AIRWAY INFLAMMATION IN SCHOOL-AGED CHILDREN WITH ASTHMA

NGUYEN THI DIEU THUY
MD

A Thesis Submitted for the Degree of
Doctor of Philosophy

August 2007

Faculty of Health
School of Medicine and Public Health
University of Newcastle
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

ACKNOWLEDGEMENT OF AUTHORSHIP/COLLABORATION

I hereby certify that the work embodied in this Thesis is the result of original research, the greater part of which was completed subsequent to admission to candidature for the degree (except in cases where the Committee has granted approval for credit to be granted from previous candidature at another institution).

Signature: ..Date...
ACKNOWLEDGMENTS

Four years living in Australia, it was one of the special periods in my life. Over the past four years, I have learnt not only about the process involved in research, particularly asthma, the area I am very interested, but I have also learnt about Australian people and Australian culture. Any time and any where, I always received the unconditional support from all of the fantastic people in my study group.

I would like to thank and acknowledge especially my supervisors, Professor Peter Gibson and Professor Michael Hensley for accepting me when you did not know who I am. Working with me, you both accepted the challenge, the difficulty and unexpected troubles. I am very thankful for your patience and encouragement throughout the duration of my study. Peter, the knowledge, methods and the techniques you trained me are invaluable, they will stick with me in my future research. Michael, thank you for your support me during my research and the time I am living in Australia. I am very grateful to A/Prof Bruce Whitehead for his assistance in the clinic as well as his interest and advice in my study.

My study could not have been completed without clinical assistance of Ms Noreen Bell. Recruitment and working with children are very hard, and I am highly appreciative of your clinical support.
I also gratefully acknowledge all of the laboratory staff: Ms Naomi Fibbens, Ms Rebecca Oldham, Ms Kelly Fakes, Ms Michelle Gleeson, and Joanna Mimica, thank you for your co-operation and support during my projects.

I would like to acknowledge Dr Jodie Simpson, who has shared her knowledge and the experience in the research with me. I also wish to thank Dr Lisa Wood. She has organized and supported with studies of the oxidative stress markers in children with asthma. I appreciate the statistical assistance of Ms Heather Powell. My study could not have been completed without the support of all staff of the Airway Research Centre and their children who are volunteers as healthy controls in my projects. Thank you so much Mr Terry Grissell, Ms Nicole Ryan, Ms Philippa Talbot, Ms Vanessa McDonald, Ms Lisa Wood, Ms Heather Powell and all their children. I also would like to thank all staff in my study group, Ms Deborah Hall, Ms Vanessa Murphy, Ms Katie Baines, Ms Glenda Walker, Ms Joanne Smart; you are very friendly and have supported me during my study.

A special thank you to Ms Helen Bryce, an International officer, for being a friend and helpful at the time I am studying in Australia.

Finally, I want to especially thank my big family, my father, my mother, my husband, my brother and my daughter, for always unconditional support throughout many years of my study. You have given me the opportunities that have allowed me to pursue the areas I am very interested and my dream will become true. This thesis is dedicated to my father and my mother.
TABLE OF CONTENTS

ABSTRACT ... 1

PART I: LITERATURE REVIEW .. 3

1.1- Asthma .. 3
 Definition .. 3
 Prevalence of children with asthma ... 6
 Risk factors for asthma in children ... 8
 Factors inducing asthma exacerbations .. 20
 Physiopathology of asthma .. 26

1.2-Asthma and Tobacco smoke exposure ... 41
 Introduction .. 41
 Tobacco smoke .. 41
 Active smoking and asthma ... 46
 Passive smoking with asthma ... 49
 Inflammation in smokers with asthma .. 49
 Airway inflammation in subjects with asthma who are exposed to ETS 56
 Airway hyperresponsiveness ... 56
 Airway remodelling ... 57
 Treatment ... 58

PART II- METHODS ... 64

2.1-Clinical methods ... 65
 Questionnaires .. 65
 Objective measurements ... 68

2.2-Laboratory methods ... 75

2.3-Data management and analysis ... 81

2.4- Ethical considerations .. 83

PART III – RESULT .. 85

Chapter I
Comparison in airway inflammatory markers between healthy children and children with asthma ... 85

 Introduction .. 85
 Methods ... 87
TABLE OF TABLES

Table 2.1.1: Asthma medications were withheld prior to their appointments 74
Table 2.2.1: Cell morphology .. 78
Table 2.2.2: Results and interpretations ... 80
Table 3.1.1: Demographic characteristics of healthy children and children with asthma 92
Table 3.1.2: Asthma control score in children with asthma .. 93
Table 3.1.3: Characteristics of atopy in healthy children and children with asthma 94
Table 3.1.4: Influence of subject characteristics on FeNO .. 96
Table 3.1.5: Association between FeNO levels and atopic sensitization 102
Table 3.1.6: Influence of subject characteristics on EBC pH ... 108
Table 3.1.7: Induced sputum cell counts in the healthy children and children with asthma 110
Table 3.1.8: Influence of subject characteristics on % sputum eosinophils 113
Table 3.1.9: Influence of subject characteristics on sputum neutrophils 117
Table 3.1.10: Correlation between FeNO levels and sputum results 120
Table 3.1.11: Comparison in sputum cytokines between healthy children and children with asthma ... 126
Table 3.1.12: Correlation between IL-8 with lung function and sputum cells 127
Table 3.2.1: Demographic characteristics of children with eosinophilic and paucigranulocytic asthma ... 155
Table 3.2.2: Clinical characteristics of children with eosinophilic and paucigranulocytic asthma over the previous 12 months .. 156
Table 3.2.3: History of children with asthma ... 157
Table 3.2.4: Asthma control in the past 1 week in children with eosinophilic asthma and paucigranulocytic asthma .. 159
Table 3.2.5: Clinical asthma pattern between PGA and EA group 161
Table 3.2.6: Asthma treatment between children with EA and PGA 161
Table 3.2.7: Atopic status in children with eosinophilic and paucigranulocytic asthma 162
Table 3.2.8: Lung function of children with eosinophilic and paucigranulocytic asthma 163
Table 3.2.9: Comparison in AHR between children with eosinophilic and paucigranulocytic asthma ... 164
Table 3.2.10: pH of EBC in children with eosinophilic and paucigranulocytic asthma 165
Table 3.2.11: Induced sputum cell counts in children with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA)...166
Table 3.2.12: Comparison in sputum IL-8 between children with asthma with the different airway phenotypes...167
Table 3.2.13: Operating characteristics of tests for eosinophilic asthma in children168
Table 3.3.1: Characteristics of parental smoking in children with asthma.........................193
Table 3.2.2: ETS exposure in children with asthma by urinary cotinine............................194
Table 3.3 3: Relationship between parents reported smoking and ETS exposure in children with asthma...195
Table 3.3.4: Correlation between smoking location and ETS exposure in children with asthma ...195
Table 3.3.5: Demographic characteristic of children with asthma with and without parental smoking...196
Table 3.3.6: Clinical characteristics of children with asthma living with and without parental smoking...197
Table 3.3.7: History of children with asthma ...199
Table 3.3.8: Asthma triggers...200
Table 3.3.9: Asthma control score ..202
Table 3.3.10: Clinical pattern of children with asthma with and without parental smoking.... ...203
Table 3.3.11: Treatment in children with asthma living with and without parental smoking205
Table 3.3.12: Exhaled carbon monoxide in children with asthma living with and without parental smoking...206
Table 3.3.13: Atopic status in children with asthma with and without parental smoking 206
Table 3.3.14: Lung function of children with asthma with and without parental smoking..... ...208
Table 3.3.15: AHR in childhood asthma with and without smoking parents208
Table 3.3.16: Induced sputum cell counts in children with asthma with and without parental smoking ...210
Table 3.4.3: Knowledge of parents of children with asthma about passive smoking........273

Table 3.4.4: Attitudes of parents of children with asthma towards passive smoking........274

Table 3.4.5: Attitudes of smoking parents of children with asthma to prevent ETS exposure in children ...276
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Mediators derived from eosinophils</td>
<td>28</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Interactions between asthma and cigarette smoking</td>
<td>48</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Median FeNO levels (ppb) in healthy children and children with asthma</td>
<td>95</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Correlation between FeNO levels and age in children with asthma</td>
<td>97</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Correlation between FeNO levels and height of children with asthma</td>
<td>97</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Correlation between FeNO levels and weight of children with asthma</td>
<td>98</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Correlation between FeNO levels and FEV(_1) % predicted in children with asthma</td>
<td>98</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Correlation between FeNO levels and FEV(_1)/FVC ratio in children with asthma</td>
<td>99</td>
</tr>
<tr>
<td>3.1.7</td>
<td>The relationship between median FeNO levels and atopy</td>
<td>101</td>
</tr>
<tr>
<td>3.1.8</td>
<td>The relationship between median FeNO levels and dust mite sensitization</td>
<td>102</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Correlation between FeNO levels and the size of dust mite reactions</td>
<td>104</td>
</tr>
<tr>
<td>3.1.10</td>
<td>Relationship between FeNO levels and the number of positive skin prick test reactions</td>
<td>105</td>
</tr>
<tr>
<td>3.1.11</td>
<td>Comparison in FeNO levels in children with asthma with and without AHR</td>
<td>106</td>
</tr>
<tr>
<td>3.1.12</td>
<td>The relationship between FeNO levels and PD(_{15}) in children with asthma</td>
<td>107</td>
</tr>
<tr>
<td>3.1.13</td>
<td>Induced sputum in healthy children</td>
<td>111</td>
</tr>
<tr>
<td>3.1.14</td>
<td>Induced sputum in asthma</td>
<td>112</td>
</tr>
<tr>
<td>3.1.15</td>
<td>Relationship between % sputum eosinophils and % FEV(_1)/FVC ratio in children with asthma</td>
<td>114</td>
</tr>
<tr>
<td>3.1.16</td>
<td>Relationship between sputum eosinophils and atopy in healthy children and children with asthma</td>
<td>115</td>
</tr>
<tr>
<td>3.1.17</td>
<td>Sputum eosinophils in children with asthma with and without AHR</td>
<td>116</td>
</tr>
<tr>
<td>3.1.18</td>
<td>Correlation between % sputum eosinophils and PD(_{15}) in children with asthma</td>
<td>116</td>
</tr>
<tr>
<td>3.1.19</td>
<td>The success rate of the non-invasive techniques to investigate airway inflammation in children</td>
<td>119</td>
</tr>
</tbody>
</table>
Figure 3.1.20: The correlation between FeNO levels and % sputum eosinophils in healthy children ...121
Figure 3.1.21: The correlation between FeNO levels and % sputum neutrophils in healthy children ...121
Figure 3.1.22: The correlation between FeNO levels and absolute sputum neutrophils in healthy children ...122
Figure 3.1.23: The correlation between FeNO levels and % sputum eosinophils in children with asthma ...123
Figure 3.1.24: Correlation between FeNO levels and absolute sputum eosinophils in children with asthma ...123
Figure 3.1.25: Correlation between % sputum eosinophils and EBC pH in children with asthma ..124
Figure 3.1.26: Correlation between % sputum neutrophils and EBC pH in children with asthma ..125
Figure 3.1.27: Correlation between FeNO levels and EBC pH in healthy children125
Figure 3.1.28: Correlation between FeNO levels and EBC pH in children with asthma ...126
Figure 3.1.29: Correlation between IL-8 and % sputum neutrophils in children with asthma ..128
Figure 3.2.1: The stability of sputum eosinophils and neutrophils in children with eosinophilic pattern ...153
Figure 3.2.2: The stability of sputum eosinophils and neutrophils in children with paucigranulocytic pattern ...154
Figure 3.2.3: Asthma triggers in children with eosinophilic asthma (EA) and paucigranulocytic asthma ..160
Figure 3.2.4: The median of fractional exhaled Nitric Oxide in children with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA) ..165
Figure 3.3.1: Asthma triggers in children with asthma living with and without parental smoking ..201
Figure 3.3.2: Clinical pattern of childhood asthma with and without parental smoking....203
Figure 3.3.3: Parental smoking in childhood asthma, by clinical asthma pattern204
Figure 3.3.4: Fractional exhaled Nitric Oxide in children with asthma living with and without parental smoking

Figure 3.3.5: pH of EBC in children with asthma with and without parental smoking

Figure 3.3.6: Percentage of ETS exposed children by age

Figure 3.3.7: FeNO levels in children with asthma with and without ETS exposure

Figure 3.3.8: FeNO levels in children with asthma with different ETS exposure levels

Figure 3.3.9: Comparison in FeNO levels in children with asthma with and without ETS exposure

Figure 3.3.10: Comparison in FeNO levels in children with asthma with low levels of ETS exposure and non ETS exposure

Figure 3.3.11: Changing in FEV₁ in children with asthma with and without ETS exposure

Figure 3.3.12: Change in FEV₁/FVC ratio in children with asthma with and without ETS exposure

Figure 3.3.13: Comparison in pH of EBC of children with asthma with and without ETS exposure

Figure 3.3.14: Sputum neutrophils in children with asthma with and without ETS exposure

Figure 3.3.15: Comparison in absolute sputum neutrophils in children with asthma with and without ETS exposure

Figure 3.3.16: Comparison in % sputum eosinophils in children with asthma with and without ETS exposure

Figure 3.3.17: Comparison in absolute sputum eosinophils in children with asthma with and without ETS exposure

Figure 3.3.18: Comparison in sputum IL-8 in children with asthma with and without ETS exposure

Figure 3.4.1: Distribution of Fagerstrom test for Nicotine Dependence (FTND) scores of smoking parents of children with asthma in Newcastle

Figure 3.4.2: Distribution of Fagerstrom test for Nicotine Dependence (FTND) score of smoking parents of children with asthma in Hanoi
ABBREVIATIONS

ACS: Asthma control score
ABS: Australian bureau of statistics
AHR: Airway hyperresponsiveness
AI: Airway inflammation
APCs: Antigen presenting cells
ASM: Airway smooth muscle
ATS: American Thoracic Society
BAL: Bronchoalveolar lavage
BMI: Body mass index
CO: Carbon monoxide
C2R: Chromatrope 2R
CysLTs: Cysteinyl leukotrienes
DNA: Deoxyribonucleic acid
DP: *Dermatophagoides pteronyssinus*
DRR: Dose response ratio
DRS: Dose response slope
DTT: Dithiothreitol
EA: Eosinophilic asthma
EBC: Exhaled breath condensate
ECP: Eosinophil Cationic Protein
ED: Emergency department
EDN: Eosinophil derived neurotoxin
EIA: Exercise induced asthma
EIB: Exercise induced bronchoconstriction
ENO: Exhaled Nitric oxide
EPO: Eosinophil peroxidase
EPX: Eosinophil protein X
ETS: Environmental tobacco smoke
FeNO: Fractional exhaled Nitric oxide
FEV\textsubscript{1}: Forced expiratory volume in 1 second
FTND: Fagerstrom test for Nicotine Dependence
FVC: Forced vital capacity
GM-CSF: Granulocyte–macrophage colony-stimulating factor
GP: General practitioner
GRs: Glucocorticoid receptors
HDAC: Histone deacetylases
HDM: House dust mite
ICS: Inhaled corticosteroids
IFN: Interferon
IL: Interleukin
ISAAC: International Study of Asthma and Allergies in Childhood
cNOS: constitutive Nitric oxide synthases
iNOS: inducible Nitric oxide synthases
IQR: Inter-quartile range
LAK: Lymphokine-activated killer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPR:</td>
<td>Late-phase reactions</td>
</tr>
<tr>
<td>LPS:</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MBP:</td>
<td>Major basic protein</td>
</tr>
<tr>
<td>MGA:</td>
<td>Mixed granulocytic asthma</td>
</tr>
<tr>
<td>MGG:</td>
<td>May Grunwald Giemsa</td>
</tr>
<tr>
<td>mRNA:</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NA:</td>
<td>Neutrophilic asthma</td>
</tr>
<tr>
<td>NAC:</td>
<td>National Asthma Council</td>
</tr>
<tr>
<td>NO:</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOS:</td>
<td>Nitric oxide synthases</td>
</tr>
<tr>
<td>NO₂:</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NOx:</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>NF-κB:</td>
<td>Nuclear factor-κB</td>
</tr>
<tr>
<td>O₃:</td>
<td>Ozone</td>
</tr>
<tr>
<td>OR:</td>
<td>Odd ratio</td>
</tr>
<tr>
<td>PBS:</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PC₂₀:</td>
<td>Provocative concentration resulting in a 20% fall in FEV₁</td>
</tr>
<tr>
<td>PD₁₅:</td>
<td>Provocative dose of hypertonic saline causes to fall FEV₁ by 15% of the base line</td>
</tr>
<tr>
<td>PDGF:</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PEF:</td>
<td>Peak expiratory flow</td>
</tr>
<tr>
<td>PGA:</td>
<td>Paucigranulocytic asthma</td>
</tr>
<tr>
<td>PG:</td>
<td>Prostaglandin</td>
</tr>
</tbody>
</table>
PM: Particulate matter
PUFAs: Polyunsaturated fatty acids
pH: Polution hydrogen Ion concentration
RANTES: Regulated on activation normal T cell expressed and secreted
RSV: Respiratory syncytial virus
SD: Standard deviation
SO2: Sulphur dioxide
SPT: Skin prick test
TCC: Total cell counts
TNF-α: Tumor necrosis factor α
UK: United Kingdom
US: United States
WHO: World Health Organization
ABSTRACT

Airway inflammation is a key feature of asthma. Currently, airway inflammation can be detected through both invasive and non-invasive methods. Non-invasive methods are safe, feasible and a potentially useful way to assess airway inflammatory markers in both healthy children and children with asthma. In this thesis, a variety of non-invasive markers (induced sputum, exhaled nitric oxide, and exhaled breath condensate) was used to investigate childhood asthma. The aim of the first study was to compare and contrast the different airway markers between healthy children and children with asthma. The second study described the different airway inflammatory phenotypes in children with asthma, and examined clinical predictors of these phenotypes; whereas the third study investigated the effects of environmental tobacco smoke (ETS) exposure on airway inflammation in childhood asthma. The final study assessed the knowledge and attitudes of parents of children with asthma towards passive smoking.

The studies used both cross-sectional and longitudinal designs. Children with stable asthma aged between 7 - 17 years underwent clinical assessment, spirometry, exhaled nitric oxide (FeNO), exhaled breath condensate and sputum induction. Urinary cotinine was assayed to assess tobacco smoke exposure.

These studies have found that children with asthma show differences in both clinical pattern and pathological pattern compared to healthy children. These differences were apparent with elevated FeNO and sputum eosinophils. In children with asthma, there was
heterogeneity of airway inflammation. There were 2 stable inflammatory patterns: eosinophilic asthma and paucigranulocytic asthma. Unlike adult asthma, these phenotypes have different clinical features, which may facilitate detection of the phenotypes in clinical practice.

ETS exposure in children with asthma was common and associated with a non-eosinophilic pattern of airway inflammation. In children who had a change in ETS exposure, sputum eosinophils were decreased whereas sputum neutrophils were increased during ETS exposure compared to a non-ETS exposure period. Fractional exhaled nitric oxide levels were decreased after exposure to ETS compared to those at the time of non-ETS exposure. The severity of asthma was increased in children living with parents who smoked. As a result, parents of children with asthma, especially smoking parents should be more aware about the harmful effects of smoking on their children’s health and themselves. Health risk awareness about tobacco smoke helps parental smokers alter their smoking behavior as well as protecting children from ETS exposure.

In conclusion, the important findings of this thesis are the description of the inflammatory phenotypes in childhood asthma, the identification of clinical predictors of these phenotypes and the determination of the effects of ETS exposure on airway inflammatory patterns in childhood asthma. These results should facilitate understanding and management of childhood asthma and prompt treatment studies based on markers of airway inflammation.