

consequently we approximate the support of a single aggregation as Ω. Using

these assumptions we can rewrite (2.26a) as a gradient flow of the form,

∂g

∂t
= ∇ ·

(
g∇
[
δE

δg

])
,

where

E[g] =

∫
Ω

1

2
g[Qg ∗ g] +

De−cγ

6
g3 +De−c(g log(g)− g) dx, (4.1)

where E[g] represents an energy functional (can be thought of as a function

of a function, see [2] for more details on gradient flows) with the minimisers

satisfying
δE

δg
= (Qg ∗ g) +

De−cγ

2
g2 +De−c log(g) = λ.
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Next, we follow the work of [12, 18, 97] and with a series of simplifying

assumptions we consider both the large and small mass limit in turn. First,

we note that (2.1) becomes

M =

∫
Ω

ρ(x) dx =

∫
Ω

g(x) dx.

To find the large mass limit, we begin with (4.1) and assume that g(x) is

approximately rectangular (i.e. constant within the aggregation and 0 else-

where) and for a single aggregation that the support is far larger than the

range of e
−|x|
r . This gives e

−|x|
r ≈ 2rδ(x) (where δ(x) is the Dirac delta func-

tion) to ensure that the volume of the integration is preserved, and therefore

Qg = Rge
−|x|
rg − Age

−|x| ≈ 2 (Rgrg − Ag) δ(x).

Next, as g is rectangular, we have

||Ω|| = M

g
.

Substituting into (4.1) we get

E[g] =M

(
(Rgrg − Ag) g +

De−cγ

6
g2 +De−c(log(g)− 1)

)
.

We can then find

dE

dg
=M

(
(Rgrg − Ag) +

De−cγ

3
g +

De−c

g

)
,

which has critical point at

De−cγ

3
g2 + (Rgrg − Ag) g +De−c = 0.
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Thus

g =

3

(
− (Rgrg − Ag)±

√
(Rgrg − Ag)

2 − 4(De−c)2γ
3

)
2De−cγ

.

Based on numerical simulations we take only the larger root, then as the

solution is constant

||g||∞ =

3

(
− (Rgrg − Ag) +

√
(Rgrg − Ag)

2 − 4(De−c)2γ
3

)
2De−cγ

, (4.2)

with support

||Ω|| = 2MDe−cγ

3

(
− (Rgrg − Ag) +

√
(Rgrg − Ag)

2 − 4(De−c)2γ
3

) . (4.3)

The accuracy of this approximation is illustrated by Figure 4.1. We observe

that within our model as c increases so too does the maximum density of our

locust formation. However, as the mass of locusts,M , increases the maximum

density remains constant and the support ||Ω|| becomes larger. Finally, by

using these derived relationships with field measurements of maximum locust

densities we can estimate values of γ.

For the small mass limit, we begin with (4.1) and assume that the support

of g is much smaller than the range of interaction, r. We thus approximate

the social interaction potential using a Taylor expansion, e
−|x|
r ≈ 1 − |x|

r
,

giving

Qg = Rge
−|x|
rg − Age

−|x| ≈ (Rg − Ag)− |x|
(
Rg

rg
− Ag

)
.

In addition, to be able to solve the resulting equations we ignore the effect of

linear diffusion within Ω. While this gives a less accurate approximation it

still shows the effect of food on maximum density. Under these assumptions,
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Figure 4.1: Large mass limit with estimates for the max value and
support. The estimates of the max value and support are labelled ||g||∞ and
Ω respectively, with simulation results given by the red lines. For both the
simulation and calculations D = 0.01, γ = 60, Rg = 0.25, rg = 0.5, Ag = 1,
and c = 0 and 1. We can see that as the amount of food is increased from
c = 0 on the left to c = 1 on the right, the maximum density for the gregarious
locusts increases.

(4.1) yields

E[g] =

∫
Ω

1

2
g

([
(Rg − Ag)− |x|

(
Rg

rg
− Ag

)]
∗ g
)
+
De−cγ

6
g3 dx. (4.4)

Based on these assumptions we can find

δE

δg
=

(
(Rg − Ag)− |x|

(
Rg

rg
− Ag

))
∗ g + De−cγ

2
g2 = λ,

which becomes

(Rg − Ag)M −
(
Rg

rg
− Ag

)
(|x| ∗ g) + De−cγ

2
g2 = λ.
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We then exploit the property that (|x|)xx = 2δ(x) and differentiate twice to

obtain

−2

(
Rg

rg
− Ag

)
g +

De−cγ

2
(g2)xx = 0.

Following [12] we place the maximum of g at the origin; this implies gx(0) = 0

and g(0) = ||g||∞. We then let

p =
g

||g||∞
, and ζ =

x√
||g||∞

, (4.5)

giving

(p2)ζζ −
4
(

Rg

rg
− Ag

)
De−cγ

p = 0, p(0) = 1, pζ(0) = 0.

We then multiply through by (p2)ζ and integrate to obtain

2p2(p)2ζ −
8
(

Rg

rg
− Ag

)
3De−cγ

p3 + c = 0.

Then applying the conditions at ζ = 0 we find

2p2(p)2ζ −
8
(

Rg

rg
− Ag

)
3De−cγ

(p3 − 1) = 0,

which can be simplified into

pζ =

√√√√4
(
Ag − Rg

rg

)
3De−cγ

(
1

p2
− p

)
.

Performing a separation of variables gives

dζ =

√√√√ 3De−cγ

4
(
Ag − Rg

rg

) p dp√
1− p3

. (4.6)
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We can then find the implicit solution

ζ =

√√√√ 3De−cγ

4
(
Ag − Rg

rg

) ∫ 1

p

p dp√
1− p3

.

As p→ 0, ζ → ||Ω||
2
√

||g||∞
, we find

||Ω|| = 2
√

||g||∞

√√√√ 3De−cγ

4
(
Ag − Rg

rg

) ∫ 1

0

p dp√
1− p3

= 2
√

||g||∞

√√√√ 3De−cγ

4
(
Ag − Rg

rg

) 1
3
B

(
2

3
,
1

2

)

=

√√√√||g||∞
De−cγ

3
(
Ag − Rg

rg

)B(2

3
,
1

2

)
, (4.7)

where B is the β-function (for definition see [102], page 207). Next using the

mass constraint,

M = 2

∫ ||Ω||
2

0

g(x) dx = 2

∫ 0

− ||Ω||
2

g(x) dx,

and substituting (4.5) we obtain

M = 2||g||
3
2∞

∫ 0

− ||Ω||
2
√

||g||∞

p(ζ) dζ,
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which using (4.6) becomes,

M = ||g||
3
2∞

√√√√ 3De−cγ(
Ag − Rg

rg

) ∫ 1

0

p2 dp√
1− p3

= ||g||
3
2∞

√√√√ 4De−cγ

3
(
Ag − Rg

rg

) . (4.8)

Then using (4.7) and (4.8) we can find ||Ω|| and ||g||∞ in terms of M , giving

||g||∞ =
3

√√√√3M2
(
Ag − Rg

rg

)
4De−cγ

, (4.9)

and

||Ω|| = B

(
2

3
,
1

2

)
3

√√√√ MDe−cγ

6
(
Ag − Rg

rg

) . (4.10)

The results of these approximations can be seen in Figure 4.2. While

less accurate than those of the large mass limit, they illustrate that as the

amount of food increases, so too does the maximum locust density. However,

the effect is less pronounced than in the large mass case. It also demonstrates

how the maximum locust density and support both increase with an increase

in locust mass.

The accuracy of both the small and large mass approximations and the

transition between the two can be seen in Figure 4.3 for both the maximum

group density and support. In the simulations, we estimate the finite support,

Ω, as the region where g > 0.01. While the maximum density approaches

the approximation,there does exist errors in the small mass limit and in

estimates of the support. A likely source of these discrepancies is the linear

diffusion term, in that for calculating the small mass limit it was ignored and

in numerically estimating the support it creates long tails at the edges of

an aggregation. It is worth noting that the results for large and small mass
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Figure 4.2: Small mass limit with estimates for the max value and
support. The estimates of the max value and support are labelled ||g||∞ and
Ω respectively, with simulation results given by the red lines. For both the
simulation and calculations D = 0.01, γ = 60, Rg = 0.25, rg = 0.5, Ag = 1,
and c = 0 and 1.

limits likely apply to locust hopper bands and not just gregarious groups [20,

21].

4.1.2 Linear stability analysis of homogeneous steady

states

In order to gain insights into the conditions under which groups can form,

we investigate the stability of spatially-homogeneous steady states. In this

analysis we perturb the homogeneous steady states by adding a small amount

of noise. We then find under what conditions the small perturbations grow

and are likely to lead to gregarious aggregations.

We begin by defining the homogeneous steady states of s, g, and c, as s̄,

ḡ, and c̄, with the total density given as ρ̄ = s̄ + ḡ. We again assume that

c does not deplete (i.e. κ = 0). As we assume either an infinite or periodic
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Figure 4.3: Small and Large mass limit estimates and simulated
results for both the maximum group density (left) and support
(right). In the simulations we estimate the finite support, Ω, as the region
where g > 0.01.

domain with spatially homogeneous locust densities, we must redefine the

global gregarious mass fraction, (2.2), as

ϕg(t) =
g(t)

ρ(t)
. (4.11)

Thus, in the case of spatially-homogeneous steady states ϕg =
ḡ
ρ̄
. Let

s = s̄+ ϵs̃, g = ḡ + ϵg̃, and c = c̄+ ϵc̃,

where 0 < ϵ ≪ 1, ·̄ represents a homogeneous steady state and ϵ̃· represents
a small perturbation. Naturally,

ρ = ρ̄+ ϵρ̃ = s̄+ ḡ + ϵ(s̃+ g̃).

Substituting this into (2.26a), (2.26b), and (2.26c), performing a Taylor ex-
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pansion on f1(ρ̄ + ϵρ̃), f2(ρ̄ + ϵρ̃) and De−(c̄+ϵc̃), neglecting terms of O(ϵ2)

and higher, and for notational convenience letting D̂ = De−c̄, gives

∂

∂t

s̃g̃
c̃

 =


−s̄
[
−Qs ∗ ∇2(s̃+ g̃) + D̂ (∇2c̃− γρ̄∇2(s̃+ g̃))

]
+ D̂∆(s̃)− s̃A+ g̃B

−ḡ
[
−Qg ∗ ∇2(s̃+ g̃) + D̂ (∇2c̃− γρ̄∇2(s̃+ g̃))

]
+ D̂∆(g̃) + s̃A− g̃B

0

 ,
where

A = f2(ρ̄) + f ′
2(ρ̄)s̄− f ′

1(ρ̄)ḡ,

B = f1(ρ̄)− f ′
2(ρ̄)s̄+ f ′

1(ρ̄)ḡ.

We then perform a Fourier series expansion of s̃, g̃, and c̃,

s̃ =
∑
k̂

Sk̂(t)e
ik̂x, g̃ =

∑
k̂

Gk̂(t)e
ik̂x, and c̃ =

∑
k̂

Ck̂(t)e
ik̂x,

as well as taking the Fourier transform of Qs and Qg denoted as Q̂s and Q̂g.

This gives

∂

∂t

Sk̂

Gk̂

Ck̂

 =


−s̄k̂2

(
Q̂s + γD̂

)
− k̂2D̂ − A −s̄k̂2

(
Q̂s + γρ̄D̂

)
+B D̂s̄k̂2

−ḡk̂2
(
Q̂g + γD̂

)
+ A −ḡk̂2

(
Q̂g + γρ̄D̂

)
− k̂2D̂ −B D̂ḡk̂2

0 0 0


Sk̂

Gk̂

Ck̂

 .
We find the eigenvalues of the coefficient matrix as

λ1 = −D̂k̂2−f1(ρ̄)−f2(ρ̄), λ2 = −D̂k̂2−ḡk̂2(D̂ρ̄γ+Q̂g)−s̄k̂2(D̂ρ̄γ+Q̂s), and λ3 = 0.

To determine the conditions under which the homogeneous steady state is

unstable to small perturbations and thus likely to lead to aggregations, we

need to find a k̂ such that λ1, λ2 or λ3 is greater than 0. As f1(ρ), f2(ρ) are
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positive functions, λ1 < 0 ∀ k̂ and λ3 = 0. For λ2, we need,

−D̂k̂2 − ḡk̂2(D̂ρ̄γ + Q̂g)− s̄k̂2(D̂ρ̄γ + Q̂s) > 0,

−ḡ(D̂ρ̄γ + Q̂g)− s̄(D̂ρ̄γ + Q̂s) > D̂.

Then by rewriting s̄ and ḡ in terms of the global gregarious mass fraction

(4.11) and the total density ρ̄ [98],

ḡ = ϕgρ̄, and s̄ = (1− ϕg)ρ̄.

This gives

−ϕgρ̄(D̂ρ̄γ + Q̂g)− (1− ϕg)ρ̄(D̂ρ̄γ + Q̂s) > D̂,

where by taking −ρ̄ as a common factor gives,

−ρ̄
[
ϕg(D̂ρ̄γ + Q̂g) + (1− ϕg)(D̂ρ̄γ + Q̂s)

]
> D̂.

Next, we re-arrange to make ϕg the object of the inequality to give

ϕg > ϕ̄g =

D̂
ρ̄
+ D̂ρ̄γ + Q̂s

Q̂s − Q̂g

. (4.12)

From this, it can be seen that as ρ̄ increases above (or decreases below)
√

1
γ

the gregarious fraction required for group formation increases. This effect is

diminished as the amount of available food increases.

For our specific functions Qg = Rge
− |x|

rg − Age
−|x| and Qs = Rse

− |x|
rs , we

begin by taking the one dimensional Fourier transforms of Qs and Qg using

the following definition,

f̂(k̂) =

∫
Rn

f(x)e−ik̂·x dx,
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to get

Q̂g =
2Rgrg

1 + r2g k̂
2
− 2Ag

1 + k̂2
, Q̂s =

2Rsrs

1 + r2s k̂
2
.

As Qs and −Qg have a maximum value at k̂ = 0, we let k̂ = 0 and substitute

into (4.12), which gives,

ϕg > ϕ̄g =

D̂
ρ̄
+ D̂ρ̄γ + 2Rsrs

2Ag − 2Rgrg + 2Rsrs
. (4.13)

Interestingly, (4.12) suggests that there is also an upper limit on locust

density for group formation. This is likely to correspond with an environment

so thick with locusts that there is insufficient room for aggregations to form.

We can find this density by taking (4.13) and substituting ϕ̄g = 1 and solving

for ρ̄ as

ρ̄ =
(Ag −Rgrg) +

√
(Ag −Rgrg)2 − (De−c̄)2γ

De−c̄γ
≈ 2

3
||g||∞,

where ||g||∞ is maximum density for the large mass limit given in (4.2).

Finally, we calculate if it is possible for a particular homogeneous density

of locusts to become unstable (and thus form a gregarious aggregation). By

calculating the homogeneous steady state gregarious mass fraction as

ϕg =
f2(ρ̄)

f1(ρ̄) + f2(ρ̄)
,

and combining with (4.13) we obtain an implicit condition for group forma-

tion as
f2(ρ̄)

f1(ρ̄) + f2(ρ̄)
>

De−c̄

ρ̄
+De−c̄ρ̄γ + 2Rsrs

2Ag − 2Rgrg + 2Rsrs
. (4.14)

In (4.14), if the values on the left are not greater than those on the right then

it is not possible for a great enough fraction of locusts to become gregarious

and for instabilities to occur. As the value of the right hand side decreases
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as the amount of food increases, we can deduce that the presence of food

lowers the required density for group formation.

4.1.3 Time until group formation with homogeneous

locust densities

Continuing with homogeneous locust densities and a constant c, we also

calculate the time until group formation. By assuming that s and g are

homogeneous we can ignore the spatial components of (2.26a) and (2.26b).

We again denote the combined homogeneous locust density as ρ̄, however

now ρ̄ = s(t) + g(t). Finally, assuming that g(0) = 0, we find that the

homogeneous density of gregarious locusts as a function of time is given by

g(t) =
ρ̄f2(ρ̄)

f1(ρ̄) + f2(ρ̄)

(
1− e−[f1(ρ̄)+f2(ρ̄)]t

)
,

which we then solve for t∗ such that g(t∗) = ϕ̄gρ̄, where ϕ̄g is given by (4.12).

This gives an estimation for time of group formation (i.e. the time required

for the homogeneous densities to become unstable) as

t∗ =
− ln

(
1− ϕ̄g(f1(ρ̄)+f2(ρ̄))

f2(ρ̄)

)
f1(ρ̄) + f2(ρ̄)

. (4.15)

Thus, as increasing food decreases the gregarious mass fraction (ϕ̄g) required

for group formation it follows that it also decreases the time required for

group formation.

4.1.4 Conservation properties

Another aspect of the model we investigate is what properties of locust den-

sities the model conserves. By construction, our model preserves the mass

of locusts, i.e. (2.1) is constant in time. In addition, using a similar method



Chapter 4. The effect of food 60

to [97] we show that in Rn and with a constant food source, i.e. c(x, t) is

constant in space and time, the center of mass is also preserved. We assume

that our domain is Ω′ = Rn with ρ(x, t) → 0 at infinity and a bounded mass

M . Finally, Qs and Qg are symmetric. To begin, we add (2.26a) and (2.26b),

and let D̂ = De−c, to obtain,

∂(g + s)

∂t
+∇ · (gvg + svs)− D̂∇ · [∇(g + s)] = 0,

where

vg = −∇(Qg ∗ ρ) + D̂ (∇c− γρ∇ρ) ,

and

vs = −∇(Qs ∗ ρ) + D̂ (∇c− γρ∇ρ) .

Then rewriting the equations in terms of the local gregarious mass fraction,

ψg(x, t) =
g(x, t)

ρ(x, t)
, (4.16)

we obtain

∂ρ

∂t
+∇ · ((vg(1− ψg) + vsψg)ρ)− D̂∇ · [∇ρ] = 0.

Next, we expand vg and vs to get

∂ρ

∂t
= −∇·

[
−∇(Qs ∗ ρ)ρ+∇(Qs ∗ ρ)ψgρ−∇(Qg ∗ ρ)ψgρ− γD̂ρ2∇ρ− D̂∇ρ

]
.

We now look at the behaviour of the center of mass. For notational simplicity

we let

⟨a, b⟩ =
∫
Ω′
ab dx.

Then, (2.1) can be written as

M = ⟨ρ, 1⟩,
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and the center of mass, C, of ρ, can be found as

C =
1

M
⟨ρ,x⟩.

To see if the center of mass is conserved, we evaluate

M
∂C

∂t
=

〈
∂ρ

∂t
,x

〉
= ⟨−∇ · [−∇(Qs ∗ ρ)ρ+∇(Qs ∗ ρ)ψgρ−∇(Qg ∗ ρ)ψgρ

−γD̂ρ2∇ρ− D̂∇ρ
]
,x
〉

= ⟨−∇(Qs ∗ ρ)ρ+∇(Qs ∗ ρ)ψgρ−∇(Qg ∗ ρ)ψgρ

−γD̂ρ2∇ρ− D̂∇ρ, 1
〉

= ⟨−∇(Qs ∗ ρ), ρ⟩+ ⟨∇(Qs ∗ ρ), ψgρ⟩ − ⟨∇(Qg ∗ ρ), ψgρ⟩

−
〈
γD̂ρ2∇ρ, 1

〉
−
〈
D̂∇ρ, 1

〉
.

Starting with the diffusion terms, we get

−
〈
D̂∇ρ, 1

〉
−
〈
γD̂ρ2∇ρ, 1

〉
= −

〈
D̂∇ρ, 1

〉
−

〈
γD̂

3
∇ρ3, 1

〉

= −

〈
γD̂

3
ρ3, 0

〉
−
〈
D̂ρ, 0

〉
= 0.

This gives

M
∂C

∂t
= ⟨−∇(Qs ∗ ρ), ρ⟩+ ⟨∇(Qs ∗ ρ), ψgρ⟩ − ⟨∇(Qg ∗ ρ), ψgρ⟩ .

Then using integration by parts, we find

M
∂C

∂t
= ⟨Qs ∗ ρ,∇(ρ)⟩ − ⟨Qs ∗ ρ,∇(ψgρ)⟩+ ⟨Qg ∗ ρ,∇(ψgρ)⟩ . (4.17)
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However, using properties of convolutions, specifically ∇(Qs ∗ ρ) = ∇(Qs) ∗
ρ = Qs ∗ ∇(ρ) and the assumption Qs and Qg are symmetric, we find

M
∂C

∂t
= −⟨∇(Qs ∗ ρ), ρ⟩+ ⟨∇(Qs ∗ ρ), ψgρ⟩ − ⟨∇(Qg ∗ ρ), ψgρ⟩

= −⟨(∇Qs) ∗ ρ), ρ⟩+ ⟨(∇Qs) ∗ ρ, ψgρ⟩ − ⟨(∇Qg) ∗ ρ, ψgρ⟩

= −⟨ρ, (∇Qs) ∗ ρ⟩+ ⟨ρ, (∇Qs) ∗ ψgρ⟩ − ⟨ρ, (∇Qg) ∗ ψgρ⟩

= −⟨ρ,Qs ∗ ∇(ρ)⟩+ ⟨ρ,Qs ∗ ∇(ψgρ)⟩ − ⟨ρ,Qg ∗ ∇(ψgρ)⟩

= −⟨Qs ∗ ρ,∇(ρ)⟩+ ⟨Qs ∗ ρ,∇(ψgρ)⟩ − ⟨Qg ∗ ρ,∇(ψgρ)⟩ . (4.18)

Summing (4.17) and (4.18) we get

2M
∂C

∂t
= ⟨Qs ∗ ρ,∇(ρ)⟩ − ⟨Qs ∗ ρ,∇(ψgρ)⟩+ ⟨Qg ∗ ρ,∇(ψgρ)⟩

− ⟨Qs ∗ ρ,∇(ρ)⟩+ ⟨Qs ∗ ρ,∇(ψgρ)⟩ − ⟨Qg ∗ ρ,∇(ψgρ)⟩ .

Thus,
∂C

∂t
= 0.

From this we can conclude that prior to group formation the locust’s

center of mass is only moved due to non-uniformities in the food source.

4.2 Numerical results

We now investigate both the effect of food on locust group formation and

the effect of gregarisation on locust foraging efficiency in one dimension. The

numerical method used can be found in Section 3.1

4.2.1 Parameter selection and initial conditions

The bulk of the parameters, Rs, rs, Rg, rg, Ag, k, and δ, have been adapted

from [98] to our non-dimensionalised system of equations. We explore two
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parameter sets that we term symmetric and asymmetric based on the time

frame of gregarisation vs solitarisation. In the symmetric parameter set (δ =

1, k = 0.681), gregarisation and solitarisation take the same amount of time

and the density of locusts for half the maximal transition rate is lower for

solitarisation. This is the default parameter set from Topaz et. al. [98] with

an adjusted k1 term that is calculated using (4.14) and the upper range for

the onset of collective behaviour as ≈ 65 locusts/m2 [10, 98]. This behaviour

is characteristic of the Desert locust (S gregaria) [71].

In the asymmetric parameter set (δ = 1.778, k = 0.1), solitarisation takes

an order of magnitude longer than gregarisation, and the density of locusts

for half the maximal transition rate is lower for solitarisation. This is the

alternative set from Topaz et. al. [98]. The Australia plague locust (Chor-

toicetes terminifera) potentially follows this behaviour taking as little as 6

hours to gregarise but up to 72 hours to solitarise [28, 29]. The complete

selection of parameters can be seen in Table 4.1.

At the densities we are investigating we assume that the majority of

movement is due to locust-locust interactions rather than random motion.

So we set our dimensional linear diffusion term to be of the order 10−2, giving

our non-dimensional linear diffusion as D = 2.041 for both symmetric and

asymmetric parametrisation. Next, we estimate the maximum locust density

as ≈ 1000 locusts/m2 [17] and adapt this to our one dimensional simulation

as ||g||∞ ≈ 10
√
10 locusts/m. Then using (4.2) we find γ = 431.87 for the

symmetric parameters and γ = 294.44 for the asymmetric parameters.

To estimate κ we begin with (2.26c) and set the nondimensionalised den-

sity of locusts to 1 (ρ = 1) (and ρ = 0.5 for the asymmetric parameters).

We then assume that the locusts consume approximately 70% of the food

over the course of the simulation (i.e., c transitions from c = 1 to c = 0.30).

Solving for κ we find κ ≈ 0.09 (and κ ≈ 0.18 for the asymmetric parameters).

Our spatial domain is the interval x = [0, L], where L = 3/0.14 (this

comes from non dimensionalising the domain used by [98]), with periodic
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boundary conditions (i.e., s(0, t) = s(L, t)). Our time interval is 12.5 units

of time (in dimensional terms this is a 3m domain for a simulated 50 hours).

The initial locusts densities are given by

s(x, 0) =
ρamb

16.6
(16.6 + µ) and g(x, 0) = 0, (4.19)

where ρamb is a ambient locust density and µ is some normally distributed

noise, µ ∼ N (0, 1). To ensure that simulations are comparable, we set-up

three locust initial conditions and rescale them for each given ambient locust

density. Finally, the initial condition for food is given by a smoothed step

function of the form,

c(x, 0) =
FM

2ζ

[
tanh

(
α

[
x−

(
x0 −

ζ

2

)])
− tanh

(
α

[
x−

(
x0 +

ζ

2

)])]
,

(4.20)

with α = 7, x0 = L/2, FM being the food mass and ζ being the initial food

footprint. We also introduce ω = 100ζ/L which expresses the size of the food

footprint as a percentage of the domain. Examples of the food distributions

generated can be seen in Figure 4.4.

4.2.2 The effect of food on group formation

To investigate the effect that food has on locust group formation, we run

a series of numerical simulations in which the total number of locusts and

the size of food footprint are varied, while the total mass of food remains

constant. The food footprint ranges from covering 2.5% of the domain to

50% of the domain (ω = 2.5% to ω = 50%). For the symmetric parameters

four food masses are tested, FM = 1.5, 2, 2.5 and 3, and for the asymmetric

variables two food masses are tested, FM = 1.5 and 3. As a control, we

also perform simulations with both no food present and a homogeneous food

source, represented by ω = 0% and ω = 100% respectively, for each ambient

locust density.
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Figure 4.4: Example food distributions. Example food distributions
generated by (4.20) with FM = 1.5, α = 7, and ω = 10%, 25%, 35%, and
50% on the domain x = [0, 20].

We vary the ambient locust density ranging from ρamb = 0.8 to ρamb =

1.4 for the symmetric parameters. This range is selected based on (4.14)

so that in the absence of food, group formation would not occur. In each

simulation, the solitarious and gregarious populations very quickly tend to

an almost smooth and symmetric distribution around the food, however a

small quantity of noise persists across the population and this breaks the

symmetry leading to group formation. As, in certain cases, the initial noise

has an effect on whether a group will form, we run three simulations for

each combination of ρamb, ω, and FM with varied initial noise and take the

maximum peak density across the three simulations.

For the asymmetric variables we vary ρamb from ρamb = 0.3 to ρamb = 0.55,

to test the effect food has on the time frame of group formation. From (4.14)
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in the absence of food there should be group formation in the upper half of

this density range. However (4.15), suggests that this only occurs outside or

right at the end of our simulated time frame. We ran a single simulations for

each combination of ρamb, ω, and FM .

The results for the symmetric parameter experiments are displayed in

Figure 4.5. The plots show the peak gregarious density of the three simula-

tions for each of the varying food footprint sizes and ambient locust densities.

In the blue regions there was no group formation, whilst in the green regions

indicate successful group formation. It can be seen in the plots that as the

food mass is increased the minimum required locust density for group forma-

tion decreases. This effect is more pronounced within an optimal food width

and this optimal width increases as the amount of food increases.

The results for the asymmetric parameter experiments are displayed in

Figure 4.6. Again, green indicates successful group formation and blue in-

dicates no group formation. It can be seen in these plots that with no food

present a group failed to form within the simulated time. From this we can

infer that food also decreases the required time for group formation, again

there is an optimal food width for this effect.

We can delve deeper into the results by looking at a representative sample

of simulations in Figure 4.7. In these simulations ρamb = 1.2, κ = 0.09,

and FM = 1.5, with food footprints ω = 7.5%, 10%, and 12.5% as well as

with no food present. In the simulations in which food is present, prior to

group formation gregarious locusts aggregate at the center of the food. If

the food source is too narrow (ω = 7.5%, t = 3) there is an attempt at

group formation but the gregarious mass is too small and the food source

has not been sufficiently depleted so a large portion remains within the food

source, thus the group does not persist. If the food is too wide (ω = 12.5%)

the gregarious locusts simply cluster in the center of the food and do not

attempt group formation. However, if the food width is optimal (ω = 10%)

there is a successful group formed, this is seen as clump or aggregation of
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Figure 4.5: Maximum gregarious locust density for the symmetric
gregarisation parameters with varying food footprint sizes and ini-
tial ambient locust densities. For the simulations, x = [0, 3/0.14] with
periodic boundary conditions and t = [0, 12.5]. The initial condition for lo-
cust densities is given by (4.19) and food initial conditions are given by (4.20).
Ambient locust density ranges from ρamb = 0.8 to ρamb = 1.4, food footprint
ranges from ω = 0% to ω = 50%, the food mass FM = 1.5, 2, 2.5 and 3,
and the consumption rate κ = 0.09. The plots show the maximum peak
gregarious density for the varying food footprint sizes and ambient locust
densities, in the blue regions there was no group formation and in the green
regions there was successful group formation. From this we can deduce that
food lowers the required locust density for group formation and this is more
pronounced within an optimal food width.

gregarious locusts in the final plot.
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Figure 4.6: Maximum gregarious locust density for the asymmetric
gregarisation parameters with varying food footprint sizes and ini-
tial ambient locust densities. For the simulations, x = [0, 3/0.14] with
periodic boundary conditions and t = [0, 12.5]. The initial condition for
locust densities is given by (4.19) and food initial conditions are given by
(4.20). Ambient locust density ranges from ρamb = 0.3 to ρamb = 0.55, food
footprint ranges from ω = 0% to ω = 50%, the food mass FM = 1.5 and 3,
and the consumption rate κ = 0.18. The plots show the maximum peak
gregarious density for the varying food footprint sizes and ambient locust
densities. In the blue regions there was no group formation and in the green
regions there was successful group formation. From this we can deduce that
food lowers the required time forgroup formation and again this is more pro-
nounced within an optimal food width.

4.2.3 The effect of gregarisation on foraging efficiency

It is also possible to investigate the effect of gregarisation on foraging effi-

ciency. Using the technique outlined in Section 2.2, we select a range of food

footprints, ω%, and two food masses, FM , for a fixed ambient density of lo-

custs, ρamb = 0.95, from the previous simulations. We record the gregarious

mass fraction and instantaneous relative advantage as functions of time and

plot these against each other in Figure 4.8. By looking at the instantaneous

relative advantage versus the global gregarious mass fraction prior to group

formation in Figure 4.8, it can be seen that as the gregarious mass fraction

increases so too does the foraging advantage of being gregarious. Thus, as
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Figure 4.7: A selection of plots showing the effect of food distribu-
tion on gregarisation and locust group formation with symmetric
parameters. In these simulations ρamb = 1.2, κ = 0.09, and FM = 1.5
with ω = 7.5%, 10%, and 12.5%, as well as with no food present (labelled
ω = 0%). In the plots, blue is solitarious, red is gregarious, and green is
food. If the food source is too narrow (ω = 7.5%, t = 3) there is an attempt
at group formation but the gregarious mass is too small and a large portion
remains within the food source, thus the group does not persist. If the food
is too wide (ω = 12.5%) the gregarious locusts simply cluster in the center of
the food and do not attempt group formation. Finally, if the food width is
optimal (ω = 10%) there is a successful group formed, this is seen as clump
or aggregation of gregarious locusts in the final plot.

a greater proportion of locusts become gregarised it is more advantageous

to be gregarious. This effect is increased by the mass of food present but is

diminished by the size of the food footprint to the point where no advantage

is conferred when the food source is homogeneous. This effect is visualised

in Figure 4.7, as prior to group formation gregarious locusts aggregate in the

center of the food mass and displace their solitarious counterparts.
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Figure 4.8: Instantaneous relative advantage of gregarious locusts
vs gregarious mass fraction at various food footprints and food
masses. In these simulations ρamb = 0.95 and κ = 0.09, with the symmetric
parameter set. The homogeneous food source is labelled ω = 100%. It can be
seen that as the gregarious mass fraction increases so too does the foraging
advantage of being gregarious, this effect is increased by the mass of food
present but is diminished by the size of the food footprint.

4.3 Chapter summary

Analytical investigations of our model shows that a spatially uniform and

temporally constant food source has a variety of effects on locust behaviour.

Firstly, by considering a purely gregarious population we found that the

maximum locust density is affected by the amount of food present, in that

increasing food leads to increased maximum density. Then, by performing

a linear stability analysis we found the gregarious mass fraction required for

group formation depends on both the ambient locust density and the amount

of food present, with increasing food decreasing the required gregarious mass

fraction. Using this relationship we then found that the presence of food

lowers both the required time and density of locusts for group formation, and
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interestingly that our model also has a theoretical maximum locust density

for group formation. Finally, we have also shown that the center of mass of

locusts is not dependent on the locust interactions we explored, so prior to

group formation the movement of the center of mass is driven by food. In

simulations this was seen when prior to group formation gregarious locusts

aggregated at the center of the food source.

Then using numerical simulation techniques we confirmed in our model

that similar to previous studies highly clumped food sources lead to a greater

likelihood of gregarisation [31]. However, we found that there may exist an

optimal width for these food clumps for group formation. Similar to our

analytic investigations, food was shown to lower the required density for

group formation via the symmetric parameters and the required time via the

asymmetric parameters. We also found that the optimal width is dependent

on the amount of food present relative to the locust population. This effect

appears to be brought about by the depletion of the food source. If the food

source is not sufficiently depleted, then a gregarious group will fail to form

because a portion of the gregarious population will remain on the food. In

addition, by looking at the relative foraging advantage of gregarious locusts

in our simulations we found that as the gregarious mass fraction increases so

too does the foraging advantage of being gregarious. This effect is increased

by the mass of food present but is diminished by the size of the food footprint

to the point where no advantage is offered with a homogeneous food source.

In the next chapter (Chapter 5) we further investigate this relationship

between density dependant phase polyphenism and foraging.
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Variable Description Symmetric Value Asymmetric Value Source

k Ratio of
density of
maximal
phase tran-
sition rates

0.681 0.1 (4.14)
[16] [98]
[71] [29]

δ Ratio of
maximal
phase tran-
sition rates

1 1.778 [98] [71]
[29]

D Linear dif-
fusion coef-
ficient

2.041 2.041

γ Non-linear
diffusion
coefficient

431.87 294.44 (4.2)
[17]

Rs Strength of
non-local
solitarious
repulsion

1063.5 878.1 [98]

rs Range of
non-local
solitarious
repulsion

1 1 [98][16]

Rg Strength of
non-local
gregarious
repulsion

940.5 775.6 [98]

rg Range of
non-local
gregarious
repulsion

0.2857 0.2857 [98][16]

Ag Strength of
non-local
gregarious
attraction

2008.7 1658.6 [98]

κ Food con-
sumption
rate

0.09 0.18 (2.26c)

Table 4.1: Dimensionless parameters used in numerical simulations
for both symmetric and asymmetric gregarisation-solitarisation.
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Foraging in increasingly

complex environments

The mechanisms of gregarisation are becoming increasingly understood [6,

87], leaving the question of what advantages gregarisation offers [4]. In in-

sects, a combination of modelling and experiments has shown that the gre-

garious state offers greater predator avoidance on the individual level [84].

In insects with aposematic colouration, the group display has a greater ef-

fect of predator deterrence [40]. In addition, the resulting aggregations may

act as a means of countering disease outbreaks by limiting disease trans-

mission between aggregations [101]. Interestingly, density dependant phase

polyphenism evolved independently in the various species of locusts [71] and

is not unique to locusts; for example, the African army worm exhibits similar

behaviour [49, 55, 85].

This raises the question, if being gregarious offers such advantages why

transition back to solitarious [4]? One possibility is that at lower densities it

may be more advantageous to adopt a solitarious behaviour in order to avoid

predators. This reasoning leads to the predator percolation hypothesis sug-

gesting phase polyphenism and the resulting gregarious aggregations evolved

as a means of disrupting the connectivity of predator food-patch networks

73
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[1]. However, the predator percolation hypothesis fails to account for the

collective motion phenomenon [4]. Another hypothesis which also accounts

for the collective motion suggests that the behavioural change seen in density

dependent phase polyphenism minimises the risk associated with cannibal-

istic interactions [48]. In that, at low densities it is better to avoid other

individuals and at high densities it is better to simultaneously chase fleeing

individuals while fleeing from pursuing individuals [48]. An older hypothesis

links phase polyphenism to foraging by postulating that phase polyphenism

might have arisen as an offensive trait due to the interactions between in-

sects and plant defence mechanisms [74]. At low densities foragers avoid each

other in order to not trigger a plants defences, however once a high enough

density is reached to trigger these defences the strategy of overwhelming the

plant via a mass attack (i.e. an aggregation) is adopted.

The relationship between foraging and gregarisation has been noted as

far back as 1957 by Ellis and Ashall. They found that dense but patchy veg-

etation promoted the aggregation of juvenile locusts and that sparse uniform

plant cover promoted their dispersal [36]. More recent investigations into this

behaviour have shown that changes in resource distributions at both small

and large spatial scales have an effect on locust gregarisation [25, 31, 32, 33].

With food and gregarisation being intrinsically linked, Lihoreau et al. used

an agent based model to investigate how social interactions affect foraging in

increasingly patchy environments, finding that social groups offer an advan-

tage in this context [62]. This foraging advantage was also partly explored

using a continuum model in one dimension in Chapter 4. Here we aim to

use our model to further explore the interactions between gregarisation and

foraging in two dimensions. In Chapter 4 we used a smoothed step function

to represent the food distribution with the percentage of the domain covered

representing patchiness. In this chapter we look at more complex food distri-

butions and determine a way of measuring the heterogeneity (or patchiness)

of the food.
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The two main tools for measuring the spatial heterogeneity of an envi-

ronment are; fractal dimension, based on the work of Mandelbrot [66], and

entropy, borrowed from information theory [73, 83]. While there are in-

consistencies with the use of term entropy and the original thermodynamic

interpretation, it does serve as a measure of spatial heterogeneity [54]. In ad-

dition, there exists an equivalence relationship between normalised entropy

and normalised fractal dimension [23]. As we only compare between gener-

ated food sources we therefore use normalised entropy to compare the spatial

heterogeneity of our generated food distributions.

In this chapter we first explore a two dimensional simulation in which gre-

garisation occurs as a result of local organism density, and how this affects

foraging in a highly heterogeneous environment. We then fix the proportion

of the population that is gregarious and investigate the steady state foraging

advantage in relation to food heterogeneity. Finally, we perform a parameter

sensitivity analysis to see which model parameters have the greatest effect on

foraging efficiency. Across the three experiments we find that prior to gre-

garious aggregations, in increasingly heterogeneous food environments there

is a foraging advantage to being gregarious. Over the course of this chapter,

we will assume that the movement is on a much shorter time-frame than

consumption and thus work with static non-depleting food sources.

The chapter is organised as follows. In Section 5.1 we describe the sim-

plification of the social potential presented in Section 2.1.2 and the method

used to generate food distributions. Then, in Section 5.2 we give the results

of three numerical experiments relating foraging and gregarisation. Finally,

in Section 5.3 we summarise the key findings and offer avenues of future

exploration.

This chapter has been accepted for publication as Georgiou, F., Buhl,

J., Green, J.E.F., Lamichhane, B., and Thamwattana, N. (2022). Mod-

elling foraging competition between solitarious and gregarious organisms in

increasingly heterogeneous environments. Journal of Insect Physiology.
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5.1 Model and methods

In this section we begin by looking at an overview of the foraging PDE

model. Then, in Section 5.1.2, we look at generating, and measuring the

heterogeneity of food distributions.

5.1.1 PDE foraging model

In our previous study (Chapters 2 and 4) we developed a PDE model of locust

foraging that divides up locust behaviour into local and non-local components

of movement and gregarsation dynamics (equations (2.26a), (2.26b), and

(2.26c)). In this chapter, we use the same basic modelling framework to

investigate the behaviour of an idealised density dependent phase polyphenic

organism. The only change being that we adopt simpler assumptions for the

gregarious social potential. Here, we assume that organisms experience a

non-local (i.e. longer-ranged) interaction with organisms of either type and

that the magnitude of that interaction is equal but opposite for solitarious

and gregarious organisms (i.e. gregarious organisms have only long range

attraction and solitarious organisms have only a long range repulsion). We

obtain the following expressions for the social potentials

Qg = −Ae−
|x|
r = −Qs, (5.1)

where A is the strength of attraction (or in the case of solitarious, repulsion)

and r is the sensing distance. In addition, we use the following scalings

t =
1

T
t̄, x = rx̄, (ρ, s, g) = k1(ρ̄, s̄, ḡ), and c = c0c̄.
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Then, dropping the bar notation, our model can be written as the following

system of dimensionless equations:

∂g

∂t
+∇ · (gvg)−D∗∇ ·

[
e−c∇g

]
= −f ∗

1 (ρ)g + f ∗
2 (ρ)s, (5.2a)

∂s

∂t
+∇ · (svs)−D∗∇ ·

[
e−c∇s

]
= f ∗

1 (ρ)g − f ∗
2 (ρ)s, (5.2b)

∂c

∂t
= −κ∗c(x, t)ρ(x, t), (5.2c)

where

vg = −∇Q∗
g∗ρ+D∗e−c (∇c− γ∗ρ∇ρ) ,vs = −∇Q∗

s∗ρ+D∗e−c (∇c− γ∗ρ∇ρ) ,

and

Q∗
g = −A∗e−|x| − A∗

g = −Qs, f
∗
1 (ρ) =

δ∗1
1 + ρ2

, f ∗
2 (ρ) =

δ∗2 (ρk)
2

1 + (ρk)2
,

where k = k1
k2

is the ratio of densities at which maximal phase transition

rates occur. Note that we have also introduced the following dimensionless

parameters,

D∗ =
D

Ta2g
, δ∗1 =

δ1
T
, δ∗2 =

δ2
T
, γ∗ = k21γ, κ

∗ =
κk1
T
, A∗ =

Ak1
Tr

.

In addition, we use the parameter T to rescale the dimensionless parameters

for the parameter sensitivity analysis. Finally, for notational simplicity we

drop the ·∗ notation in the rest of this chapter.

5.1.2 Generating food distributions

In order to create food distributions of increasing spatial heterogeneity that

are continuous at the spatial scale under consideration, we use the following

method. We begin by creating a low resolution matrix of normally distributed
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noise with mean 0 and variance 1 (in the case of these simulations, a 5 ×
5 matrix). We then append the first row and first column to the end of

the matrix to make it periodic. Using MATLAB’s natural interpolation we

upscale our noise matrix to the simulation resolution. We denote the up-

scaled noise matrix, N . Finally, we generate increasingly heterogeneous food

distributions, denoted Fα (where α ∈ [0, 1] is a parameter), according to the

formula,

Fα =
1 + α N

|N |∞∣∣∣1 + N
|N |∞

∣∣∣
∞

, α = [0, 1], (5.3)

where | · |∞ is the infinity norm, i.e. |N |∞ is the largest absolute value in the

matrix N .

In order to calculate the entropy, E, of a food distribution and thus

measure its spatial heterogeneity, we divide up the interval of possible values

for food density, c ∈ [0, 1], into n = 256 bins (this selection of n comes from

image processing) [46]. We then calculate the number of grid squares in

our generated distribution in each bin, and divide this by the total number

of squares to obtain the probability of a square being in a particular bin,

labelled Pi. We then use the definition of Shannon entropy [83] given by

E = −
n∑

i=1

Pi log2 Pi,

to calculate the entropy of a food distribution. We then normalise this en-

tropy by the maximum entropy obtained for a particular noise matrix N -

i.e., if we label the entropy of a particular food distribution, Fα, as Eα, we

can then calculate the normalised entropy, Êα, as

Êα =
Eα

max
α∈[0,1]

(Eα)
,

where max
α∈[0,1]

(Eα) gives the maximum entropy across all α = [0, 1].



Chapter 5. Heterogenous environments 79

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.1: Relationship between α and normalised entropy. Rela-
tionship between α and normalised entropy, Êα, for 10 different random food
distributions with each coloured line representing a different food distribu-
tion. It can be seen that the method presented in Section 5.1.2 results in
monotonically increasing Êα with increasing α.

We investigate the relationship between α and the entropy of the initial

food distribution by calculating Fα for different values of α using ten different

noise matrices, N . As shown in Figure 5.1, the entropy, Êα, (and thus

spatial heterogeneity) increases monotonically with increasing α, and almost

independent of the particular matrix N used. We then selected at random a

single noise matrix for use in this chapter; two examples of a generated food

distribution can be seen in Figure 5.2.
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Figure 5.2: Two example food distributions. The food distributions are
made using the method presented in Section 5.1.2. The left food distribution
has a low α value and thus a low spatial heterogeneity. The right food
distribution has a high spatial heterogeneity.

5.2 Results

In order to simulate the system of equations in two dimensions we developed

a first order finite volume based numerical scheme for the spatial component

based on the work of Burger et.al. [19] with an adaptive Runge-Kutta scheme

for the time component using the work of Horsea and Shampine [52]. This

combination of methods allows us to solve the equations numerically and

obtain a close approximation to the analytic solutions without needing to

exactly solve the governing equations. For the derivation see Chapter 3 and

for the MATLAB implementation see Appendix A.2.
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5.2.1 Parameter selection and initial conditions

Over the course of the numerical experiments we test a wide variety of pa-

rameter combinations, with the full selection of values given in Table 5.1. For

our initial single simulation we select parameters such that organism move-

ment and gregarisation occur on roughly the same timescales (the column

labelled ‘Single’). Then for our foraging advantage section simulations we

scale the parameters to reduce numerical complexity, the parameters used

are in the ‘Bulk’ column. Finally, for our parameter sensitivity analysis we

sample a wide range of parameters, given in the ‘PSA’ column. Over the

course of the simulations we use a static or non-depleting food source, i.e.

from (5.2c), κ = 0.

Variable Description Single Bulk PSA

k Ratio of densities at which max-
imal phase transition rates occur

1 N/A N/A

δ1 Rate of maximal phase transi-
tion for solitarious to gregarious

0.5 N/A N/A

δ2 Rate of maximal phase transi-
tion for gregarious to solitarious

0.5 N/A N/A

D Linear diffusion coefficient 0.2 0.01 [0, 1]
γ Non-linear diffusion coefficient 10 10 [0, 100]
A Strength of non-local interac-

tions
10 1 [0, 10]

ϕ Gregarious mass fraction, (2.2) Variable [0, 0.3] [0, 0.3]
α Heterogeneity of the food 1 [0, 1] [0, 1]
ρamb Ambient organism density 1 [0.1, 0.5] 0.1

Table 5.1: Dimensionless parameters used in numerical simulations.
The ‘Single’ values are used in the single example simulation with gregari-
sation. The ‘Bulk’ values are used in foraging advantage section. Finally,
‘PSA’ values are used in the parameter sensitivity section. Here [a, b] repre-
sents the closed interval from a to b.

All simulations have a spatial domain given by the two dimensional square

with sides 0 < x < 10 and 0 < y < 10 divided up into a 64 × 64 grid.
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In addition, we use periodic boundary conditions (i.e. if something leaves

through the left it returns through the right, and similarly with the top

and bottom boundaries). For the single simulation we run the simulation to

t = 10. For both the bulk simulations and the simulations in the parameter

sensitivity analysis we run each simulation to pseudo steady state of t = 100

at which there is be minimal movement of the organisms.

5.2.2 Simulation with gregarisation

To illustrate the behaviour of the model we run a two-dimensional simulation

with the density dependent gregarisation kinetics. We use an initial solitari-

ous density of ρamb ≈ 1 with parameter values given in the ‘single’ column of

Table 5.1. The results can be seen in Figure 5.3. In the first row, showing the

early time dynamics, we can see the solitarious organisms transition to gre-

garious in a fairly spatially homogeneous manner with small peaks forming

within the food peaks. Then, in the second row, we see the gregarious peaks

within the food peaks continue to grow as they attract the other gregarious

organisms before forming discrete aggregations which combine. It is at this

point that the aggregations reach a stationary steady state even if no food

is present, highlighting the need for collective movement (such as alignment

and marching) or a mechanism for dispersal. An animation of this simulation

is located in the supplementary material.

It is also possible to gain insight into the mechanism by which gregari-

ous organisms out-forage their solitarious counterparts. Prior to aggregation

both solitarious and gregarious organisms are drawn towards the food and

so congregate where the food density is highest. However, since solitarious

individuals are repelled from others they are pushed out of the peaks by the

gregarious individuals who can tolerate the crowding. This is highlighted in

Figure 5.4, by plotting the gregarious foraging advantage against the gregar-

ious mass fraction prior to aggregation formation. It can be seen that as the

gregarious mass fraction increases so too does the foraging advantage.
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5.2.3 Foraging advantage

In order to further explore the foraging advantage of gregarisation we switch

off the ability of individuals to change from solitarious to gregarious or vice

versa (i.e. f1(ρ) = f2(ρ) = 0), giving a fixed gregarious mass fraction. We

investigate the combined effect of population density, gregarious fraction and

food heterogeneity by running simulations with 0.1 < ρamb < 0.5, 0.03 < ϕ <

0.3, and 0 < α < 1. We simulate every combination of parameters to the

pseudo steady state, t = 100, and then measure the final foraging advantage,

B∞ (given by (2.29)). The results of these numerical experiments can be

seen in Figure 5.5.

In Figure 5.5 we can see that as α increases the foraging advantage of

being gregarious increases, this effect occurs to a lesser extent by increasing

gregarious mass fraction ϕ. However, this does not appear to be greatly

affected by increasing the mass of organisms (over the range of masses and

variable combination we tested). We can thus further explore the results

by looking at a larger range of ϕ for a given mass. The results of this are

seen in Figure 5.6. Once again we see that foraging advantage increases

both with increasing α and ϕ. We note that in every simulation in the

area labelled “aggregation region” a aggregation of gregarious individuals

formed similar to that seen in Figure 5.3. This highlights the need for a

mechanism of collective movement or dispersal as once the aggregation has

formed, depending on the heterogeneity of the landscape, it ends up being a

disadvantage to be gregarious.

5.2.4 Parameter sensitivity analysis

A key advantage of using the PDE model is the ability to perform a pa-

rameter sensitivity analysis. This method attempts to quantify the relative

importance of the input factors in determining the output of a model [79,

88]. In this case, the effect of the coefficients, D, γ, and A, gregarious mass



Chapter 5. Heterogenous environments 84

fraction, ϕ, and landscape heterogeneity, α, on the steady state gregarious

foraging advantage, B∞. This is done by writing the model output (in this

case B∞) as a function of the input (D,γ,A,ϕ, and α) in the form

B∞ = f(D, γ,A, ϕ, α).

We then measure the effect of the inputs on the variance of the output to find

the relative importance of the inputs. The relative importance is measured

as two distinct indices (known as Sobol indices) normalised by the output

variance. The first describes “first order” effects, labelled Si (where i refers

to the input parameter), or the effect of varying a single parameter (and

fixing all others) on the model output. The second index gives the “total”

effects, labelled ST i, or the interaction between all model parameters and

their effect on the output. A recent example of the use of a parameter

sensitivity analysis in the context locust hopper bands is given by Bernoff et

al. [13], and a detailed description of parameter sensitivity analyses given by

Saltelli et al. [80]. In addition a brief guide on parameter sensitivity analyses

as well as the use of T can be found in Appendix B.

To perform the parameter sensitivity analysis over the range of values

given in the ‘PSA’ column of Table 5.1, we use a Sobol quasirandom se-

quence and Radial sampling to sample the parameter space [81]. In total,

we create 8750 different combinations of D, γ, A, ϕ, and α. The results of

the parameter sensitivity analysis can be found in Figure 5.7. It can be seen

that in relation to the first order effects, Si, the greatest effect on gregari-

ous foraging advantage is given by the strength of non-local interactions, A,

the gregarious mass fraction, ϕ, and the heterogeneity of the landscape, α.

However once we get into the total order effects, ST i, α has by far the most

influence on foraging advantage.

The effect of α on foraging advantage is perhaps best seen by looking at

the scatter plot of foraging advantage against α of all simulations, depicted

in Figure 5.8. Included in the plot is the red dot-dashed line at B = 1, and a
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quadratic line of best fit show as a yellow dashed line. We can see that as α

increases so too does foraging advantage almost regardless to the parameter

combinations used, this suggests that the foraging advantage is intrinsic to

the solitarious/gregarious behavioural dynamic. In the four outliers where

B < 1 an aggregation formed.

5.3 Chapter summary

In this chapter we have further explored our model and the concept of for-

aging advantage in two dimensions. We did this by developing a simple

algorithm to make food distributions of increasing heterogeneity and then

using these distributions to see the effect of gregarisation on foraging in in-

creasingly heterogeneous environments. Through a series of numerical exper-

iments, we have further found that prior to mass aggregations, in increasingly

heterogeneous food environments it is better to be gregarious than solitar-

ious. However, once an aggregation is fully formed this advantage can be

quickly lost, highlighting the need to evolve a migration/collective move-

ment mechanism for the gregarious phase to remain viable over time. In

addition, the advantage is also lost in homogeneous environments. Finally,

through the parameter sensitivity analysis, we have shown that the foraging

advantage is intrinsic to the solitarious/gregarious behavioural dynamic as it

occurs almost regardless of the parameters selected.

The question that now arises is ‘does this relationship occur in more

detailed models?’, we begin an exploration into this in Chapter 6 where we

modify our original model to include a component of hunger.
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Figure 5.3: Single simulation with α = 1 and organism kinetics. The
blue surface in the plots is solitarious organism density (initially s(x, 0) ≈ 1),
red is gregarious organism density (initially g(x, 0) = 0), and green repre-
sents food. We see the solitarious organisms transition to gregarious until a
critical ratio is reached after which the gregarious organisms form a massive
aggregation.
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Figure 5.4: Foraging advantage versus gregarious mass fraction from
2D simulation with gregarisation. It can be seen that as the gregarious
mass fraction increases so too does the foraging advantage.
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Figure 5.5: Gregarious foraging advantage for selected ambient den-
sities. For each ambient density the gregarious mass fraction, ϕ was varied
from ϕ = 0.03 to ϕ = 0.3 in 0.03 step increments. In addition, the hetero-
geneity of the food, α, was varied from α = 0 to α = 1 in 0.05 increments.
It can be seen that as α increases the foraging advantage of being gregarious
increases, this effect occurs to a lesser extent by increasing gregarious mass
fraction ϕ. However, this does not appear to be greatly affected by increasing
the mass of organisms.
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Figure 5.6: Gregarious foraging advantage for the gregarious mass
fraction range, ϕ = 0.03 to ϕ = 0.5. It can be seen that as α increases the
foraging advantage of being gregarious increases, this is further compounded
by increasing gregarious mass fraction ϕ.
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Figure 5.7: Results of the parameter sensitivity analysis. It can be
seen that in relation to the first order effects, Si, the greatest effect on gre-
garious foraging advantage is given by the strength of non-local interactions,
A, the gregarious mass fraction, ϕ, and the heterogeneity of the landscape, α.
However once we get into the total order effects, STi, α is by far the greater
determiner of foraging advantage.
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Figure 5.8: The effect of α on foraging advantage. Included in the
plot is the red dot-dashed line at B∞ = 1, and a quadratic line of best fit
show as a yellow dashed line. We can see that as α increases so too does
foraging advantage almost regardless of the other parameter values. In the
four outliers where B∞ < 1 an aggregation formed.



Chapter 6

Increasing model complexity

with hunger

Throughout this thesis we have explored a model of locust foraging that
includes non-local locust interactions, local locust and food interactions, and
gregarisation dynamics to better understand the interaction between foraging
and gregarisation. However, in order to keep the model computationally
tractable we have had to make a variety of simplifying assumptions, which
does impact the direct biological relevance. The assumptions are:

1. Locusts can be classified as either solitarious or gregarious.

2. Locusts only interact with food resources when they come into direct
contact with them.

3. Local interactions between locusts (both gregarious and solitarious) are
repulsive (i.e. they avoid close physical contact).

4. Solitarious locusts experience a non-local (i.e. longer-ranged) repulsion
from other locusts of either type.

5. Gregarious locusts experience a non-local long-range attraction and
short-range repulsion from other locusts, which is consistent with them
forming a well-spaced aggregation [15].

92
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6. The nature (attractive or repulsive) and strengths of all interactions
are constant in time.

Regarding assumption 6, we note that the nature of locusts movement is

dependent on many factors. These include weather conditions [100], internal

body temperature [65], time of day [94], and level of hunger [34, 72]. Each

of which may effect our results, and the last being perhaps the most fitting

to our study. The effect of hunger on locust movement can be considerable,

with a 1996 study by Raubenheimer and Gäde finding that food deprivation

can triple the amount of time spent moving by a locust [72]. With this in

mind, in this chapter we look at expanding our model by having our local

locust interactions depend on their levels of hunger, i.e. we alter our original

assumption 6 to be:

6. The nature (attractive or repulsive) and strengths of non-local interac-
tions are constant in time, and the strength of local interactions depend
on the hunger levels of individual locusts.

We begin by expanding our model to include a dimension of hunger and

introduce a new metric of foraging in Section 6.1. Then in Section 6.2 we

repeat the analysis of Section 4.1 with our modified model. Finally, we

perform a series of numerical experiments in Section 6.3 to investigate the

relationship between food, hunger, and gregarisation.

6.1 Model and methods

In earlier chapters, our model locusts are represented as a density of indi-

viduals (number per unit area) with dimensions of space, x, time, t. We

now introduce a dimension of hunger, n = [0, 1], where n = 0 is hungry and

n = 1 is completely satiated. Again, locusts are either solitarious, s(x, n, t),
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or gregarious g(x, n, t), with the total local density defined as

ρ(x, t) =

∫ 1

0

s(x, n, t) + g(x, n, t)dn.

For later convenience we will also define the total mass of locusts as

M =

∫
ρ(x, t) dx, (6.1)

and the global gregarious mass fraction as

ϕg(t) =

∫
g(x, n, t) dxdn

M
. (6.2)

We assume that the time-scale of gregarisation is shorter than the life

cycle of locusts, ignoring births and deaths and thus conserving the total

number of locusts. We allow for a transition from solitarious to gregarious

and vice-versa depending on the local population density. We also allow for

locusts to change their hunger levels. Hence, conservation laws give equations

of the form

∂g

∂t
+∇ · (Jglocal + Jgnon-local) +

∂

∂n
(gng) = K(s, g), (6.3a)

∂s

∂t
+∇ · (J slocal + J snon-local) +

∂

∂n
(sns) = −K(s, g), (6.3b)

where J (s,g)local is the flux due to local interactions, J (s,g)non-local is the flux

due to non-local interactions, n(s,g) are functions that describe the change

in locust hunger levels, and K(s, g) represents the transition between the

solitarious and gregarious states.

In addition to locust densities, we again include food resources in our

model and let c(x, t) denote the food density (mass of edible material per

unit area). We assume that locust food consumption is based on their contact

with food and their hunger levels and on the time-scale of group formation
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food production is negligible, giving

∂c

∂t
= −c(x, t)

∫ 1

0

ψ(n)(s(x, n, t) + g(s(x, n, t))dn, (6.4)

where ψ(n) is a function relating the locust’s hunger and food consumption

rate.

6.1.1 Local interactions

Similar to the model derived in Chapter 2 we derive the local interactions

as the limit of a lattice model, following the work of Painter and Sherratt

[70]. We begin here by considering solitarious locust movement on a two-

dimensional lattice one dimension of space and one of hunger with movement

restricted to the spatial dimension (we assume that local gregarious locust

behaviour is the same resulting in a similar derivation). Let sti,j be the

number of solitarious locusts at site i with hunger level nj at time t, and let

gti,j, and c
t
i be similarly defined. In addition let,

ρti =
N∑
j=1

sti,j + gti,j,

where N is the number of hunger levels, i.e. ρti is the total number of locusts

at spatial site i and time t regardless of hunger.

We assume that the transition probabilities for a locust at the (i, j)th site

depends on the food density at that site, the hunger of the locust, and the

relative population density between the current site and neighbouring sites.

If we let T ±
i,j be the probability at which locusts at site (i, j) move to the

right, +, and left, −, during a timestep, then our transition probabilities are

T ±
i,j = F (nj, ci)(α + β(τ(ρi)− τ(ρi±1))), (6.5)
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where F is a function of food density and hunger, τ is a function related to

the local locust density, and α and β are constants. Then the number of

individuals at site (i, j) at time t+∆t is given by

st+∆t
i,j = sti,j + T −

i+1,js
t
i+1,j + T +

i−1,js
t
i−1,j − (T −

i,j + T +
i,j )s

t
i,j. (6.6)

Substituting (6.5) into (6.6) gives

st+∆t
i,j =sti,j + F (nj, ci+1)(α + β(τ(ρi+1)− τ(ρi)))s

t
i+1,j

+ F (nj, ci−1)(α + β(τ(ρi−1)− τ(ρi)))s
t
i−1,j

− [F (nj, ci)(α + β(τ(ρi)− τ(ρi−1))) + F (nj, ci)(α + β(τ(ρi)− τ(ρi+1)))]s
t
i,j.

(6.7)

Which following the derivation in Section 2.1.1 gives our flux as

Jslocal = −D
[
∂

∂x

(
sf(n)e

− c
c0

)
+ γsρf(n)e

− c
c0
∂ρ

∂x

]
, (6.8)

where f(n) is a function relating locust hunger to the strength of local in-

teractions, we assume that f(n) increases as n→ 0. The derivation of Jglocal
follows the same method.

6.1.2 Hunger levels

We assume that locusts become hungrier based on energy lost due to metabolism

and movement, and that locusts become satiated by eating at a rate propor-

tional to their hunger. These assumptions give,

ns = −κ1n− κ2|Vs|2 + λ(n)c(x, t),

ng = −κ1n− κ2|Vg|2 + λ(n)c(x, t),
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where λ(n) describes how fast the locusts eat based on hunger, κ1 is the

energy lost due to metabolism, κ2 is the energy lost due to movement, and

Vs,g are the advective velocities of the locusts.

6.1.3 System of equations

Our non-local flux and locust kinetics remain the same as in the previous

iteration of the model, Sections 2.1.2 and 2.1.3, respectively. In addition, we

use the previous scalings,

t =
1

δ2
t̄, x = agx̄, (ρ, s, g) = k1(ρ̄, s̄, ḡ), and c = c0c̄.

Thus we update our equations from Chapter 2 to become

∂g

∂t
+∇ · (gvg) +

∂

∂n
(gng) = D∇ ·

[
f(n)e−c∇g

]
− δ

1 + ρ2
g +

(ρk)2 s

1 + (ρk)2
,

(6.9a)

∂s

∂t
+∇ · (svs) +

∂

∂n
(sns) = D∇ ·

[
f(n)e−c∇s

]
+

δ

1 + ρ2
g − (ρk)2 s

1 + (ρk)2
,

(6.9b)

∂c

∂t
= −c(x, t)

∫ 1

0

ψ(n)(s(x, n, t) + g(s(x, n, t))dn,

(6.9c)

with

vg = −∇
(∫

Ω

[
Rge

−|x−x′|
rg − Age

−|x−x′|
]
ρ (x′) dx′

)
+Df(n)e−c (∇c− γρ∇ρ) ,

vs = −∇
(∫

Ω

Rse
−|x−x′|

rs ρ (x′) dx′
)
+Df(n)e−c (∇c− γρ∇ρ) ,
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and

ns = −κ1n− κ2|Vs|2 + λ(n)c(x, t),

ng = −κ1n− κ2|Vg|2 + λ(n)c(x, t),

where,Ω is our domain, λ(n) describes how fast the locusts eat based on

hunger, ψ(n) is how fast food is consumed based on hunger, κ1 is the energy

lost due to metabolism and κ2 is the energy lost due to movement.

6.1.4 Satisfaction

As we now model the hunger levels of the locusts, we can compare this

between solitarious and gregarious locusts to get an alternate measure of

foraging advantage. We begin by defining the instantaneous satisfaction at

time t as Sg for gregarious locusts and Ss for solitarious, given by the average

satiation as

Sg(t) =

∫ 1

0

∫
Ω
ng(x, n, t) dxdn∫ 1

0

∫
Ω
g(x, n, t) dxdn

, (6.10)

Ss(t) =

∫ 1

0

∫
Ω
ns(x, n, t) dxdn∫ 1

0

∫
Ω
s(x, n, t) dxdn

. (6.11)

We can then calculate the average net gregarious satisfaction over an interval

[0, T ] as

S =
1

T

∫ T

0

Sg(t)− Ss(t) dt. (6.12)

Then if (6.12) is greater than 0 the gregarious locusts out forage their soli-

tarious counterparts and vice versa if less than 0.
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6.2 Analytic results

In this section we investigate the behaviour of our model with a spatially

uniform and temporally constant food density. Similar to Chapter 4, this

assumption corresponds to environments where the length scale of the food

footprint is larger than the length scale over which the locusts are distributed,

and where the rate of food consumption is negligible compared to the speed

of locust interactions. This not only simplifies the analysis, but also provides

a baseline with which to compare our later results, and hence assess the

impact of a patchy food distribution.

By simply noting that (6.9a) differs from (2.26a) in that D → Df(n),

we can quickly derive the results from Section 4.1 for our modified system of

equations.

6.2.1 Density of gregarious groups

Again, under a few simplifying assumptions we estimate the maximum den-

sity and width of gregarious locusts at both the large and small mass limits in

one dimension. To begin, our assumptions are c is constant and not depleting,

there are minimal solitarious locusts present in the swarm (i.e. ρ ≈ g), the ef-

fect of phase transitions in the swarm is negligible (i.e. f1(ρ)s = f2(ρ)g = 0),

and all the locusts have the same level of hunger. Finally, we will label the

support of an single aggregation of g as Ω. These assumptions give our large

mass limit as,

||g||∞ =

3

(
− (Rgrg − Ag) +

√
(Rgrg − Ag)

2 − 4(Df(n)e−c)2γ
3

)
2Df(n)e−cγ

, (6.13)
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with support

||Ω|| = 2MDf(n)e−cγ

3

(
− (Rgrg − Ag) +

√
(Rgrg − Ag)

2 − 4(Df(n)e−c)2γ
3

) . (6.14)

And the small mass limit as

||g||∞ =
3

√√√√3M2
(
Ag − Rg

rg

)
4Df(n)e−cγ

, (6.15)

and

||Ω|| = B

(
2

3
,
1

2

)
3

√√√√MDf(n)e−cγ

6
(
Ag − Rg

rg

) . (6.16)

The accuracy of these approximations is illustrated by Figure 6.1. These

results indicate that increasing hunger (corresponding to increasing f(n))

leads to a decreasing maximum group density and an increase in the size

of the support. Similar to Section 4.1.1 the small mass limit overestimates

the maximum density (and underestimates the support) due to ignoring the

linear diffusion component of the equations.

6.2.2 Linear stability analysis

We again gain insights into the conditions under which groups can form

by investigating the stability of spatially-homogeneous steady states. In this

analysis we perturb the homogeneous steady states by adding a small amount

of noise. We then find under what conditions the small perturbations grow

and are likely to lead to gregarious aggregations. We begin by assuming that

c does not deplete (i.e. ψ(n) = 0) and that all solitarious (gregarious) locusts

are at the same level of hunger, ms (mg). We then rewrite equations (6.9b)
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Figure 6.1: Large and small mass limits with estimates for the max
value and support. The estimates of the max values are given by the
horizontal dotted lines and the support given by the vertical dotted lines,
with simulation results given by the solid lines. Each colour corresponds
to a different value of n, with n = 0.15, 0.55, 0.95 given by red, blue, and
green respectively. For both the simulation and calculations D = 0.01, γ =
60, Rg = 0.25, rg = 0.5, Ag = 1, and f(n) = (1.5 − n). We can see
that decreasing n leads to a decrease in locust density and a corresponding
increase in support size.

and (6.9a) in terms of the gregarious mass fraction (6.2), giving

ϕg
∂ρ

∂t
+ ϕg∇ · (vgρ) = ϕgD∇ ·

[
Df(mg)e

−c∇ρ
]
, (6.17)

(1− ϕg)
∂ρ

∂t
+ (1− ϕg)∇ · (vsρ) = (1− ϕg)D∇ ·

[
Df(ms)e

−c∇ρ
]
, (6.18)

with

vs,g = −∇(Qs,g ∗ ρ) +Df(ns,g)e
−c (∇c− γρ∇ρ) .

We then perturb by letting ρ = ρ̄ + ϵρ̃ where ρ̄ is the homogeneous steady

state and ϵρ̃ is a small perturbation (ϵ ≪ 1). Substituting this into (6.17)

and (6.18), removing terms of O(ϵ2), then adding (6.17) and (6.18) together
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we find

ϵ
∂ρ̃

∂t
+∇ · [(ϕgvg + (1− ϕg)vs) ϵρ̄]

= D∇ ·
[(
ϕgDf(mg)e

−c + (1− ϕg)Df(ms)e
−c
)
ϵ∇ρ̃

]
,

with

vs,g = −(Qs,g ∗ ∇ρ̃)−Df(ns,g)e
−cγ∇ (ρ̄ρ̃) .

Next we take Fourier transforms in space and Laplace transforms in time of

ρ̃, i.e. ρ̃ ∝ e−ikx+λt to obtain

ϵλρ̃+ ϕg

[
k2(Q̂gρ̃)−Dk2Df(mg)e

−cγρ̄ρ̃
]
ϵρ̄

+ (1− ϕg)
[
k2(Q̂sρ̃)−Dk2Df(ms)e

−cγρ̄ρ̃
]
ϵρ̄

= −Dk2
[(
ϕgDf(mg)e

−c + (1− ϕg)Df(mg)e
−c
)
ϵρ̃
]
,

where Q̂s,g is the Fourier transform of Qs,g. Then, dividing through by ϵρ̃ we

get

λ =− ϕg

[
k2Q̂g −Dk2Df(mg)e

−cγρ̄
]
ρ̄

− (1− ϕg)
[
k2Q̂s −Dk2Df(ms)e

−cγρ̄
]
ρ̄

−Dk2
[
ϕgDf(mg)e

−c + (1− ϕg)Df(ms)e
−c
]
.

If λ > 0 then small perturbations will grow in time, we can then find the

condition for instability in terms of ϕg as

ϕg > ϕ∗
g =

Q̂s +Df(ms)e
−cγρ̄+ Df(ms)e−c

ρ̄

Q̂s − Q̂g +Dγe−cρ̄(f(ms)− f(mg)) +
De−c

ρ̄
(f(ms)− f(mg))

.

(6.19)

The numerator is only in terms ofms, thus as the hunger of solitarious locusts

increases the gregarious mass fraction required for group formation increases.
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This can be offset by the difference between solitarious and gregarious hunger,

i.e. the gregarious mass fraction required for group formation reduces if

gregarious locusts are less hungry than solitarious ones (i.e. mg > ms).

For our specific functions Qg = Rge
− |x|

rg − Age
−|x| and Qs = Rse

− |x|
rs , we

get,

ϕg > ϕ̄g =

Df(ms)e−c

ρ̄
+Df(ms)e

−cρ̄γ + 2Rsrs

2Ag − 2Rgrg + 2Rsrs +Dγe−cρ̄(f(ms)− f(mg)) +
De−c

ρ̄
(f(ms)− f(mg))

.

(6.20)

We can then find the maximum locust density at which groups will form by

taking (6.20) and substituting ϕ̄g = 1 and solving for ρ̄ as

ρ̄ =
(Ag −Rgrg) +

√
(Ag −Rgrg)2 − (Df(mg)e−c̄)2γ

Df(mg)e−c̄γ
≈ 2

3
||g||∞, (6.21)

where ||g||∞ is maximum density for the large mass limit given in (6.13).

Interestingly, while (6.19) depends on the hunger of solitarious locusts, (6.21)

depends only on the hunger of the gregarious locusts.

6.2.3 Time until group formation with homogeneous

locust densities

Next, we estimate time until group formation with homogeneous locust den-

sities, constant hunger and constant food. By assuming that s and g are

homogeneous we can ignore the spatial components of (6.9a) and (6.9b). We

again denote the combined homogeneous locust density as ρ̄ however now

ρ̄ = s(n, t) + g(n, t). Finally, assuming that g(0) = 0, we find the homoge-

neous density of gregarious locusts as a function of time is given by

g(t) =
ρ̄f2(ρ̄)

f1(ρ̄) + f2(ρ̄)

(
1− e−[f1(ρ̄)+f2(ρ̄)]t

)
,
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which we then solve for t∗ such that g(t∗) = ϕ̄gρ̄, where ϕ̄g is given by (6.19).

This gives an estimation for time of group formation (i.e. the time required

for the homogeneous densities to become unstable) as,

t∗ =
− ln

(
1− ϕ̄g(f1(ρ̄)+f2(ρ̄))

f2(ρ̄)

)
f1(ρ̄) + f2(ρ̄)

. (6.22)

Thus, as increasing hunger increases the gregarious mass fraction, ϕ̄g, re-

quired for group formation it follows that it also increases the time required

for group formation.

6.2.4 Conservation properties

Another aspect of the model we investigate is what properties of locust den-

sities the model conserves. By construction our model preserves the mass of

locusts, i.e. (6.1) is constant in time. In addition, using the same reasoning

as Section 4.1.4, in Rn, with all locusts having the same level of hunger, and

with a constant food source ( c(x, t) is constant in space and time), the center

of mass is also preserved.

6.3 Numerical results

In this section we explore the effect of hunger and food distributions on

gregarious group formation and look at the effect of food footprints on net

gregarious satisfaction. We follow the experimental method outlined in Sec-

tion 4.2 using the numerical method from Appendix A.1. As a summary

we:

1. Initialise locust densities given by (4.19), with solitarious locusts being

an ambient density, ρamb plus some normally distributed noise and

gregarious locusts being initially absent. In addition, we distribution

the locusts uniformly over hunger.
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2. Initialise food distribution of a smoothed step function covering some

percentage of the domain, ω, with mass Fm, given by (4.20).

3. Run each simulation to the time t = 12.5 and observe if group formation

has occurred and measure the net gregarious satisfaction prior to group

formation.

6.3.1 Parameter estimation

In the following experiments we use the symmetric parameters found in Table

4.1. In addition, we derive the metabolism parameters and give functional

forms for λ(n), ψ(n), and f(n).

Metabolism parameters. In order to estimate the gregarious metabolism

parameters (the same technique applies to solitarious) we begin by writing

the equations only in terms of hunger to obtain,

∂g

∂t
+

∂

∂n
(gng) = 0,

with

ng = −κ1n− κ2|Vg|2 + λ(n)c(x, t).

To begin we assume there is no movement or food consumption resulting in

∂g

∂t
− ∂

∂n
(gκ1n) = 0,

which we can solve using the method of characteristics to find n in terms of

t, given by

n(t) = n0e
−κ1t,
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where n0 is our starting satiation. Then, if it takes some time, t∗1, for the

satiation level to go from 1 → nmin, we can calculate κ1 as

κ1 =
− ln(nmin)

t∗1
. (6.23)

Next we can solve the more complex problem involving energy lost due to

movement. To start,

∂g

∂t
− ∂

∂n

(
g
(
κ1n+ κ2|Vg|2

))
= 0.

Then by assuming that Vg is constant in time we can again use the method

of characteristics to obtain,

n(t) = −κ2
κ1

|Vg|2 +
(
n0 +

κ2
κ1

|Vg|2
)
e−κ1t.

Then, if it takes some time, t∗2, travelling at a velocity V for the satiation

level to go from 1 → nmin, we can calculate κ2 as

κ2 =
κ1
(
nmin − e−κ1t∗

)
|V |2 (e−κ1t∗ − 1)

. (6.24)

Finally we solve for our consumption of food (assuming constant food and

no movement while eating),

∂g

∂t
− ∂

∂n
(g (κ1n− λ(n)c)) = 0,

to find
dn

dt
= λ(n)c− κ1n.

We then let λ(n) be linear in n, i.e. λ(n) = an+ b giving

n(t) =

(
nmin +

bc

ac− κ1

)
e−(ac−κ1)t − bc

ac− κ1
.
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We then set nmin = ∆n (the min value of n in the simulations), t∗1 = 12.5

(the length of the simulations), and t∗2 = 2. In addition we assume V = 100,

then, from (6.23) and (6.24), we find

κ1 = 0.1842, κ2 = 3.5376× 10−5.

We note that as κ1 ≫ κ2 most of the change in satiation will be driven by

metabolism.

Function selection For simplicity, we assume that all the relationships

between hunger, feeding, and movement are linear. In addition we assume

that a hungry locust consumes food twice as fast as a completely satiated one,

and increases its level of locomotion by up to three times [72]. In addition

we assume that our value for diffusion used in Chapter 4 is at n = 0.5. These

assumptions give rise to the functions in Table 6.1.

Function Description

λ(n) = 2− n The effect of locust feeding on satiation
ψ(n) = 0.18(2− n) The amount of food consumed based on locust

hunger
f(n) = 1.5− n Change in the local component of movement based

on locust hunger

Table 6.1: Descriptions of arbitrary functions used in numerical sim-
ulations.

6.3.2 The effect of food on group formation

Here, we perform the food footprint experiments from Section 4.2 to investi-

gate how hunger affects our previous results. The food footprint ranges from

covering 2.5% of the domain to 50% of the domain (ω = 2.5% to ω = 50%).

In addition, two food masses are tested, FM = 1.5, 2, 2.5, and 3. As a control,
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we also perform simulations with both no food present and a homogeneous

food source, represented by ω = 0% and ω = 100% respectively, for each

ambient locust density.

We vary the ambient locust density ranging from ρamb = 0.8 to ρamb = 1.6

(this is a larger range than Section 4.2). This range is selected based on (6.20)

so that in the absence of food, group formation would not occur with a hungry

population. In each simulation, the solitarious and gregarious populations

very quickly tend to an almost smooth and symmetric distribution around

the food, however a small quantity of noise persists across the population

and this breaks the symmetry leading to group formation.

The results are shown in Figure 6.2. The plots show the peak gregarious

density of the simulations for each of the varying food footprint sizes and

ambient locust densities. In the blue regions there was no group formation,

whilst in the green regions indicate successful group formation. Similar to

Section 4.2, it can be seen in the plots that as the food mass is increased the

minimum required locust density for group formation decreases. This effect

is more pronounced within an optimal food width and this optimal width

increases as the amount of food increases. In addition, the peak of the optimal

width is more pronounce than in the model without hunger. However, in

contrast to our results from Chapter 4 due to the increase in diffusion brought

about by hunger no groups formed in the Fm = 1.5 experiment.

We investigate this lower bound by looking at a representative sample of

simulations in Figure 6.3. In these simulations ρamb = 1.125 and FM = 3,

with food footprints ω = 15% 17.5%, and 20% as well as with no food

present. In the simulations in which food is present, prior to group formation

gregarious locusts aggregate at the center of the food. If the food source is

too narrow (ω = 15%, t = 3) there is an attempt at group formation but the

gregarious mass is too small and the food source has not been sufficiently

depleted so a large portion remains within the food source, thus the group

does not persist. Alternatively, if the food width is not too narrow (ω =
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Figure 6.2: Maximum gregarious locust density for symmetric gre-
garisation parameters with varying food footprint sizes and initial
ambient locust densities. For the simulations, x = [0, 3/0.14] with peri-
odic boundary conditions and t = [0, 12.5]. The initial condition for locust
densities is given by (4.19) and food initial conditions are given by (4.20).
Ambient locust density ranges from ρamb = 0.8 to ρamb = 1.6, food footprint
ranges from ω = 0% to ω = 50%, and food mass FM = 1.5, 2, 2.5, and
3. Parameters are given in the symmetric parameter column in Table 4.1
and food functions given in Table 6.1. The plots show the maximum peak
gregarious density for the varying food footprint sizes and ambient locust
densities, in the blue regions there was no group formation and in the green
regions there was successful group formation. From this we can deduce that
food lowers the required locust density for group formation and this is more
pronounced within an optimal food width.
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17.5%) there is a successful group formed, this is seen as clump or aggregation

of gregarious locusts in both the third and final plots. Once the aggregation

has formed the gregarious locusts appear to move to the antipode of the food

source, while interesting behaviour this is likely a mathematical artefact as

gregarious aggregations engage in directed collective movement which we do

not model here. Finally, if the food is too wide it is simply consumed. This

is similar to our previously obtained results.

6.3.3 Net gregarious satisfaction

We then calculate the net gregarious satisfaction, prior to group formation

and food depletion, for the previous simulations using (6.12). The results are

shown in Figure 6.4. It can be seen that net gregarious satisfaction increases

with decreasing food footprint and a decreasing ambient locust density. This

supports the previous conclusion that in increasingly patchy environments

gregarious locusts will out forage their solitarious counterparts.

6.4 Chapter summary

In this chapter we expanded our model of locust foraging to include hunger

and its effects on locust movement. Through the use of numerical and ana-

lytic techniques we found that hunger acts to decrease the maximum density

of locust groups and raises the percentage of the population that needs to be

gregarious for group formation. In addition, many of the key results relat-

ing group formation and food from previous chapters persist. These include

food lowering the required density for group formation around some optimal

food width, and this optimal width being dependent on the amount of food

present relative to the locust population. In the next Chapter we summarise

our key findings and offer some avenues for further exploration.
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Figure 6.3: A selection of plots showing the effect of food distribution
on gregarisation and locust group formation. In these simulations
ρamb = 1.125 and FM = 3 with ω = 15% 17.5%, and 20% as well as with
no food present (labelled ω = 0%). In the plots, blue is solitarious, red is
gregarious, and green is food. If the food source is too narrow (ω = 15%,
t = 3) there is an attempt at group formation but the gregarious mass is
too small and the food source has not been sufficiently depleted so a large
portion remains within the food source, thus the group does not persist.
Alternatively, if the food width is not too narrow (ω = 17.5%) there is a
successful group formed, this is seen as clump or aggregation of gregarious
locusts in both the third and final plots. Finally, if the food is too wide it is
simply consumed.
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Figure 6.4: Average net gregarious satisfaction prior to group forma-
tion, S given by (6.12), for symmetric gregarisation parameters with
varying food footprint sizes and initial ambient locust densities.
The plots show the average net gregarious satisfaction prior to group forma-
tion. It can be seen that net gregarious satisfaction increases with decreasing
food footprint and a decreasing ambient locust density.



Chapter 7

Summary and discussions of

locust foraging

Locusts continue to be a global threat to agriculture and food security, and

so insights into the hopper band formation process that can help predict and

control outbreaks is of great importance. In addition, while research is getting

closer to unravelling the mystery of density dependent phase polyphenism,

there is still an important question of what advantages it offers [4, 6, 87].

For general group living in animals [58] or specifically gregarious behaviour

in insects [40, 84, 101] there exists a variety of analyses into the costs and

benefits. However, there are limited explanations within the context of den-

sity dependent phase polyphenism [1, 4, 48, 74]. A relatively new area of

exploration is around the advantages and disadvantages gregarisation offers

in terms of foraging.

To begin, in Chapter 2 we presented a continuum model that includes

non-local and local inter-individual interactions and interactions with food

resources. This model extends the model of Topaz et. al. 2012 [98] for

locust gregarisation to include food interactions and local repulsion. Next,

in Chapter 3 we introduced and analysed two finite volume based numer-

ical schemes that we used throughout the thesis. Then, in Chapter 4, we

113
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analysed and simulated our new model finding that food acts to: increase

maximum locust density, lower the gregarious fraction required for group

formation (an important precursor to locust hopper bands), and decreases

both the required density and time for group formation with this effect being

more pronounced at some optimal food width. In addition, by looking at

the relative foraging advantage of gregarious locusts in our simulations we

found that as the gregarious mass fraction increases so too does the foraging

advantage of being gregarious. This effect is increased by the mass of food

present but is diminished by the size of the food footprint to the point where

no advantage is offered with a homogeneous food source.

Then in Chapter 5, through a series of numerical experiments, we further

found that prior to mass aggregations, in increasingly heterogeneous food

environments it is better to be gregarious than solitarious. However, once

an aggregation is fully formed this advantage can be quickly lost, highlight-

ing the need to evolve a migration/collective movement mechanism for the

gregarious phase to remain viable over time. In addition, the advantage is

also lost in homogeneous environments. Finally, through the parameter sen-

sitivity analysis, we showed for the first time that the foraging advantage is

intrinsic to the solitarious/gregarious behavioural dynamic as it occurs al-

most regardless of the parameters selected. Our study, in line with previous

studies about solitary and social foraging in complex environments and Ellis

and Ashall observations [36], show the advantages the gregarisation offers in

terms of foraging.

However, in order to keep the model computationally tractable we have

had to make a variety of simplifying assumptions, which does impose a limit

on the direct biological relevance at present. While our model is most ap-

plicable in the stage prior to hopper band formation and does not properly

capture the movement of hopper bands, these results presented can give guid-

ance on how higher order models might behave [20, 21]. With this in mind,

there are many ways that the model could be further developed to see if this
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relationship between gregarisation and foraging persists. One example that

we explored in Chapter 6 was having locust behaviour dependent on hunger

[34]. Other possibilities are the inclusion of a heterogeneous age structure

and differing local locust-locust and locust-food interactions between solitar-

ious and gregarious populations. Another technique to consider is using a

higher order model that is able to capture collective movement mechanisms

such as alignment or pursuit/escape interactions [75]. If the foraging rela-

tionship does persist with these introduced complexities, the next step would

be to create an evolutionary model and investigate if it is enough to drive

the evolution of density dependent phase polyphenism. If this is the case,

we hypothesise that environments with highly oscillatory food sources (i.e.

frequent switching between abundance and scarcity) would be the most likely

for density dependent phase polyphenism to develop.

Finally, preventative methods are the key to improving locust control.

This includes the ability to predict mass gregarisation according to resource

distribution patterns so that the area searched for locusts is reduced and con-

trol efforts are deployed in high risk areas early on [93]. Further exploration

of our results has the potential to improve predictive gregarisation models

and early detection efforts by further increasing our understanding of the link

between gregarisation and vegetation (resource) distribution (the latter be-

coming increasingly easy to quantify during field surveys, and aerial surveys

including drones and satellite imagery [29, 32]). Future research could focus

on developing decision support systems integrating predictive gregarisation

models and GIS data from surveys.



Appendix A

Implementing numerical
schemes in MATLAB

The purpose of this appendix is to give an overview of the numerical schemes
implementation in MATLAB that hopefully proves useful to the reader. We
begin with a vectorised implementation used in Chapter 6 before showing a
2D GPU implementation of the scheme introduced in Section 3.2 and used
in Chapter 5.

In each section we divide the code up into setup, space, and time with
notes and comments presented on each code snippet.

A.1 One dimension

We will begin with code for one spatial dimension and one hunger dimension.

A.1.1 Initial setup

Before simulating our system of equations we must setup all our constants,
social potential, etc. as well as the constraints of the simulation such as
time-frame to simulate, spatial resolution, time sample points. To make
terms easier to keep track of we utilise MATLAB structures, these can be
initialised in the same way as variables but with the addition of a .subvariable.
For example we begin by initialising the timeframe to simulate, tmax, spatial
resolution (keep as some 2n for ffts to work properly), X, hunger resolution, N,
boundary conditions, and time sample points and storing them in a structure

116
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called etc.

etc.tmax = 10;

etc.X=256; %Number of spatial points
etc.N=10; %Number of hunger points

5 tsamplepow = 2;

tpow = nthroot(etc.tmax,tsamplepow);

t = [0:tpow/500:tpow];

etc.t = t.^tsamplepow;

Here, we have used a trick to do non-linear time sampling as many simula-
tions have greater activity at the start. Next, we initialise our food related
variables and functions and store them in a structure called food,

%HUNGER AND EATING
%Eating Functions
food.lambda = @(n) 1*max(2-n,0); % Eating function of locusts
food.gamma = @(n) 2*0.18*max(2-n,0); % Being eaten function of

↪→ food
5 food.velocity = @(n) max(1.5-n,0); %function affecting local

↪→ interactions
food.var = [0.1842 0.00003576]; %metabolism variables kappa1

↪→ and kappa2

This shows that structures can also be used to store anonymous functions
(functions not saved in a file). Next we initialise and store locust kinetics
functions and variables in a kinetics structure,

%KINETICS
%Kinetic varables [delta1 delta2 densityk1 densityk2]
kinetics.var = [1 1 1 1/0.681];

kinetics.f1 = @(p) kinetics.var(1)./(1+(p/kinetics.var(3)).^2);

5 kinetics.f2 = @(p) kinetics.var(2)*(p*1/kinetics.var(4)).^2./(1+(p

↪→ *1/kinetics.var(4)).^2);

before finally storing variables around locust movement in a structure called
move,

%MOVEMENT VARIABLES
move.velocity = [1 431.87]; %advective component [c0 gamma]
move.diffusion = [2.041 2.041]; %diffusion coefficients [Ds Dg]
move.Rs = 1063.5; move.rs = 1; %Coefficients of Qs
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5 move.Rg = 940.5; move.Ag=2008.7; move.rg=0.2857; move.ag=1; %
↪→ Coefficients of Qg

We then create our spatial and hunger sample points (stored in the etc

structure), and initialise DFT
{
− ∂

∂x
e−

|x|
r

}
, using the DFT derived by [98]

(stored in the move structure),

xmax = 3/0.14;

%This section creates Del Qs,g
etc.dx = xmax/(etc.X-1);

etc.x = (0:etc.dx:xmax)’;

5 etc.dn = 1/(etc.N);

etc.n= 0:etc.dn:1-etc.dn;

k = (2*pi/xmax*[0:etc.X/2-1, 0, -etc.X/2+1:-1])’;

move.Qsfft = (-sqrt(-1)*move.Rs/move.rs*etc.dx).*sin(etc.dx*k)./(

↪→ cosh(etc.dx/move.rs)-cos(etc.dx*k));

10 move.Qgfft = (-sqrt(-1)*move.Rg/move.rg*etc.dx).*sin(etc.dx*k)./(

↪→ cosh(etc.dx/move.rg)-cos(etc.dx*k))-...

(-sqrt(-1)*move.Ag/move.ag*etc.dx).*sin(etc.dx*k)./(cosh(etc.dx/

↪→ move.ag)-cos(etc.dx*k));

Finally we setup the initial conditions for s, g, and c as well as pointers for
easier handling of variables,

%Setup initial conditions and pointers
y0 = zeros(1,2*etc.X*etc.N+etc.X);

pointers.slook = zeros(etc.X,etc.N);

pointers.glook = zeros(etc.X,etc.N);

5 pointers.clook = (2*etc.X*etc.N+1:2*etc.X*etc.N+etc.X)’;

epsilon = 7;

footprint = xmax*omega/100;

10 FoodMass = Fm;

if footprint == 0

c0 = zeros(etc.X,1);

elseif omega == 100

15 c0 = ones(etc.X,1)*FoodMass/(2*footprint);

else
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c0 = FoodMass/(2*footprint)*(tanh(epsilon*(etc.x-(xmax/2-0.5*

↪→ footprint)))...

-tanh(epsilon*(etc.x-(xmax/2+0.5*footprint))));

end

20

y0(pointers.clook) = c0;

%Initial conditions
for i =1:etc.X

25 for j=1:etc.N

y0((i-1)*etc.N+j) = rho0/16.6*InitialS(i);

y0(etc.X*etc.N+(i-1)*etc.N+j) = 0;

pointers.slook(i,j) = (i-1)*etc.N+j;

30 pointers.glook(i,j) = etc.X*etc.N+(i-1)*etc.N+j;

end

end

pointers.pv = [2:etc.X 1]; pointers.mv = [etc.X 1:etc.X-1];

What are pointers and why use them? Pointers are basically a way of con-
verting one set of coordinates into another, in this code we use them to keep
track of indexes and allow us to embed multiple multidimensional arrays into
a single one dimensional vector. For an example, if we were looking for S(3,7)

we would look at pnt.slook(3,7) and that would give (for example) 268

telling us that S(3,7) is the 268th entry in our one dimensional array. This in
turn allows us to use the vector calculations instead of for loops to drastically
speed up calculations. In addition, we use the pointers pnt.pv and pnt.mv

to calculate fluxes at the positive and negative cell boundaries, respectively.

A.1.2 Spatial calculations

Here we create a function called SpaceLocusts that takes all our previously
defined structures as inputs (kinetics, move, food, and pnt) as well as a
vector, tin, containing the values at every grid cell. Then, the steps for the
spatial calculations are:

1. Initialise output

2. Calculate locust kinetics
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3. Calculate advective component

4. Calculate diffusion

5. Calculate flux due to metabolism and feeding

We begin by initialising the output vector and calculating the total density
at each spatial grid cell,

function [tout] = SpaceLocusts(tin, kinetics, move, food, etc, pnt)

%FFTFVM Perform a single time step of locust model
%CODE STARTS HERE
% initalise output array

5 tout = zeros(size(tin));

%find total poopulation, the sum removes the hunger
↪→ component

p = tin(pnt.slook)+tin(pnt.glook);

pflat = squeeze(sum(p,2)).*etc.dn;

Next, we calculate the locust kinetics using f1 and f2 in our kinetics struc-
ture, the repmat command takes the 1D F1 and F2 vectors copies them into
the hunger dimension, this allows us to do an element-wise multiplication,

%KINETICS
%Calculate locust kinetics
F1 = kinetics.f1(pflat);

F2 = kinetics.f2(pflat);

5 %Change due to kinetics
tout(pnt.slook) = -tin(pnt.slook).*repmat(F2,1,etc.N)+tin(pnt.glook

↪→ ).*repmat(F1,1,etc.N);

tout(pnt.glook) = tin(pnt.slook).*repmat(F2,1,etc.N)-tin(pnt.glook)

↪→ .*repmat(F1,1,etc.N);

Next we find the fast Fourier transform of our density pflat and find the
nonlocal and local components of our advective movement,

%ADVECTIVE VELOCITY CALCULATIONS
pfft = fft(pflat);

%Perform convolution operation and inverse fourier
↪→ transform

VQs = real(ifft(pfft.*move.Qsfft));

5 VQg = real(ifft(pfft.*move.Qgfft));
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%Find nonlinear diffusion component, this uses central
↪→ difference for non

%boundary cells and left and right side approximations at
↪→ the boundary

Ec = move.diffusion(1)*exp(-tin(pnt.clook))*food.velocity(etc.dn

↪→ *([1:etc.N]-0.5));

10 W = Ec.*(1/(2*etc.dx)).*repmat( (tin(pnt.clook(pnt.pv))-tin(pnt.

↪→ clook(pnt.mv))...

-move.velocity(2)*pflat.*(pflat(pnt.pv)-pflat(pnt.mv))), 1, etc.N )

↪→ ;

Using this we calculate the flux at the cell boundaries due to advective move-
ment

%Calculate Flux due to movement
Ks = (repmat(VQs,1,etc.N)+W).*tin(pnt.slook);

Kg = (repmat(VQg,1,etc.N)+W).*tin(pnt.glook);

5 %Set boundary fluxes
Ks(1,:)=(Ks(1,:)>0).*Ks(1,:); Ks(end,:)=(Ks(end,:)<0).*Ks(end,:);

Kg(1,:)=(Kg(1,:)>0).*Kg(1,:); Kg(end,:)=(Kg(end,:)<0).*Kg(end,:);

We then calculate our flux due to linear diffusion,

%calculate diffusion
ep = move.diffusion(1)*exp(-((tin(pnt.clook(pnt.pv))+tin(pnt.clook)

↪→ )/(2*move.velocity(1))))*food.velocity(etc.dn*([1:etc.N]-0.5)

↪→ );

em = move.diffusion(1)*exp(-((tin(pnt.clook)+tin(pnt.clook(pnt.mv))

↪→ )/(2*move.velocity(1))))*food.velocity(etc.dn*([1:etc.N]-0.5)

↪→ );

We can then finally calculate the change in each cell due to movement,

%linearised riemann approximation at cell boundaries
%Calculate wave size at cell boundaries
Wgm = sign(tin(pnt.glook)-tin(pnt.glook(pnt.mv,:)));

Wsm = sign(tin(pnt.slook)-tin(pnt.slook(pnt.mv,:)));

5 %Calculate wave speed
Sgm = (Kg-Kg(pnt.mv,:)).*Wgm;

Ssm = (Ks-Ks(pnt.mv,:)).*Wsm;

% Calculate the change due to movement and
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10 tout(pnt.slook) =tout(pnt.slook)-(1/etc.dx)*(max(Ssm,0).*Wsm+min(

↪→ Ssm(pnt.pv,:),0).*Wsm(pnt.pv,:)...

+1/etc.dx*(em.*(tin(pnt.slook)-tin(pnt.slook(pnt.mv,:)))...

-ep.*(tin(pnt.slook(pnt.pv,:))-tin(pnt.slook))));

tout(pnt.glook) =tout(pnt.glook)-(1/etc.dx)*(max(Sgm,0).*Wgm+min(

↪→ Sgm(pnt.pv,:),0).*Wgm(pnt.pv,:)...

+1/etc.dx*(em.*(tin(pnt.glook)-tin(pnt.glook(pnt.mv,:)))...

15 -ep.*(tin(pnt.glook(pnt.pv,:))-tin(pnt.glook))));

Finally we calculate the change in each cell due to metabolism and eating,

%HUNGER AND FOOD CALCULATIONS
%Change in hunger calculated at the hunger boundry of cells
Ns = -food.var(1)*repmat(etc.dn*([1:etc.N]-1),etc.X,1)-food.var(2)*

↪→ abs(Ks).^2+tin(pnt.clook)*food.lambda(etc.dn*([1:etc.N]-1));

Ng = -food.var(1)*repmat(etc.dn*([1:etc.N]-1),etc.X,1)-food.var(2)*

↪→ abs(Ks).^2+tin(pnt.clook)*food.lambda(etc.dn*([1:etc.N]-1));

5

%Change in food due to feeding
Cs = sum(etc.dn*p.*repmat(food.gamma(etc.dn*([1:etc.N]-1)),etc.X,1)

↪→ ,2);

%Flux due to hunger/feeding
sFmh = [tin(pnt.slook).*min(Ns,0)+tin(pnt.slook(:,[1 1:etc.N-1])).*

↪→ max(Ns,0) zeros(etc.X,1)];

10 gFmh = [tin(pnt.glook).*min(Ng,0)+tin(pnt.glook(:,[1 1:etc.N-1])).*

↪→ max(Ng,0) zeros(etc.X,1)];

sFmh(:,1) = 0; gFmh(:,1) = 0; %No flux boundaries

%Change due to Feeding and hunger
15 tout(pnt.slook) = tout(pnt.slook)-1/(etc.dn)*(-sFmh(:,1:etc.N)+sFmh

↪→ (:,2:etc.N+1)); %Flux due to metabolism
tout(pnt.glook) = tout(pnt.glook)-1/(etc.dn)*(-gFmh(:,1:etc.N)+gFmh

↪→ (:,2:etc.N+1));

tout(pnt.clook) = -tin(pnt.clook).*Cs; %Calculate the change in
↪→ c

end

Now that we have our space component handled we can move onto time.
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A.1.3 Time

As we have written our code so that the results of the space component are
saved in a 1-D vector, we can use MATLABs inbuilt function ode45.

[t,y] =ode45(@(t,y) SpaceLocusts(y, kinetics, move, food, etc,

↪→ pointers), etc.t, y0);

A.2 Two dimensions on GPU

The code here corresponds to the numerical scheme from Section 3.2, there
are some limitations in that the social potential of all populations need to
be the same. However, it is written in such a way that the addition of extra
populations is as simple as adding an extra row and column to the ATTR and
REP matrices and defining a new kinetics function.

A.2.1 Initial setup

We begin by defining our strength of attraction and repulsion, in this case
we let solitarious locusts be population u1 and gregarious be population u2.
The software is setup so we can have asymmetric attraction/repulsion, so
ATTR(2,1) is the strength of attraction between gregarious locusts and soli-
tarious locusts, and ATTR(2,2) is the strength of attraction between gregari-
ous locusts and gregarious locusts (for solitarious negative ATTR is repulsion).
The REP vector is the magnitude of γ, this allows for different values of γ
for different populations. KIN are our kinetics terms, D is the linear diffusion
coefficient, POW is the power of the nonlinear diffusion term. We then ini-
tialise the timeframe to simulate, tmax, spatial resolution (keep as some 2n

for ffts to work properly), X, boundary conditions, time sample points, and
initialising a representation of the spatial grid.

ATTR = [-10 -10; 10 10];

REP = [10 10];

KIN = [0.5 1];

D=0.2; % Diffusion coefficent
5 POW=2; % Power of nonlinear diffusion

Us = unique(size(ATTR));
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X = 64; %number of grid squares in each direction
10 xmax = 10; %Grid size 0−>10

tmax = 5; %Time to run simulation to

tsamplepow = 1;

tpow = nthroot(tmax,tsamplepow);

15 t = 0:tpow/(200-1):tpow;

t = t.^tsamplepow; %Time sample points

%Setups cell coordinates
dx = xmax/(X-1);

20 x = 0:dx:xmax;

y = 0:dx:xmax;

xt = (-X/2:X/2-1)*dx;

yt = (-X/2:X/2-1)’*dx;

Next, we setup our social potential on the domain Ω′ = [−L
2
, L
2
] × [−L

2
, L
2
]

and then shift it to be periodic on the domain Ω = [0, L] × [0, L] for ffts.
This is the most natural way to define the social potential as the user gives
the function as its defined.

rs=1;

Q = -circshift(circshift(exp(-sqrt(xt.^2+yt.^2)/rs),X/2,1),X/2,2);

Qfft = gpuArray(dx^2*fft2(Q));

Q=repmat(Q,1,1,Us);

This loads the food distribution and precalculates De−c

load(’initFood.mat’);

hrn = hrn/max(abs(hrn),[],’all’);

Normval = max(abs(1+hrn),[],’all’);

FOOD = max(1+alpha*hrn,0)/Normval;

5

DIFF = D*exp(-FOOD);

if alpha ==-1

DIFF = D*exp(-FOOD*0);

10 end

DIFF = repmat(DIFF,1,1,Us);

DIFF =permute(DIFF ,[3,1,2]);
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Finally, we define the initial conditions for s, g

%Initial conditions
u0 = zeros(Us,X,X);

u0(1,:,:) =rho + rho/100*rand(64,64);

Next, as we are using a GPU we cant use inbuilt time integration functions
(like ode45) so we construct a new function to run the whole simulation.
This function begins by setting up a series of gpu arrays for use later as well
as a ndgrid. We give some forwarning, a few of the arrays get reused at
multiple points as GPUs tend to have limited memory (compared to CPUs)
and 2D problems require X2 grid points and can quickly use large amounts
of memory.

function [tout,u] = FVMRK4GPU(t, u0, Q, ATTR, REP, POW, DIFF, FUNC,

↪→ dx)

recstep = max(size(t));

dt = 0.5*dx^2; %Starting timestep
ndt = dt; %Next time step

5 ermax = 10^-5; %Max error
dtmax = dx/4; %Maximum timestep
dtmin = 16*eps; %minimum timestep
usize = size(u0);

10 %initialise GPU arrays
u = zeros([recstep, size(u0)]);

tempNL = gpuArray(zeros(size(u0)));

tempL = gpuArray(zeros(size(u0)));

tempComplex = permute(complex(gpuArray(zeros(size(u0)))),[2,3,1]);

15 vxm = gpuArray(zeros(size(u0)));

vym = gpuArray(zeros(size(u0)));

rho = gpuArray(zeros(usize(2:3)));

tout = gpuArray(zeros(recstep, 1));

tout(1) = t(1);

20

%Real indexes
[ugrid, xgrid, ygrid] = ndgrid(gpuArray.colon(1, usize(1)),gpuArray

↪→ .colon(1, usize(2)),gpuArray.colon(1, usize(3)));

ct = t(1);
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25 tcounter = 2;

finished = false;

unext = gpuArray(u0);

30 u(1,:,:,:) = gather(u0);

We now move on to the spatial component.

A.2.2 Spatial calculations

We begin by setting up some functions to perform operations on a single grid
cell, we then couple this with the arrayfun command to get the speed boost
of a GPU. We do take advantage of global variables, it may be considered not
the best practice and it may get a little confusing, but it worked well for our
purpose. We begin with a function to calculate the non local component,
with tempNL currently containing the densities of each type of locust, we
output the sum of the non-local interactions

N∑
k=1

Si,kuk

% SETUP FUNCTIONS
%Calculate the nonlocal component
function out = nonLocal(ui,xi,yi)

out = 0;

5 for i=1:usize(1)

out = out+ATTR(ui,i)*tempNL(i,xi,yi);

end

end

We then calculate the nonlinear diffusion, here rho contains ρm,

function out = Local(ui,xi,yi)

out = REP(ui)*rho(xi,yi);

end

This function calculates the flux through the negative x boundary of the
cell, at this point tempNL contains the value from the full convolution, tempL
contains the local repulsion.
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%Calculate the velocuty at the x cell boundry i−1/2
function out = velBoundX(ui,xi,yi)

xm = xi-1;

xm = (xm<1)*usize(2)+xm;

5

out = -1/dx*( tempNL(ui,xi,yi)-tempNL(ui,xm,yi)...

+(DIFF(ui,xi,yi)+DIFF(ui,xm,yi))/2*(tempL(ui,xi,yi)-tempL(ui,xm,

↪→ yi)) );

end

This function calculates the flux through the negative y boundary of the cell,

%Calculate the velocuty at the y cell boundry i−1/2
function out = velBoundY(ui,xi,yi)

ym = yi-1;

ym = (ym<1)*usize(3)+ym;

5

out = -1/dx*(tempNL(ui,xi,yi)-tempNL(ui,xi,ym)...

+(DIFF(ui,xi,yi)+DIFF(ui,xi,ym))/2*(tempL(ui,xi,yi)-tempL(ui,xi,

↪→ ym)) );

end

We can then calculate the to total change due the advective terms,

%Calculate the advection component
function out = advection(ui,xi,yi)

%setup pointers
xm = xi-1; xm = (xm<1)*usize(2)+xm;

5 ym = yi-1; ym = (ym<1)*usize(3)+ym;

xp = xi+1; xp = (xp>usize(2))*(-usize(2))+xp;

yp = yi+1; yp = (yp>usize(3))*(-usize(3))+yp;

%Calculate flux at cell boundries
10 if (vxm(ui,xi,yi)<0), uxm = (unext(ui,xi,yi)); else, uxm = (

↪→ unext(ui,xm,yi)); end

if (vxm(ui,xp,yi)<0), uxp = (unext(ui,xp,yi)); else, uxp = (

↪→ unext(ui,xi,yi)); end

if (vym(ui,xi,yi)<0), uym = (unext(ui,xi,yi)); else, uym = (

↪→ unext(ui,xi,ym)); end

if (vym(ui,xi,yp)<0), uyp = (unext(ui,xi,yp)); else, uyp = (

↪→ unext(ui,xi,yi)); end
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15 %Calculate total flux
out = -1/dx*(uxp*vxm(ui,xp,yi)-uxm*vxm(ui,xi,yi)+...

uyp*vym(ui,xi,yp)-uym*vym(ui,xi,yi));

end

We then calculate the diffusion terms,

%Calculate the diffusion component
function out = diffusion(ui,xi,yi)

%setup pointers
xm = xi-1; xm = (xm<1)*usize(2)+xm;

5 ym = yi-1; ym = (ym<1)*usize(3)+ym;

xp = xi+1; xp = (xp>usize(2))*(-usize(2))+xp;

yp = yi+1; yp = (yp>usize(3))*(-usize(3))+yp;

out = -1/(dx^2)*(4*DIFF(ui,xi,yi)*unext(ui,xi,yi)-DIFF(ui,xp,yi)

↪→ *unext(ui,xp,yi)-DIFF(ui,xm,yi)*unext(ui,xm,yi)...

10 -DIFF(ui,xi,yp)*unext(ui,xi,yp)-DIFF(ui,xi,ym)*unext(ui,xi,ym));

end

Finally, we calculate kinetics, F1 and F2 contain the outputs of f1(ρ) and
f2(ρ) respectively (If you wanted to implement more populations it is this
code you would have to edit).

%Calculate kinetics
function out = kinetics(ui,xi,yi)

out = -F1(xi,yi)*unext(2,xi,yi)+F2(xi,yi)*unext(1,xi,yi);

if ui == 1

5 out = -out;

end

end

As all our functions have been defined we can define a function to run a single
timestep,

%Run a single step
function out = runStep()

rho = squeeze(sum(unext,1)); %Calculate Rho
F1 = KIN(1)./(1+rho.^2);

5 F2 = (rho*KIN(2)).^2./(1+(rho*KIN(2)).^2);
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%Find LHS of convolution
tempNL = unext;

tempNL = arrayfun(@nonLocal, ugrid, xgrid, ygrid);

10

tempComplex = fft2( permute(tempNL ,[2,3,1]) );

tempNL = permute(real( ifft2(Q.*tempComplex) ),[3,1,2]); %
↪→ Calculate the nonlocal convolutions

rho = rho.^POW; %Caculate rho for the nonlinear local
↪→ repulsion

15 tempL = arrayfun(@Local, ugrid, xgrid, ygrid); %Calculate the
↪→ local repulsion

vxm = arrayfun(@velBoundX, ugrid, xgrid, ygrid); %calculate x
↪→ velocity component

vym = arrayfun(@velBoundY, ugrid, xgrid, ygrid); %calculate y
↪→ velocity component

20 %Calculate total flux
out = arrayfun(@advection, ugrid, xgrid, ygrid)...

+arrayfun(@diffusion, ugrid, xgrid, ygrid)...

+arrayfun(@kinetics, ugrid, xgrid, ygrid);

end

Now that we have our spatial component covered we can move on to time.

A.2.3 Time

As we many of the inbuilt MATLAB functions for time integration do not
support GPU arrays we have constructed our own. We went with a different
numerical scheme to the more common Dormand-Prince method [35] found
in ode45 to minimise the number of arrays existing at any one point in time.
This first code snippet calculates two time steps and the estimates the error
using the method outlined in Section 3.2. We store the error in the array Err,
Vt is used for calculating the substeps, while Vtt stores the total timestep.

while(~finished)

accept = false;

step = false;

while(~accept)
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5 if(~step)

uss = unext;

end

us = unext;

10

%f0 f4
Vt = runStep();

Vtt = Vt;

unext = us+dt/2*Vt;

15 if(~step)

else

Err = Err-2*Vt;

end

20 %f1 f5
Vt = runStep();

Vtt = Vtt+2*Vt;

unext = us+dt/2*Vt;

if(~step)

25 Err = -Vt;

else

Err = Err+3*Vt;

end

30 %f2 f6
Vt = runStep();

unext = us+dt*Vt;

Vtt = Vtt+2*Vt;

if(~step)

35 Err = Err+2*Vt;

else

end

%f3 f7
40 Vt = runStep();

Vtt = Vtt+Vt;

if(~step)

Err = Err-Vt;

else
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45 Err = dt/32*(Err-Vt);

end

unext = us+dt/6*Vtt;

At the end of each pair of timesteps, we check the error estimate and if the
error is too big we repeat the previous two steps with a smaller timestep (if
the timestep is too small we end the simulation), and if the error is small we
increase our timestep.

if(~step)

step = true;

else

est = max(abs(Err),[],’all’);

5 if(est <ermax)

accept = true;

temp = 1.25*(est/ermax)^(1/5);

if temp > 0.2 && temp < 0.8

ndt = dt / temp;

10 elseif temp < 0.2

ndt = 5.0*dt;

end

ndt = min(ndt,dtmax);

elseif dt <= dtmin

15 fprintf("WARNING: timestep has become too small and error

↪→ margin still not met\n");

fprintf("Ending script early\n");

return

else

unext = uss; %try again
20 dt =dt*0.5;

step = false;

end

end

end %Close accept while loop

Finally, if a timestep pair is accepted we check if the we should record the
current state. If so the current state is copied from the GPU memory into
system RAM. If the current time is greater than or equal to the requested
simulation time we record the state and end the simulation.
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%Records a particular frame
ct = ct + 2*dt;

dt=ndt;

5 if ct <= t(end) && ct >= t(tcounter)

tout(tcounter) = gather(ct);

uout(tcounter,:,:,:) = gather(unext);

tcounter = tcounter + 1;

end

10 if ct>=t(end)

finished = true;

tout(tcounter) = gather(ct);

uout(tcounter,:,:,:) = gather(unext);

end
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Parameter sensitivity analyses

Parameter sensitivity analysis attempts to quantify the relative importance
of the input factors in determining the output of a model [79, 88]. This guide
closely follows the work of Saltelli and colleagues [81], the interested reader
can find a more comprehensive treatment in [80].

To begin, given a function of the form

Y = f(X1, X2, ..., Xn),

we can measure the affect the inputs, {X1, X2, ..., Xn}, on the output, Y ,
to find the relative importance of the inputs. The relative importance is
measured as two distinct indexes (known as Sobol indices) normalised by the
output variance. The first describes “first order” effects, labelled Si (where
i refers to the input parameter), or the effect of varying a single parameter
(and fixing all others) on the model output. This can be calculated using the
formula

Si =
VXi

(EX˜i
(Y |Xi))

V (Y )
, (B.1)

Where V (·) is the variance, Xi is the i-th input and X˜i denotes the matrix
of all inputs but Xi. The EX˜i

(Y |Xi)) term in the numerator of (B.1) can
be interpreted as the mean of Y taken over all possible values of X˜i while
keeping Xi fixed, then the outer variance is taken over all possible values of
Xi, which we denote as VXi

(·) [79].
The second index gives the “total” effects, labelled ST i, or the interaction

between all model parameters and their effect on the output. This can be

133
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calculated using the formula

ST i = 1− VX˜i
(EXi

(Y |X˜i))

V (Y )
. (B.2)

The EXi
(Y |X˜i) term in the numerator of (B.2) can be interpreted as the

mean of Y taken over all possible values of Xi while keeping X˜i fixed, then
VXi

(·) calculates the variance of this quantity over all possible values of X˜i

[79].
It is possible to estimate (B.1) and (B.2) using the method outlined by

Saltelli et al. [81]. To begin let A and B be two independent sampling
matrices of the inputs {X1, X2, ..., Xn}. They will be of size n×N , where N

is the number of samples. We then construct the set of matrices A
(i)
B using

radial sampling, that is A
(i)
B is the matrix A with its ith column replaced

with the ith column of the matrix B. We can then estimate the numerator
of (B.1) using,

VXi
(EX˜i

(Y |Xi)) ≈
1

N

N∑
j=1

f(B)j

(
f(A

(i)
B )j − f(A)j

)
, (B.3)

and the numerator of (B.2) using,

VX˜i
(EXi

(Y |X˜i)) ≈
1

2N

N∑
j=1

(
f(A)j − f(A

(i)
B )j

)
, (B.4)

where f(B)j is the output, Y , given the jth input of the matrix B (i.e. the
jth row of B.

B.1 Example problem

Here, we provide code for the example problem from [81], known as Sobol’s
G function [3], given by

G = G(X1, X2, ..., Xn, a1, a2, ..., an) = Πn
i=1gi, (B.5)

gi =
|4Xi − 2|+ ai

1 + ai
. (B.6)
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where ai is a positive real number. The topology of G is driven by the
dimensionality n as well as by the values of ai. Small values of ai, i.e. ai << 1,
lead to important first order effects of the corresponding Xi. Conversely large
values of ai, i.e. ai = 9, lead to low first order effects [81]. If multiple ai’s are
small, this leads to high total order effects for the corresponding Xi’s [81].

To begin we construct the matricies using a Sobol quasi-random sequence,
A, B, and A

(i)
B for N samples:

%Setup number of tests to run
N=1000;

%Variable Ranges, this specifies the ranges
5 %of the variables you are testing

%You can increase the number of variables
%by adding extra entries to the vectors
%below.
Vmin = [0 0 0 0];

10 Vmax = [1 1 1 1];

d=size(Vmin,2);

%This section generates the input matricies,
15 %A, B and A_B

%(where A_B contains AB(i) for i=1..d
p=sobolset(2*d);

M=p(1:N,:);

A=repmat(Vmin, [N 1])+M(:,1:d).*repmat(Vmax-Vmin, [N 1]);

20 B=repmat(Vmin, [N 1])+M(:,d+1:end).*repmat(Vmax-Vmin, [N 1]);

AB=zeros(d,N,d);

for i =1:d

AB(i,:,:)=A;

AB(i,:,i)=B(:,i);

25 end

We then solve (B.5) for n = 4, using A, B, and A
(i)
B :

%% This section runs the G, with n=4
% for each a_i the smaller the value
% the greater the dependence of the
% corresponding variable X_i

5 Gout = zeros(d+2,N);



Appendix B. Parameter sensitivity analyses 136

a1=0;a2=0;a3=9;a4=9;

FUN = @(X) (abs(4*X(1)-2)+a1)/(1+a1)*(abs(4*X(2)-2)+a2)/(1+a2)...

*(abs(4*X(3)-2)+a3)/(1+a3)*(abs(4*X(4)-2)+a4)/(1+a4);

10

for matrixIndex = 1:d+2

for testIndex = 1:N

if matrixIndex == 1

variables = squeeze(A(testIndex,:));

15 elseif matrixIndex == 2

variables = squeeze(B(testIndex,:));

else

variables = squeeze(AB(matrixIndex-2,testIndex,:));

end

20 Gout(matrixIndex,testIndex) = FUN(variables);

end

end

Finally, we find (B.3) and (B.4), and thus Si and ST i:

%% This section runs the parameter sensitivity analysis
Exni = zeros(1,d);

Vxi = zeros(1,d);

5 for i = 1:d

Exni(i) = sum((Gout(1,:)-Gout(2+i,:)).^2);

Vxi(i) = sum(Gout(2,:).*(Gout(2+i,:)-Gout(1,:)));

end

10 FA = zeros((d+2)*N,1);

for i=1:d+2

start = (i-1)*N+1;

finish = i*N;

15 FA(start:finish)=Gout(i,:);

end

Exni=1/(2*N)*Exni;

Vxi=1/N*Vxi;

20 Vary = var(FA);
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% Find Si and Sti
Sti = Exni./Vary;

Si = Vxi./Vary;

B.2 Foraging advantage PSA

Using the same method as Section B.1, we construct the matricies using a
Sobol quasi-random sequence, A, B, and A

(i)
B for N = 1250 samples (for a

total of 8750 simulations):

%Setup variables
N=1250;

%Variable Ranges [D gamma A phi alpha]
5 Vmin = [0 0 0 0 0];

Vmax = [1 100 10 0.3 1];

d=size(Vmin,2);

10 %Generate matricies
p=sobolset(2*d);

M=p(1:N,:);

A=repmat(Vmin, [N 1])+M(:,1:d).*repmat(Vmax-Vmin, [N 1]);

B=repmat(Vmin, [N 1])+M(:,d+1:end).*repmat(Vmax-Vmin, [N 1]);

15 AB=zeros(d,N,d);

for i =1:d

AB(i,:,:)=A;

AB(i,:,i)=B(:,i);

end

20

save(’SampleVariables.mat’,’A’,’B’,’AB’)

We then run a simulation for every variable combination and obtain the
steady state foraging advantage and save this into a matrix ForagingAdvantage

↪→ , we find (B.3) and (B.4), and thus Si and ST i:

% Create foraging advantage vector
FA = zeros((d+2)*N,1);

for i=1:d+2
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5 start = (i-1)*N+1;

finish = i*N;

FA(start:finish)=ForagingAdvantage(i,:);

end

%Setup expected values and variances
10 Exni = zeros(1,d);

Vxi = zeros(1,d);

for i = 1:d

Exni(i) = sum((ForagingAdvantage(1,:)-ForagingAdvantage(2+i,:))

↪→ .^2);

15 Vxi(i) = sum(ForagingAdvantage(2,:).*(ForagingAdvantage(2+i,:)

↪→ ...

-ForagingAdvantage(1,:)));

end

Exni=1/(2*N)*Exni;

20 Vxi=1/N*Vxi;

Vary = var(FA);

Sti = Exni./Vary;

St = Vxi./Vary;

Using this method we obtain the results seen in Section 5.2.4.
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C.1 Presentations

� 2018 Computational Techniques and Applications Conference (CTAC),
An adaptive numerical scheme for a partial integro-differential equation

� 2018 Australia and New Zealand Industrial and Applied Mathemat-
ics New South Wales branch meeting (ANZIAM NSW), Continuum
Modelling of Bacterial Phagocytosis By Neutrophils

� 2019 Australia and New Zealand Industrial and Applied Mathematics
annual conference (ANZIAM), Continuum modelling of phagocytosis
based on cell-cell adhesion and prey-predator relationship

� 2019 International Congress on Modelling and Simulation (MODISM),
Modelling cell aggregation using a modified swarm model

� 2019 ANZIAM NSW, Modelling of swarming locusts with food distri-
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� 2020 ANZIAM, Food distributions and locust swarms

� 2020 Annual Meeting of the Society for Mathematical Biology, Poster,
A Mathematical Model Of Locust Foraging And Its Effect On Swarm
Formation
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� 2020 CTAC, Food distributions and locust swarms

� 2020 ANZIAM NSW, Hungry Hungry Hoppers: Investigating the inter-
action of food distribution and gregarisation on the formation of locust
hopper bands

� 2020 Annual Meeting of the Australian Mathematical Society (AUSTMS),
Hungry Hungry Hoppers: Investigating the interaction of food distribu-
tion and gregarisation on the formation of locust hopper bands

� 2021 ANZIAM, Hungry, hungry hoppers: modelling how and why food
affects locust hopper band formation
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mensinoal modelling of masticating morphs
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of masticating morphs

� 2022 ANZIAM NSW Midyear, A state space based model of collective
behaviour with a focus on locusts

C.2 Full list of author’s publications

[1] Accepted, Georgiou, F., Buhl, J., Green, J.E.F., Lamichhane, B., and
Thamwattana, N. (2022). Modelling foraging competition between soli-
tarious and gregarious organisms in increasingly heterogeneous environ-
ments. Journal of Insect Physiology.

[2] Georgiou, F., and Thamwattana, N. (2020). Modelling phagocytosis
based on cell–cell adhesion and prey–predator relationship. Mathe-
matics and Computers in Simulation 171, 52–64.

[3] Georgiou, F., Lamichhane, B., and Thamwattana, N. (2018). An
adaptive numerical scheme for a partial integro-differential equation.
ANZIAM Journal 60, C187–C200.
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[4] Georgiou, F., Buhl, J., Green, J.E.F., Lamichhane, B., and Thamwat-
tana, N. (2021). Modelling locust foraging: How and why food affects
group formation. PLOS Computational Biology 17, e1008353.

[5] Georgiou, F., Thamwattana, N., and Lamichhane, B.P. (2019) Mod-
elling cell aggregation using a modified swarm model, In Elsawah, S.
(ed.) MODSIM2019, 23rd International Congress on Modelling and
Simulation. Modelling and Simulation Society of Australia and New
Zealand.

[6] Georgiou, F.H., Lamichhane, B., Thamwattana, N., Buhl, J., and
Green, E. (2020). A numerical scheme for non-local aggregation with
non-linear diffusion and approximations of social potential. ANZIAM
Journal 62, C242–C255.

[7] Florio, B., Georgiou, F., Huet, O., Roberts, M.E., Tam, M., and Tri-
adis, D. (2020). Concrush: Understanding fugitive dust production
and potential emission at a recycled concrete manufacturing facility.
ANZIAM Journal 62, M1–M41.

[8] Orozovic, O., Lavrinec, A., Georgiou, F., and Wensrich, C.M. (2021).
A continuum mechanics derivation of the empirical expression relating
slug and particle velocities. Powder Technology 380, 598–601.

[9] Shih, H.-Y., Georgiou, F., Curtis, R.A., Paterson, M.B.A., and Phillips,
C.J.C. (2020a). Behavioural Evaluation of a Leash Tension Meter
Which Measures Pull Direction and Force during Human–Dog On-
Leash Walks. Animals 10, 1382.

[10] Shih, H.-Y., Paterson, M.B.A., Georgiou, F., Pachana, N.A., and Phillips,
C.J.C. (2020b). Who Is Pulling the Leash? Effects of Human Gender
and Dog Sex on Human–Dog Dyads When Walking On-Leash. Animals
10, 1894.

[11] Shih, H.-Y., Paterson, M.B.A., Georgiou, F., Mitchell, L., Pachana,
N.A., and Phillips, C.J.C. (2021a). Two Ends of the Leash: Rela-
tions Between Personality of Shelter Volunteers and On-leash Walking
Behavior With Shelter Dogs. Frontiers in Psychology 12.

[12] Shih, H.-Y., Paterson, M.B.A., Georgiou, F., and Phillips, C.J.C. (2021b).
Do Canine Behavioural Assessments and Characteristics Predict the
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Human-Dog Interaction When Walking on a Leash in a Shelter Set-
ting? Animals 11, 26.

[13] Shih, H.-Y., Phillips, C.J.C., Mills, D.S., Yang, Y., Georgiou, F., and
Paterson, M.B.A. (2021c). Dog Pulling on the Leash: Effects of Re-
straint by a Neck Collar vs. a Chest Harness. Frontiers in Veterinary
Science 8.

C.3 Prizes

� Jul 2022, Best student talk (ANZIAM NSW)

� Feb 2022, Best student paper 2022 (Mathmatical Biology Special In-
trest Group of ANZIAM)

� Nov 2021, Grant from Office of the Chief Scientist and Engineer (Syd-
ney, NSW, AU) to host ANZIAM NSW

� Nov 2021, Best student talk - Runner up (ANZIAM NSW)

� Jul 2021, 3MT 3rd place faculty heats (School of Mathematical and
Physical Sciences, University of Newcastle)

� Nov 2020, Best student talk - Runner up (ANZIAM NSW)

� Nov 2020, Industry engagement excellence award (School of Mathe-
matical and Physical Sciences, University of Newcastle)

� Sep 2020, MoCaO prize for best student presentation CTAC2020 (Math-
ematics of Computation and Optimisation Special Interest Group of
ANZIAM)
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“A behavioural analysis of phase change in the desert locust”. In:
Biological Reviews 74.4 (1999), pp. 461–480. issn: 1469-185X. doi:
10.1111/j.1469-185X.1999.tb00038.x.

[87] Stephen J. Simpson, Gregory A. Sword, and Nathan Lo. “Polyphenism
in Insects”. In: Current Biology 21.18 (Sept. 2011), R738–R749. issn:
0960-9822. doi: 10.1016/j.cub.2011.06.006.

[88] I. M Sobol. “Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates”. In: Mathematics and Com-
puters in Simulation. The Second IMACS Seminar on Monte Carlo
Methods 55.1 (Feb. 2001), pp. 271–280. issn: 0378-4754. doi: 10.
1016/S0378-4754(00)00270-6.
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