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Abstract

The convolutional neural network (CNN) has been remarkably successful in

performing automatic image segmentation in a number of clinical applications.

It is able to decrease the time taken for the segmentation process as well as

minimise the errors with respect to manual segmentation by a human operator.

However, most of the developed CNN architectures have redundant components

and trainable parameters. These redundancies cause the implementation of a CNN

to be expensive in terms of time and memory usage. In this thesis, we study

several CNN architectures in terms of their structures, components and number

of trainable parameters to gain a deeper insight into the requirements of a CNN

to achieve a state-of-the-art performance on a clinical segmentation task. As a

result, we developed a CNN with a novel adjacent upsampling method that achieves

a state-of-the-art performance for an organ segmentation task while being much

smaller in terms of the number of trainable parameters and computation time. We

developed a CNN with an optimised architecture that outperforms other state-of-

the-art CNNs with similar components on an organ segmentation task. Furthermore,

we developed a novel augmented classification structure to improve the performance

of a segmentation network for an object detection task. We also demonstrate the

implementation of a CNN on a complex digital pathology segmentation problem

with the use of multiple considerations. We show that with the appropriate CNN

architecture and implementation, an effective and efficient CNN based approach can

be developed to assist medical experts in different segmentation problems.
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CHAPTER 1. INTRODUCTION

1.1 Background

A convolutional neural network (CNN) can be considered as a type of deep learning

algorithm that specialises in, but is not limited to, image processing tasks. Like other

deep learning algorithms, a CNN has the ability to recognise patterns and learn from

a set of data samples to make sensible predictions for new data samples [1]. The

CNN has an architecture consisting of various processing layers and transformations

that enables it to represent a highly complex system [2] [3]. It has the ability

to automatically learn hierarchical features of an input to perform a certain task

[2]. The CNN is used in various image processing applications, including image

segmentation.

Image segmentation is a process of partitioning an image into a number of

segments to make the image more meaningful and easier to analyse [4]. It is a critical

process in the medical imaging field, as accurate organ or lesion segmentation is

crucial in, e.g. computer-aided diagnosis (CAD), medical image analysis, image-

guided therapy and computer-integrated surgery [4] [5]. Many computer-aided

segmentation methods have been developed to improve the accuracy and efficiency of

conventional user-guided segmentation methods on different types of medical images,

e.g. Magnetic Resonance Imaging (MRI), Computerised Tomography (CT), X-ray

and ultrasound [5] [6] [7] [8].

Segmentation methods can be classified into three main categories: manual,

semiautomatic and automatic [9] [10]. Manual segmentation relies on an expert,

or multiple experts, to perform segmentation based on their expertise and

experiences. However, manual segmentation is very labour intensive and is not

always reliable, as every segmentation is subject to intra-and inter-expert variability

[11]. Semiautomatic segmentation uses algorithms to provide assistance for the

expert in order to reduce the time and effort required to perform a segmentation.

However, it is still subject to intra-and inter-expert variability as it relies on

some amount of manual input from an expert. On the other hand, automatic

segmentation uses algorithms to perform segmentation without any manual input.

Automatic segmentation overcomes the necessity for manual labour and minimises
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1.1. BACKGROUND

the problem with intra-and inter-expert variability, which leads to higher consistency

and reproducibility.

Automatic segmentation approaches can be categorised into either traditional

or machine learning based approaches. The traditional approaches are based on

thresholding, statistical analysis, deformable models and graphs [4]. There are

two main machine learning approaches: classical machine learning, based on hand-

crafted features, and deep neural networks, based on automatic feature-extraction

methods. Machine learning based approaches have been proven to be superior to

traditional approaches in numerous automatic image segmentation applications, as

machine learning algorithms have the capability to detect patterns and model data

automatically [12] [13]. Unlike the classical machine learning algorithms that rely on

hand-crafted features as their input, deep neural network algorithms have a feature-

learning capability that allows the system to extract features directly from an input

image [14]. This minimises the need for prior knowledge when developing a model

for a certain task [14]. The CNN has been outperforming traditional computer

vision and machine learning algorithms comprehensively in terms of accuracy and

precision [15] [16]. It is currently the state-of-the-art deep learning algorithm

in image segmentation for many different applications, such as organ and lesion

segmentation [12] [13].

There are a number of considerations to be made when developing a CNN

model [12]. CNN models incorporate a large number of variables and components

in their network architecture, such as structure, number of layers, number of filters,

upsampling components, downsampling components, regularisation components,

normalisation components and activation function type. The effectiveness of a CNN

model is also influenced by a number of implementation considerations, such as the

training hyperparameters and algorithms, data pre- and post-processing, as well as

the evaluation method.

The main challenge of performing image segmentation using CNNs is in

determining the appropriate components for the network to overcome the

CNNs’ inherent spatial invariance characteristic effectively. The state-of-the-

art segmentation networks, such as FCN [17] and U-Net [18], suffer from this
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CHAPTER 1. INTRODUCTION

inherent spatial invariance characteristic due to the näıve adaptation of the network

architectures that were designed for image classification tasks [19]. This results in

these CNNs using a large number of trainable parameters to gain superiority in their

performance [17] [18].

For the application of a CNN for image segmentation, the inefficient design of

the architecture contributes to the requirement of a large number of training data

samples to develop a high-performing model [20] [10] [21] [13]. However, a labelled

training dataset in a given clinical application is often limited in quantity as it is

expensive and difficult to produce [20] [10] [13]. This limits the application of a

CNN based approach in clinical application.

In this research, we evaluate the performance of a number of CNNs to determine

the most suitable components for a CNN to overcome the inherent spatial invariance

characteristic in an image segmentation task. We establish the importance of the

appropriate structure, number of trainable parameters and components used in a

CNN architecture for the network to perform efficient image segmentation in clinical

applications. We also describe several implementation considerations to improve the

effectiveness in the development of a CNN based approach.

Datasets from liver, prostate and nerve segmentation problems are used in this

research. Each of these problems has its own challenges. For the liver segmentation

problem, the challenges include the variation of the image quality due to it being

acquired from multiple medical centres, as well as variation in the size and shape

of the liver. For the prostate segmentation problem, some additional challenges are

introduced due to the fuzzy boundaries of the prostate and high variance of pixel

intensities in the image. For the nerve segmentation problem, the main challenge is

due to the enormous size of the images, which are approximately 6400 times larger

than typical CT or MRI images. As a result, the data lacks pixel-wise annotations

which makes it challenging for the development of a CNN based approach for the

segmentation. The nerves also vary largely in size and appearance.
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1.2. RESEARCH PROBLEM AND MOTIVATION

1.2 Research problem and motivation

The convolutional neural network has been remarkably successful in performing

medical image segmentation tasks [12] [13]. However, most studies focus on the

results and fail to notice inefficiencies in several areas:

1. Architecture. To produce accurate segmentation results, some studies

developed CNN architectures with very complex structures. These complex

structures generally consist of cascading/stacking of several networks and are

often developed to achieve a small performance gain (sometimes less than

1%) [22] [23] [24] [25], which could also be achieved by simpler structures. This

typically results in the practice of using a CNN architecture with a complex

structure instead of a CNN architecture that can be applied more efficiently

for a certain task.

2. Number of trainable parameters. Generally, in the adoption of a CNN

architecture, the number of trainable parameters used is often overlooked.

Many adopt the architecture blindly, including the number of trainable

parameters, without understanding what is actually required. This results in

a CNN with an unnecessarily large number of trainable parameters for a given

application that could be solved with a smaller set of trainable parameters to

achieve the same performance [26] [17] [27] [28].

3. Components. Many studies often suggest the superiority of a new network

component based on the performance comparison of their networks to other

networks with completely different architectures [29] [17] [18] [30]. As a

result, there is limited understanding of the contribution of each component

to the overall performance of a given network. This leads to unnecessary

integration of new components in many CNN architectures and results in the

CNN becoming expensive, in terms of computation time and memory usage.

4. Implementation considerations. A clinical dataset often suffers from limited

data quantity, high intra-class data variance and/or variation in the
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CHAPTER 1. INTRODUCTION

annotations provided by experts. However, a standard data processing method

is often adopted without considering its suitability for the problem [12] [31]

[32] [33], causing the CNN based approach to be ineffective.

1.3 Thesis outline and contributions

In this thesis, we will address the inefficiencies outlined in Section 1.2. The thesis

consists of five main chapters with fundamental knowledge established in the first

two chapters, with the next three chapters addressing the four inefficiencies. An

outline of the thesis now follows.

Chapter 2 provides some fundamental knowledge about neural networks,

including the CNN. The fundamentals of a CNN architecture in terms of structure,

number of trainable parameters and components are discussed. We also provide an

overview of state-of-the-art CNNs that are specialised in different tasks.

In chapter 3 we discuss a number of fundamental considerations that need to be

taken into account in the implementation of a deep learning algorithm, in particular

a CNN. We include an overview of various hyperparameters and algorithms, data

pre- and post-processing techniques and evaluation methods.

In chapter 4 we discuss limitations of typical segmentation network architectures,

in terms of structure, and propose an alternative network that performs comparably

well while being much more efficient. The proposed CNN incorporates a novel

adjacent upsampling method, which is a trainable upsampling method and only

requires a single computation step. We show that a CNN can be structured more

efficiently without the use of an excessive number of trainable parameters to solve

a particular task.

In chapter 5 we investigate the effects of each individual component of a U-Net

architecture with the aim of providing a better understanding of the contribution

each component makes to the performance of the network in terms of Dice’s score.

We present the performance comparisons of several U-Nets with different component

choices in their architectures. The results in this chapter provide an efficient U-Net

that outperforms traditional methods on a private dataset as well as other CNNs
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with similar structure and components on a public dataset.
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CHAPTER

2

Introduction to Neural Networks

Neural networks are a subset of machine learning algorithms, inspired by neuronal

networks in the biological brain. In this chapter, we discuss the fundamentals of the

neural network, including its components, structure and learning mechanism. An in-

depth overview of the CNN, a type of neural network specialised for high-dimensional

data, as well as a brief review of several state-of-the-art CNN architectures is

provided. A summary of CNN architectures in terms of their structure, number

of trainable parameters and components is also presented.
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CHAPTER 2. INTRODUCTION TO NEURAL NETWORKS

2.1 Introduction

In this chapter we introduce the fundamental knowledge of neural networks. We

discuss the basic elements of a neural network as well as its basic configuration and

learning mechanism. We also include a brief introduction to the initial forms of

neural network, i.e. the perceptron and multilayer perceptron. Then, we introduce

the CNN, which is a type of neural network that is specialised for high-dimensional

data, and discuss its structure, trainable parameters and components. We also

provide a brief overview of several state-of-the-art CNN architectures for image

classification, object detection and image segmentation tasks. Finally, a summary

of CNN architectures in terms of their structure, number of trainable parameters

and components is provided at the end of this chapter.

2.2 Neural Network Fundamentals

A neural network, sometimes referred to as an artificial neural network, is a system

that is made up of artificial neurons that are designed to model the way in which

the human brain works, such as learning specific knowledge and storing it in order

to perform a certain task, e.g. pattern recognition [34].

The artificial neuron is modelled with three basic elements: a set of synaptic

weights, w, an adder,
∑

, and an activation function, ϕ(·), as shown in Figure 2.1,

where n is the dimension of the input, x1, . . . , xn are the input data, wk1, . . . , wkn are

the synaptic weights of neuron k with respect to the input data, zk is the activation

potential of neuron k, bk is the bias of neuron k, ϕ(·) is the activation function, and

ak is the output response of neuron k.
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2.2. NEURAL NETWORK FUNDAMENTALS

Input
Data

Figure 2.1: Model of an artificial neuron.

In mathematical terms, the output of a neuron can be described by,

zk =

n∑
j=1

wkjxj + bk, (2.1)

and ak = ϕ(zk). (2.2)

This can be written more generally as,

hk(x) = ϕ

⎛
⎝
⎛
⎝ n∑

j=1

wkjxj

⎞
⎠+ bk

⎞
⎠ . (2.3)

The activation function, ϕ(·), is used to define a neuron output in terms of the

activation potential, z [34]. It determines the activation state and output value of

the neuron. Several types of common activation functions [34] are

� Threshold function: Produces a value of 0 if the activation potential of the

neuron is negative, and 1 if it is positive. It is defined as,

ϕ(z) =

⎧⎪⎨
⎪⎩

1 if z ≥ 0

0 if z < 0.
(2.4)

� Piecewise-Linear function: Produces a linear output when the activation

potential of the neuron is within a specific region, otherwise a saturation value
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CHAPTER 2. INTRODUCTION TO NEURAL NETWORKS

of either 0 or 1 will be produced. It is defined as,

ϕ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, z ≥ +1
2

z, +1
2 > z > −1

2

0, z ≤ −1
2 .

(2.5)

� Sigmoid function: A differentiable s-shaped function that produces a

continuous range of values from 0 to 1. It is defined as,

ϕ(z) =
1

1 + e−z
. (2.6)

A neural network is made up of a number of artificial neurons that form a

structure that can be used as a powerful computing tool to solve complex problems.

It has the ability to generalise, i.e. make sensible predictions for new input data

of the same category (class) as the learned data that has never been seen by the

network.

Training a neural network requires a randomised set of labelled data. It learns

by adjusting its synaptic weights in order to produce the desired responses that

correspond to each unique input data. The main training objective is to minimise

the error between the response of the network and the label associated with each

input data. A cost function is formed based on some measure of the error for each

output.

The cost function depends on the task, i.e. whether it is for regression,

classification or other purposes. For example, a cost function that can be used

for regression is the mean squared error function [35] given as,

J(w,b) =
1

2m

m∑
i=1

K∑
k=1

(
hk

(
x(i)

)
− y

(i)
k

)2
, (2.7)

where J(w,b) denotes the cost, w denotes the synaptic weights and b denotes the

biases, K denotes the number of neurons, m denotes the number of data samples,

x(i) denotes the ith data sample from a dataset, hk
(
x(i)

)
denotes the network output

response to data x(i) at neuron k, y(i) denotes the label of data x(i).

12



2.2. NEURAL NETWORK FUNDAMENTALS

A cost function typically used for classification tasks is the cross-entropy function

[36] given by,

J(w,b) = − 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log

(
hk

(
x(i)

))
+
(
1− y

(i)
k

)
log

(
1− hk

(
x(i)

))]
.

(2.8)

A network is trained by using an optimisation algorithm to solve argmin
w,b

J(w,b).

2.2.1 Perceptron

A perceptron is the simplest form of a neural network that consists of a single

artificial neuron with a set of adjustable synaptic weights and bias as shown in

Figure 2.1. The perceptron is trained by adjusting the synaptic weights and bias to

fit the training data samples so that it can produce the desired responses [34].

According to the perceptron convergence theorem [37], a perceptron is

guaranteed to find an optimum solution in the form of a hyperplane that acts as

a decision boundary in a two class pattern-classification problem, as illustrated in

Figure 2.2.

x2

x1
0

w
1
x

1
 + w

2
x

2
 + b = 0

Decision boundary

Class B 

Class A 

Figure 2.2: A perceptron as a decision boundary for two-dimensional (2D) linearly
separable data.
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The equation of this hyperplane is given by Eq. 2.1 with k = 1. The output

response of the perceptron [34] is given by,

h(x) = sgn(z) =

⎧⎪⎨
⎪⎩

+1 if z > 0

−1 if z < 0.
(2.9)

To expand the network to form a classifier of more than two classes, additional

perceptrons are required. Note that sgn(·) is an activation function known as the

signum function.

2.2.2 Multilayer Perceptron

A multilayer perceptron (MLP) is a type of neural network that is constructed using

multiple perceptrons forming a multi-layer network. It is composed [34] of an input

layer, one (or more) hidden layers and an output layer as shown in Figure 2.3.

Output
layer

Input
layer

1st
hidden
layer

2nd
hidden
layer

Input
Data

Outputs

Figure 2.3: Example of a multilayer perceptron with two hidden layers.

The training of an MLP is based on an error correction learning rule known as

the error backpropagation algorithm. This algorithm consists of a forward pass and

a backward pass.

In the forward pass, the input data is fed into the input layer, followed by a

forward propagation through the hidden layers, with fixed synaptic weights, to the

output layer to produce a set of outputs [34]. This propagation is illustrated in the

two-hidden layer MLP example shown in Figure 2.3 with a single data sample. Let

the index of each layer be denoted with a superscript and the index of a neuron in
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a given layer be denoted with a subscript. Then,

a(0) = a
(0)
1 , . . . , a(0)n = x1, . . . , xn, (2.10)

z(1) = z
(1)
1 , . . . , z

(1)
j =

(
n∑

i=1

w
(1)
1i a

(0)
i

)
+ b

(1)
1 , . . . ,

(
n∑

i=1

w
(1)
ji a

(0)
i

)
+ b

(1)
j , (2.11)

a(1) = a
(1)
1 , . . . , a

(1)
j = ϕ

(
z
(1)
1

)
, . . . , ϕ

(
z
(1)
j

)
, (2.12)

z(2) = z
(2)
1 , . . . , z

(2)
k =

(
j∑

i=1

w
(2)
1i a

(1)
i

)
+ b

(2)
1 , . . . ,

(
j∑

i=1

w
(2)
ki a

(1)
i

)
+ b

(2)
k , (2.13)

a(2) = a
(2)
1 , . . . , a

(2)
k = ϕ

(
z
(2)
1

)
, . . . , ϕ

(
z
(2)
k

)
, (2.14)

z(3) = z
(3)
1 , . . . , z

(3)
l =

(
k∑

i=1

w
(3)
1i a

(2)
i

)
+ b

(3)
1 , . . . ,

(
k∑

i=1

w
(3)
li a

(2)
i

)
+ b

(3)
l , (2.15)

a(3) = h(x) = ϕ
(
z
(3)
1

)
, . . . , ϕ

(
z
(3)
l

)
, (2.16)

where n is the the dimension of the input, j is the number of hidden neurons in the

first layer, k is the number of hidden neurons in the second layer, l is the number of

output units in the third layer (or the output layer), x1, . . . , xn are the input data

from a single data sample, w is the synaptic weight of a neuron, z is the activation

potential of a neuron, b is the bias of a neuron, ϕ(·) is the activation function, a is

the output of a neuron and h(x) is the output response of the network to an input

data sample, x.

In the backward pass, the learning occurs when the synaptic weights are adjusted

to minimise the error. It begins with the computation of error of the actual output
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responses of the network, from the forward pass, with the labels of the corresponding

input samples. This error is then backward propagated layer by layer through the

network until it reaches the input layer. The neural network structure in Figure 2.3

and the corresponding notation will be used to depict this process.

In the instance where the neural network is used for a classification problem with

a cross-entropy cost function (Eq. 2.8) and a sigmoid activation function applied to

the output layer units, the error of the last layer, δ, can be calculated as follows, for

layer three in this particular example (see Figure 2.3),

δ(3) =
∂J(w,b)

∂a(3)

∂a(3)

∂z(3)
, (2.17)

where a(3) = h(x) is the output response of the network to an input data sample x,

∂J(w,b)

∂h(x)
= −

(
yi
∂ log (hi(x))

∂hi(x)
+ (1− yi)

∂ log (1− hi(x))

∂hi(x)

)

= −
(

yi
hi(x)

+
(1− yi)

(1− hi(x))
(−1)

)

= −
(

yi − hi(x)

hi(x) (1− hi(x))

)
, for i = {1, ..., l},

(2.18)

∂h(x)

∂z(3)
= hi(x) (1− hi(x)) , for i = {1, ..., l}, (2.19)

y is the label of data sample x, w denotes the synaptic weights, b denotes the

biases, l is the number of output neurons in the third layer (or the output layer)

and � indicates the layer.

Thus,

δ(3) = h(x)− y. (2.20)

Then, the error of layer three, δ(3), is backward propagated layer by layer as

follows,

δ(2) = w(3)T δ(3) · ∗ϕ′
(
z(2)

)
, (2.21)
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δ(1) = w(2)T δ(2) · ∗ϕ′
(
z(1)

)
, (2.22)

where ·∗ denotes the element-wise multiplication operation and ϕ′(·) denotes the

derivative of the activation function.

Next, δ will be used to determine the gradient of the error with respect to the

synaptic weights and biases in each layer [37] [34],

∂J(w,b)

∂w(�)
=

∂J(w,b)

∂a(�)

∂a(�)

∂z(�)
∂z(�)

∂w(�)

= δ(�)a(�−1)T ,

(2.23)

∂J(w,b)

∂b(�)
=

∂J(w,b)

∂a(�)

∂a(�)

∂z(�)
∂z(�)

∂b(�)

= δ(�),

(2.24)

as

∂z(�)

∂w(�)
=

∂
(
w(�)a(�−1) + b(�)

)
∂w(�)

= a(�−1), (2.25)

∂z(�)

∂b(�)
=

∂
(
w(�)a(�−1) + b(�)

)
∂b(�)

= 1. (2.26)

Finally, the synaptic weights and biases of the networks can be updated

iteratively with an optimisation algorithm, such as batch gradient descent, that

uses all the data samples in the training set to compute argmin
w,b

J(w,b), where

J(w,b) is given in Eq. 2.8. The amount of updates that the weights receive at each

iteration, i.e. step size update, is controlled by a learning rate, η. The incremental

updates on the synaptic weights, Δw, and biases, Δb, at each iteration, t, is as

follows [36] [38],

Δw(�)(t) = −η
∂J(w,b)

∂w(�)
(t), (2.27)
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w(�)(t+ 1) = w(�)(t) + Δw(�)(t), (2.28)

Δb(�)(t) = −η
∂J(w,b)

∂b(�)
(t), (2.29)

b(�)(t+ 1) = b(�)(t) + Δb(�)(t). (2.30)

2.3 Convolutional Neural Network

A convolutional neural network (CNN) is a type of deep neural network that is

specialised in, but not limited to, image processing tasks. The main differences

between an MLP and a CNN is that a CNN is usually made up of more than two

hidden layers and utilises weight sharing. The utilisation of weight sharing in a

CNN results in it having significantly fewer trainable parameters and requiring less

training time compared to an MLP of the same depth [12].

The original implementation of a CNN consists of a number of convolutional,

pooling (subsampling) and fully connected layers [39]. The CNN essentially employs

signal processing techniques for extracting features automatically. The convolutional

layers contain convolution filters with different coefficients to produce different

translation equivariance features [40]. The pooling layers contain non-linear filters

to extract the most significant features in a translation invariant framework [40].

The CNN uses convolutional and pooling layers at the beginning of its

architecture in order to extract features of input images. Then fully connected

layers, which are the standard one dimensional input MLP, are used to predict the

output of the input image [41]. An example of a CNN architecture is shown in

Figure 2.4.
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Convolution
layer

Subsampling
layer

Convolution
layer

Subsampling
layer

Fully
connected

layer

Fully
connected

layer

INPUT OUTPUT

Figure 2.4: Example of a CNN architecture.

2.3.1 CNN Structures and Parameters

In this section, we will introduce the different structures and discuss the number of

trainable parameters used in CNNs.

Structure

As discussed in Section 2.3, the original structure of a CNN is more suited for a

classification task where it uses convolutional layers as the feature extractors and

fully connected layers as the final classifier. A CNN can also be structured to perform

other tasks. The most common CNN structures are the contracting, contracting-

expanding and multi-stage structures.

A CNN designed for a classification task usually adopts a contracting structure,

where the resolution of the feature maps decrease as the network gets deeper [18] [42]

[43], where the lowest resolution feature maps are the input to the fully connected

layers. A CNN used for classification usually requires the features to be highly

invariant in order to make the final decision. The structure incorporates techniques

or components that can help integrate spatial invariant properties into high-level

features.

A CNN designed for a segmentation task usually adopts a contracting-expanding

structure [18] [42] [43]. The contracting part of the structure is used for feature

extraction, while the expanding part is used for high-level feature mapping to the

original input resolution for pixel-wise predictions. A CNN used for segmentation

usually requires the features to be highly equivariant, i.e. preserved spatial

19



CHAPTER 2. INTRODUCTION TO NEURAL NETWORKS

information. The structure usually incorporates techniques or components that can

help preserve the spatial information of the features.

A CNN designed for a more complex task, such as object detection task,

sometimes adopts multiple algorithms, or networks, to handle different operations

of a task. Each algorithm is usually designed and optimised for a specific operation

within the task to achieve a higher overall performance when compared to the

performance of a single algorithm designed to solve the task completely. For example,

a CNN of a region of interest extraction algorithm and a classification network

generally results in a better classification performance when compared to a single

classification network.

Number of Trainable Parameters

The number of trainable parameters used in a CNN depends on three factors: depth,

component arrangement and the number of filters used in each convolutional layer.

A deep CNN allows an effective observation into a larger area of the input

image as opposed to a shallow CNN. As the network becomes deeper, a better

knowledge of the spatial relationship of a pixel (or a feature) and its surroundings

is established [44]. However, an increase in the depth of a network generally leads

to an increase in the number of trainable parameters.

A CNN is usually constructed from a set of different components. Depending on

the design, a CNN can have significantly fewer trainable parameters than another

CNN constructed from the same set of components. For example, a CNN constructed

from two 3×3×256 convolutional layers stacked together, followed by two 1×1×1

convolutional layers has a significantly higher number of trainable parameters in

comparison to a CNN constructed from the same components arranged in an

alternate manner, i.e. two pairs of 3 × 3 × 256 convolutional layer and 1 × 1 × 1

convolutional layer stacked together. Thus, the number of trainable parameters used

in a CNN not only depends on the components used, but also on the arrangement

of the components.

As discussed earlier, a CNN uses convolutional layers for feature extraction. Each

convolutional layer consists of a number of filters that determine the type of features
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to be extracted from the input. The larger the number of filters in each convolutional

layer, the greater the capacity of the network to solve a task [45]. However, the larger

the number of filters, the larger the number of trainable parameters in the network.

Therefore, the depth, component arrangement and number of filters used in each

convolutional layer should be adjusted carefully by the user according to the task

and resources available, as it can lead to an expensive memory usage and larger

computation times.

2.3.2 Components of a CNN

In this section, we will introduce the components used to construct a CNN. In

particular, the components discussed include the convolutional layer, pooling layer,

upsampling layer, skip connections, dropout, normalisation and activation layer.

Convolutional Layer

A convolutional layer uses a set of convolution filters to perform operations to

produce feature maps depending on the filter kernel [13]. The shape of the kernel

specifies the shape and size of the input region, while the values of the kernel

specify the weights on the input. The kernel shape is usually pre-determined in the

network architecture, while the kernel values are initialised according to initialisation

algorithms that will be discussed in Section 3.2.1 and adjusted during the training

process. The resulting feature maps are the features of the input, such as gradients

(edges).

In CNNs, the convolution operation [45] of an input image and a convolution

filter kernel can be expressed as follows,

y(i, j) = (x ∗ k)(i, j) =
∑
m

∑
n

x(i+m, j + n)k(m,n), (2.31)

where ∗ is the convolution operator, y is the matrix of the output image, x is the

matrix of the input image, k is the matrix of the filter kernel and m and n are the

row and column index of the filter kernel, respectively, with the centre of the kernel

indicated by (0,0).
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In CNNs, a convolutional layer can be implemented with four hyperparameters,

i.e. number of filters, kernel size, stride length and padding. The number of filters,

which corresponds to the number of feature maps produced in each layer, defines

the capacity of a network. The kernel size defines the number of inputs in each

direction that are processed at a time. The stride length defines the number of rows

and columns that the filter shifts over after each computation. Padding refers to

an operation of adding zeros on the perimeter of the input to maintain the output

resolution of a layer. The application of padding in a convolutional layer, whether

with or without padding, can be determined with a padding hyperparameter. A

convolutional layer without predefined stride length and padding usually refers to

a convolutional operation with a stride length of 1 and the application of padding,

e.g. Eq. 2.31.

An illustration of a 3 × 3 convolution operation with stride length of 1 and no

padding is shown in Figure 2.5, where the input data is convolved with a 3 × 3

convolution filter to produce output data, i.e. a feature map.

7 6 9 6 2 0

4 3 8 8 0 1

0 4 8 9 2 0

8 7 2 2 9 6

9 3 7 6 8 9

0 0 2 6 4 2

Input data

-8 8 3

3 -5 -7

-1 9 -9

Filter
kernel

-76 -58 21 -6

-23 -34 -100 -19

-14 62 -78 -152

-57 -138 -22 1

Output data

Figure 2.5: Example of a 3× 3 convolution operation with stride length of 1 and
no padding.

Pooling Layer

Pooling layers are used to reduce the dimension of the input and introduce

translational invariances in the network through the process of downsampling [13].

The most common type of pooling layer used in CNNs is the max pooling layer [46]

[26] [29] [17] [18]. It is a type of nonlinear filter that is used to extract significant
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features from the previous layer by selecting the largest valued feature from each

region of the sliding filter kernel. Linear filter based pooling layers, such as the

average pooling layer or strided convolutional layer (convolutional layer with a stride

length of more than 1) can also be used in place of, or along with, max pooling layers

in certain applications [39] [47] [48] [30] [49].

In CNNs, a pooling layer is implemented with three hyperparameters, i.e. kernel

size, stride length and padding. Typically, a 2× 2 pooling layer, with stride length

of 2 and no padding, is employed in CNNs to perform downsampling by a factor

of 2. The illustration of 2 × 2 max, average and min pooling operations are shown

in Figure 2.6, where the maximum, average and minimum feature value from each

region of the sliding filter kernel are extracted accordingly.

3 70 27 85

12 59 15 21

60 11 68 28

33 16 47 37

Input data 70 85

60 68

Max Pooling

3 15

11 28

Min Pooling

36 37

30 45

Average Pooling

Figure 2.6: Examples of 2× 2 max, average and min pooling operations.

Upsampling Layer

Upsampling layers are used to increase the dimension of the input. In digital

image processing, upsampling is traditionally performed with interpolation methods.

Interpolation is an estimation method used to obtain the value of a data point given

the values of the data points around it.

The most basic upsampling method is the nearest neighbour interpolation. The

nearest neighbour method chooses the nearest data point to the data point to be

estimated and then uses its value as the estimated value without considering the

values of other points [50]. However, nearest neighbour interpolation usually has

the effect of producing sharp boundaries.
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Another common interpolation method is the bilinear interpolation [50]. It

involves performing linear interpolation in two directions (e.g. horizontal and

vertical directions). It takes a weighted average of a number of predetermined

neighbouring data points to make the estimation of the required data point.

The resulting image has smoother edges as compared to the nearest neighbour

interpolation method.

In CNNs, an interpolation-based upsampling layer is implemented with one

hyperparameter, i.e. size. The size determines the upsampling factor for the

interpolation to be performed in each direction. Examples of nearest neighbour

and bilinear interpolation operations with the size of 2× 2 are shown in Figure 2.7.

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbour Interpolation

1 1.25 1.75 2

1.5 1.75 2.25 2.5

2.5 2.75 3.25 3.5

3 3.25 3.75 4

Bilinear Interpolation

1 2

3 4

Input data

Figure 2.7: Example of 2 × 2 nearest neighbour and bilinear interpolation
operations.

Transposed convolution is a trainable upsampling method. Unlike interpolation-

based upsampling methods (e.g. nearest neighbour, bilinear interpolation),

transposed convolution allows its parameter to be trained along with the other

network parameters by backpropagation. The transposed convolution performs an

upsampling with a factor, f , by performing convolution with a fractional input stride

of 1
f , where f is an integer [17]. A combination of a transposed convolutional layer

and a non-linear activation function can be used to perform a nonlinear upsampling.

In CNNs, the hyperparameters required for a transposed convolutional layer

is similar to a convolutional layer. A transposed convolutional layer without a

predefined stride length and padding usually refers to a transposed convolutional

layer with a stride length of 1 and no padding.

Another popular trainable upsampling method is called resize convolution [51].

24



2.3. CONVOLUTIONAL NEURAL NETWORK

It uses a combination of interpolation and convolutional layers in the form of a stack

of f × f nearest neighbour interpolation and f × f convolutional layers, where f

denotes the upsampling factor.

Generally, either a 2× 2 resize convolution [18] or transposed convolution [47] is

preferred to perform upsampling by a factor of 2.

Skip Connection

Deep CNNs have proven to be very successful in extracting important features

through the use of convolutional layers [26] [29]. However, deep networks tend to

experience a degradation problem [52], where network training accuracy increases,

becomes saturated, and then reduces rapidly after the network starts converging.

Skip connections were originally used to incorporate a residual learning

framework to address the degradation problem in deep networks [52]. The learning

framework uses a skip connection from a layer � to a later layer �+ n to replace the

original function F (a(�)) with a function H(a(�)) = F (a(�)) + a(�) [52], as shown in

Figure 2.8.

ReLU

Convolutional layer 1

Convolutional layer n

Figure 2.8: Example of a skip connection implementation to incorporate a residual
learning framework.

The reason for the use of a residual learning framework is to prevent a deep

network from having larger training errors than a corresponding shallow network by

simplifying the training of any excess layers in the deep network, e.g. n convolutional

layers in Figure 2.8, for an identity mapping. By using residual learning, the solvers

can simplify the approximation of identity mappings by forcing the weights of the

residual function, F (a(�)), toward zero, if identity mappings are optimal. This will
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help to minimise the additional complexity introduced by any excess nonlinear layers

in the deep network when an optimal solution for a task can be achieved with a

corresponding shallow network [52]. An element-wise summation layer is used at

the end of the skip connection, hence keeping the dimension of the output layer

fixed, which adds neither additional parameters nor computational complexity [52].

Skip connections can also be used to merge features of one layer to another layer

with a concatenation operation. The idea is to use preceding layer information in

the later layer to achieve better performance. It can also be used in combination

with upsampling to combine the upsampled predictions to form a fine pixel-wise

segmentation result [17].

Dropout

Dropout is a regularisation technique used in the training phase to prevent

overfitting. The idea is to train different models and use the average of the

predictions to improve the generalisation of a network. The operation is performed

by randomly removing neurons at a defined dropout rate, pd, during training so the

weights of the network are tuned based on different connectivity of the neurons in

the network [53]. Note that the dropout rate is a value between 0 and 1. During

testing, the weights of each neuron are multiplied by the probability of retention,

pr = 1−pd, to approximate average predictions of the different trained models. This

technique can improve the learning outcome of neural networks [53].

An example of an application of dropout in a neural network is shown in

Figure 2.9.
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Standard Neural Net After applying dropout

Figure 2.9: Example of a neural network without dropout (left) and with dropout
(right).

Normalisation

Normalisation in CNNs is a technique used to maintain the features in each layer to

be at the same scale. The two most common types of normalisation layers in CNNs

are known as local response and batch normalisation layers.

A local response normalisation layer normalises the input over local regions, e.g.

3× 3. The purpose of it is to aid with the generalisation of the network. The basic

idea of local response normalisation was inspired by lateral inhibition found in real

neurons [46], i.e. to inhibit the activation of the neighbouring neurons caused by

the excited neurons. However, it is a fixed algorithm, hence its hyperparameters are

unable to be tuned throughout the training process.

A batch normalisation layer normalises the input of the layer by subtracting the

mean and dividing by the standard deviation of each mini-batch of inputs (i.e. a

subset of training dataset). This mini-batch normalisation introduces some noise to

the data and results in a form of regularisation. This operation also enables the use

of higher learning rates to speed up the training process [54]. However, applying a

normalisation method to the input of each layer may change the representation of

the original input, e.g. normalising the input of a sigmoid function may constrain the

input to be within the linear region of the sigmoid function, hence not utilising its

nonlinear characteristic. Therefore, extra parameters to control the scale and shift of

the normalised value are implemented in the batch normalisation layer, which need
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to be learned along with the other network parameters. These extra parameters

enable the restoration of the original value if it produces better results than the

normalised value [54].

Activation Layer

Activation layers are usually applied after convolutional layers in order to decide

whether a particular neuron should be activated or not. The operation of a

convolutional layer followed by an activation layer in a CNN is expressed as follows

[55],

a
(�)
j = ϕ

((
n∑

i=1

k
(�)
j,i ∗ a(�−1)

i

)
+ b

(�)
j

)
, (2.32)

where n is the number of input from the previous layer, b is the bias of each

convolution filter, k
(�)
i,j is the kernel of each convolution filter in the convolutional

layer that connects ith input feature map from the previous layer, a
(�−1)
i , with the

jth output feature map in layer �, a
(�)
j and ϕ(·) is the activation function used in

the activation layer.

Nonlinear activation functions, e.g. sigmoid, Tanh, ReLU, leaky ReLU (LReLU)

or parametric ReLU (PReLU), are usually applied throughout the network to enable

the network to approximate most nonlinear functions [56].

As discussed in Section 2.2, the sigmoid function [56] maps the input to an output

range of 0 to 1. It is based on a logistic function and expressed as,

f(x) =
1

(1 + e−x)
. (2.33)

The Tanh function [57] (i.e. hyperbolic tangent function) maps the input to an

output range of -1 to 1. It is also based on a logistic function and defined by,

f(x) =
ex − e−x

ex + e−x
. (2.34)

The logistic function is a classic activation function that was initially used

because of its similarity to a biological neuron’s activation rate [56]. It is
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generally utilised due to its differentiable property, which makes it suitable for the

backpropagation training algorithm. However, its saturation property, often used

for decision boundaries, also causes what is known as vanishing gradients during

training [56].

The rectified linear unit [56], ReLU, is an unsaturated activation function that

overcomes the vanishing gradients problem by eliminating exponential terms. It is

defined by,

f(x) =

⎧⎪⎪⎨
⎪⎪⎩
x if x > 0

0 if x ≤ 0.

(2.35)

Unlike the sigmoid and Tanh activation functions, where every result of the

weighted sum function in Eq. 2.32 results in an activated neuron, ReLU restricts

the activation of the neuron when the weighted sum is less than or equal to zero.

This simplifies the network and decreases the computational time during the training

process, which makes it the most preferred activation function for hidden neurons.

However, the ReLU comes with an issue. Since the gradient of the ReLU function

in the negative region of x is zero, once the neuron is inactive, the neuron will not

be activated again throughout the gradient descent based training process, creating

what is known as the dying ReLU problem [58].

A Leaky ReLU [56] (LReLU) offers a solution to the dying ReLU problem by

setting the gradient of the negative region to a small constant value, c, i.e.

f(x) =

⎧⎪⎪⎨
⎪⎪⎩
x if x > 0

cx if x ≤ 0.

(2.36)

The Parametric ReLU (PReLU) turns the small constant value, c, into a trainable

parameter, α, so that the gradient of the negative region can be trained accordingly

[59].

Although the LReLU and other modified activation functions, e.g. PReLU,

somewhat solve the dying ReLU problem and are shown to be superior to ReLU [56],

many state-of-the-art segmentation networks [17] [18] [31] still use ReLU as their
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activation functions throughout the network since it produces satisfactory results

and is simpler to implement.

For the final layer of the neural network, the choice of activation function depends

on the task. To perform linear regression, a linear activation function is often used

to produce an output that is proportional to the input without any transformation.

To perform classification, a sigmoid function is often used in a classification task

with up to two classes, while a softmax activation function is generally used for a

multiclass classification task, i.e. more than two classes. The softmax activation

function, also known as a normalised exponential, is used to normalise the network

output to a probability distribution over the number of output classes [60], and is

given by,

f(x)i =
exi∑K
j=1 e

xj
, (2.37)

where i refers to an element of the input vector x and K refers to the number of

output classes.

2.4 CNN Architectures

CNN architectures can be designed for various computer vision tasks. These tasks

can be mainly categorised into; image classification, object detection and image

segmentation.

2.4.1 CNN Architectures for Image Classification

The basic idea of image classification is to categorise an image into one of a set of

classes according to the most significant features in the image. It is the basis of object

detection and image segmentation tasks. The main challenges of the classification

task are the object variability due to viewpoint and intra-class variances [61]. An

example of an image classification task is shown in Figure 2.10.
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Input image Network output
Car

Bus

Bicycle

Image classification
network

Figure 2.10: An example of a classification task.

The original implementation of a CNN that was discussed in Section 2.3 is

known as LeNet-5 [39]. It was developed for image classification, in particular,

a handwritten digit recognition task. It consists of convolution, pooling and fully

connected layers. The LeNet-5 is composed of seven layers and has a total of 60k

trainable parameters. It takes an input with a dimension of 32× 32, then applies a

Tanh activation function on each convolutional layer and utilises average pooling to

perform downsampling.

Another early CNN designed for an image classification task is AlexNet [46]. It

won the 2012 ILSVRC competition on classifying the main objects present in images

into approximately 10,000 object classes [46]. The AlexNet architecture is composed

of eight layers and has a total of 60M trainable parameters [46]. The main attribute

of AlexNet is that it adopts the ReLU activation, local response normalisation and

dropout regularisation in its architecture. AlexNet [46] requires a fixed input image

dimension of 224×224. For training, several data augmentation techniques are used,

such as image translation, mirroring and intensity alteration of the RGB channels,

to achieve a low error rate. For testing, the network makes a prediction of ten

cropped and augmented images from the original 256× 256 image and averages the

predictions to obtain the final prediction.

The next breakthrough in CNN is the VGG network [26]. The VGG network

uses small filter kernels to build deeper networks. Its best performing network,

VGG-19 [26], architecture consists of 19 layers and has a total of 144M trainable

parameters. The rest of its architecture and implementation techniques were

adopted from AlexNet [46].

Another variation of a CNN is GoogLeNet [29]. This architecture won the 2014

31



CHAPTER 2. INTRODUCTION TO NEURAL NETWORKS

ILSVRC image classification challenge [29]. GoogLeNet architecture consists of 27

layers and uses a total of 6.8M trainable parameters. Its main difference with

the above-mentioned CNN architectures is that it uses a combination of multiple

size convolution filters in parallel, known as an inception module. Each inception

module processes the input of the module with the multiple size convolution filters

and produces a concatenated output of these filters. Each of these modules allows

the combination of different feature levels at the same time [29]. This inception

module also adopted 1 × 1 convolutional layers in its architecture for feature map

dimensionality reduction to reduce the overall number of trainable parameters.

GoogLeNet also replaced the fully connected layers with an average pooling layer to

reduce the number of trainable parameters.

Despite GoogLeNet’s success with inception modules, ReSNet [48] won the

2015 ILSVRC competition. It regressed back to the original CNN architecture,

which consists of convolution, pooling and fully connected layers. However, it

introduced skip connections to facilitate the idea of having deeper networks. The

skip connections give options to the model to make full use of the deeper architecture

or just a shallow counterpart with a residual learning framework. It also adopts 1×1

convolutional layers in its architecture for feature map dimensionality reduction

that allows a 152-layer network to be constructed with a total of 60M trainable

parameters. A Batch Normalisation (BN) layer [54] is used to optimise the training

of a deeper network.

Following the ResNet success with skip connections, DenseNet [30] was developed

by modifying the ResNet learning framework. Instead of using addition on the

skip connections from early to later layers, concatenation was used. DenseNet is

composed of 250 layers and has a total of 15.3M trainable parameters. Motivated

by ResNet, it uses a 1 × 1 convolution before each 3 × 3 convolutional layer for

dimensionality reduction to minimise the number of trainable parameters in its

architecture.

A summary of the main attributes of CNNs for image classification are given in

Table 2.1.
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Table 2.1: Main attributes of CNNs for image classification

Network Main Attributes

LeNet-5 Combination of convolution, pooling and fully connected layers

AlexNet ReLu activation, local response normalisation, dropout regularisation

VGG Deeper network structure

GoogLeNet 1x1 convolution, global average pooling, inception module

ReSNet Skip connections to form residual learning framework

DenseNet Dense block (skip connections from all subsequent layers)

2.4.2 CNN Architectures for Object Detection

Object detection is a more challenging task, as it combines the complexity of two

tasks, i.e. image classification and object localisation. As discussed in Section 2.4.1,

image classification requires a model to categorise the input image into one of the

predefined set of classes. Object localisation requires a model to produce bounding

boxes as an output to indicate the object’s location and size in an image.

An example of an object detection task is shown in Figure 2.11, where an object

detection network produces a bounding box and a class label for each object detected

(0, ..., 4) in the input image. The bounding box output is usually in the form of the

initial point of the box in x and y coordinates, followed by the width, w, and height,

h of the box. Each bounding box is denoted as (x, y, w, h).
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Object detection
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Network output
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x1, y1, w1, h1, class1

x2, y2, w2, h2, class2

x3, y3, w3, h3, class3

x4, y4, w4, h4, class4

Figure 2.11: An example of an object detection task.

One of the earliest algorithms for object detection is R-CNN [62], which evolved

to become Fast R-CNN [27] and then Faster R-CNN [28]. The acronym R-CNN

stands for Regions with CNN features. As the name infers, it is a method based

on a CNN for object detection. The two methods, R-CNN and Fast R-CNN, rely

on a selective search algorithm to provide region proposals and a pre-trained CNN

model (AlexNet [46] was used in R-CNN and VGG-16 [26] was used in Fast R-

CNN) for feature extraction. In the R-CNN, the features from a CNN are used

by another machine learning algorithm, called a support vector machine (SVM),

and a linear regression model, to perform classification and bounding box prediction

respectively [63]. The SVM is a classical machine learning algorithm that looks for

the closest samples from different classes i.e. support vectors, and uses them to form

the best separating hyperplane to predict or classify new data samples. However,

in the Fast R-CNN, the SVM and the linear regression model are replaced by fully

connected layers with softmax and linear activation functions for classification and

bounding box prediction, respectively. The speed and detection performances of Fast

R-CNN are further improved in Faster R-CNN where the selective search algorithm

is replaced with a simple convolutional network called a Region Proposal Network
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(RPN) and the Fast R-CNN is kept as the detection network. The RPN is made of an

n×n convolutional layer followed by two 1×1 convolutional layers with softmax and

linear activation functions, respectively. Both the RPN and the detection network

in Faster R-CNN can be trained to utilise shared convolutional features extracted

from a pre-trained CNN, e.g. VGG-16.

Motivated by the complex pipelines of R-CNN and the lack of speed of Fast

and Faster R-CNN in real-time object detection, YOLO [49] is created as the first

network that can run in real time with high accuracy. Unlike the family of R-

CNN that are composed of two stages, i.e. region proposal box generation and

classification, YOLO is a single-stage network that predicts bounding boxes and

class probabilities of objects in an input image in one evaluation, hence the name

“You Only Look Once” (YOLO). The YOLO architecture is inspired by GoogLeNet,

where the inception modules are replaced by blocks containing a 1×1 convolutional

layer followed by a 3× 3 convolutional layer. The whole architecture consists of 30

layers and has a total of 271.7M parameters, where most of the trainable parameters

are used in the fully connected layers. YOLO [49] requires a fixed input image

dimension of 448×448 for detection. It adopts dropout as its regularisation technique

and uses Leaky ReLU instead of ReLU as its activation function, which follows the

convolutional layers directly throughout its architecture. A linear activation function

is used for the final prediction layer.

A summary of the main attributes of CNNs for object detection are given in

Table 2.2.

Table 2.2: Main attributes of CNNs for object detection

Network Main Attributes

R-CNN Idea of bounding box prediction for object localisation

Fast R-CNN
Use of a neural network as a linear regression model for bounding box

prediction

Faster R-CNN Cascade use of CNNs for object detection task

YOLO
A new CNN architecture to predict bounding boxes and class probabilities

simultaneously
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2.4.3 CNN Architectures for Image Segmentation

Image segmentation is a process of separating an image into multiple segments to

facilitate analysis. In CNNs, image segmentation is usually referred to as the process

of assigning a class label to every pixel in an image from a pre-defined set of classes,

hence producing a pixel-wise mask of the image as the output. Thus, the output of

a CNN used for image segmentation is more precise in terms of size and location in

comparison to the output of a CNN used for object detection [64].

An example of an image segmentation task is shown in Figure 2.12, where every

pixel in the input image is assigned with one class from a pre-defined set of classes

(e.g. in this case, a person, a horse, a dog, the land and sky). The network output

is a pixel-wise mask of the image composed of different class labels, in this case it is

visualised with different colours: a person is orange, a horse is purple, a dog is red,

the land is green and the sky is blue.

Image segmentation
network

Network outputInput image

Figure 2.12: An example of an image segmentation task.

One of the most successful CNNs for image segmentation is the Fully

Convolutional Network (FCN) [17]. This network is constructed from a classification

network architecture, e.g. AlexNet [46], VGG-16 [26] or GoogLeNet [29], by

removing the final layer of the network and converting the fully connected layers to

convolutional layers. A 1× 1 convolutional layer with a fixed number of convolution

filters, which represents the number of pre-defined classes, is used to perform

classification of each feature at each feature location. This 1 × 1 classification

layer can be used to perform predictions at different feature map resolutions by

appending it at multiple output locations throughout the network. Each output map

produced from a set of downsampled feature maps has an output resolution lower
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than the original input resolution, i.e. coarse output. A transposed convolutional

layer with a stride length equal to the upsampling factor is then used to upsample

the output maps. The best performing FCN architecture [17] is FCN-8s which has

a stride length of 8 and a 1× 1 classification layer with a transposed convolutional

layer appended at three different locations. The upsampled output maps are then

combined to form pixel-dense segmentation outputs with fine details. Its main

attribute is the new image segmentation architecture obtained by omitting the

fully connected layers of a classification network and then combining the predictions

from multiple resolution feature maps with transposed convolutional layers that can

be trained to perform upsampling. The best performing FCN-8s [17] is based on

VGG-16 and has a total of 134M trainable parameters. An illustration of an FCN

architecture is shown in Figure 2.13.
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Conv+ReLu Max Pooling Prediction Transpose
Convolution Softmax

Figure 2.13: An illustration of an FCN architecture.

Another CNN used for image segmentation is known as U-Net [18]. This network

is a modification and extension of the FCN. U-Net consists of two CNN classification

structures forming a u-shaped, contracting-expanding, structure. The contracting

part is used for feature extraction, while the expanding part is used to propagate

context information to a higher resolution layer (feature mapping). U-Net also

adopts a skip connection to concatenate the features from the contracting to the

expanding part to help with feature mapping. The components of U-Net are similar

to the FCN except for the upsampling method. It adopts a 2× 2 resize convolution
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instead of a transposed convolution. The U-Net architecture described in [18]

consists of 23 convolutional layers and has a total of 31M trainable parameters.

An illustration of a U-Net architecture is shown in Figure 2.14.
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128 128

256 256

512 512
1024

Conv+ReLu Max Pooling SoftmaxResize
Convolution

Skip Connection

Figure 2.14: An illustration of a U-Net architecture.

The next development is V-Net which is a 3D CNN [47], it is created by

replacing the U-Net 2D convolutional layers with 3D convolutional layers. It is

similar in structure to U-Net, however it accepts volumetric data. V-Net uses a

similar upsampling method to that of the FCN, implements residual learning in its

architecture like ResNet, excludes dropout regularisation, and uses PReLU instead

of ReLU. It was developed to perform volumetric medical image segmentation, as

medical images are often 3D in nature.

A summary of the main attributes of CNNs for image segmentation are provided

in Table 2.3.

Table 2.3: Main attributes of CNNs for image segmentation

Network Main Attribute

FCN A new CNN architecture for image segmentation

U-Net U-Shaped network structure for image segmentation

V-Net A three-dimensional version of U-Net to perform volumetric segmentation

2.4.4 CNN Structure and Parameter Summary

A summary of the structures and number of trainable parameters used in the state-

of-the-art CNNs is presented in Table 2.4.
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Table 2.4: CNN Structure and Parameter Summary

Network Task Structure Property
Number of

Trainable Parameters

LeNet-5 [39] Classification Contracting Invariant features 60k

AlexNet [46] Classification Contracting Invariant features 61M

VGG [26] Classification Contracting Invariant features 144 M

GoogLeNet [29] Classification Contracting Invariant features 6.8M

ReSNet [48] Classification Contracting Invariant features 60M

DenseNet [30] Classification Contracting Invariant features 15.3M

R-CNN [62] Object detection Multi-stage Discrete task oriented 61M

Fast R-CNN [27] Object detection Multi-stage Discrete task oriented 144 M

Faster R-CNN [28] Object detection Multi-stage Discrete task oriented 144 M

YOLO [49] Regression Contracting Invariant features 271.7M

FCN [17] Segmentation Contracting-expanding Equivariant features 134M

U-Net [18] Segmentation Contracting-expanding Equivariant features 31M

V-Net [47] Segmentation Contracting-expanding Equivariant features 297M

As can be seen in Table 2.4, the structure used in the state-of-the-art CNNs

depends primarily on the task-whether it is for classification, segmentation, or a

more complex task, such as object detection. A CNN designed for a classification or

regression task usually adopts a structure to integrate spatial invariant properties

into high-level features for making the prediction. A CNN designed for segmentation

usually adopts a structure that is suitable to map high-level features back to the

original input resolution for segmentation. A CNN designed for a more complex

task, such as object detection, usually adopts multiple algorithms/networks to carry

out different operations of a task.

The structures of LeNet-5 [39], AlexNet [46], VGG [26], GoogLeNet [29], ReSNet

[48], and DenseNet [30] have been designed and optimised for classification tasks.

Whereas, FCN [17], U-Net [18], and V-Net [47] adopt the structures of a network that

was not originally designed and optimised according to the needs of a segmentation

task. The FCN compensates for the unoptimised design by using a combination of

multiple predictions of different feature resolutions, while U-Net [18] and V-Net [47]

use a stack of two classification networks to form a contracting-expanding structure

for a progressively higher resolution mapping from the low resolution feature maps

to the original input resolution. For an object detection task, R-CNN [62], Fast
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R-CNN [27] and Faster R-CNN [28] use a multi-stage structure to adopt multiple

traditional algorithms and/or networks to handle different operations of the task.

However, most of the networks designed with multi-stage structures are usually

slower and more tedious to utilise compared to networks designed with a single-

stage structure, e.g. YOLO [49].

From Table 2.4, we can see that the number of trainable parameters varies widely

from 60k to 297M regardless of the structure of the network. The number varies due

to the network depth, network architecture and the number of convolution filters

used in each layer of the network.

2.4.5 CNN Component Summary

The components used in the state-of-the-art CNNs are presented in Table 2.5.

Although the number of different components in the state-of-the-art networks

is quite limited, outstanding performance in various applications can still be

achieved with the appropriate combinations of these different components and their

hyperparameter variations.
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Table 2.5: CNN Component Summary

Network

Components

Downsampling Upsampling
Skip

Dropout Normalisation Activation
Connection

LeNet-5 [39] Average pooling - - - - Tanh

AlexNet [46] Max pooling - - Dropout
Local response

ReLU
normalisation

VGG [26] Max pooling - - Dropout - ReLU

GoogLeNet [29] Max pooling - - Dropout - ReLU

ReSNet [48]
Max pooling,

-
Residual - Batch

ReLU
Strided convolution learning normalisation

DenseNet [30]
Max pooling

-
Features

Dropout
Batch

ReLU
Average pooling forwarding normalisation

R-CNN [62] Max pooling - - Dropout
Local response

ReLU
normalisation

Fast R-CNN [27] Max pooling - - Dropout - ReLU

Faster R-CNN [28] Max pooling - - Dropout - ReLU

YOLO [49]
Max pooling

- - Dropout -
Leaky

Strided convolution ReLU

FCN [17] Max pooling
Transposed Features

Dropout - ReLU
convolution forwarding

U-Net [18] Max Pooling
Resize Features

Dropout - ReLU
convolution forwarding

V-Net [47]
Strided Transposed Residual learning,

- - PReLU
convolution convolution features forwarding

2.5 Conclusion

In this chapter, we introduced some fundamental concepts of neural networks. We

discussed the CNN in terms of its typical structures, number of trainable parameters

and components. We also provided some discussion on the state-of-the-art CNNs

that are utilised in different image-oriented tasks, as well as the summary of their

structures, number of trainable parameters and components. Note that, some of

the state-of-the-art CNNs are relying on the use of either multiple networks (e.g. U-

Net, V-Net), multiple algorithms (e.g. R-CNN family) or a large number of trainable

parameters (e.g. VGG, YOLO) to obtain outstanding performance. As a result, a

CNN architecture often has redundant components and parameters.
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CHAPTER

3

Considerations in the Implementation of a

Neural Network

There are a number of considerations to take into account, other than the network

architecture, to ensure an effective implementation of a neural network. These

considerations include determining various hyperparameters and algorithms, data

pre- and post-processing, as well as the evaluation method. In this chapter, we

discuss each of these considerations to provide insight into an effective neural

network implementation.
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3.1 Introduction

This chapter discusses a number of considerations that need to be taken into

account to ensure an effective implementation of a neural network, specifically a

CNN. It includes various hyperparameters and algorithms, data pre- and post-

processing, and the evaluation method. The hyperparameters and algorithms

include; weight initialisation scheme, learning rate, momentum algorithm, adaptive

learning rate algorithm and regularisation algorithm. The data pre-processing

includes normalisation, enhancement, augmentation and balancing, while the

data post-processing includes mathematical morphology operations and connected

component labelling. Discussion on the evaluation method covers the most common

methods, i.e. cross-validation and hold out methods.

3.2 Hyperparameters and Algorithms

As discussed in Chapter 2, an optimisation algorithm is used in the training of

a neural network to minimise a cost function with the aim to converge to the

global minimum. However, as the problem is generally non-convex, it does not

necessarily converge to the global minimum. Instead, it tends to converge to

other stationary points, such as saddlepoints or local minima [37]. To optimise the

training of a neural network, there are a number of hyperparameters and algorithms

that can be considered. The algorithms include weight initialisation, momentum,

adaptive learning rate and regularisation. The hyperparameters include learning

rate, momentum constant, decay rate and regularisation constant. Each of these

hyperparameters affect the convergence and the ability of the network to generalise.

3.2.1 Initialisation

In a neural network, initialisation of the weights is important for a gradient descent

optimisation algorithm to achieve global convergence, as the algorithm can become

trapped in a local minimum. A good choice of initial weights may allow the

optimisation algorithm to converge to the global minimum [37].
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One of the most common initialisation scheme is a uniform random initialisation

[38] [65]. In this case the bias is set to 0 and the weights, w, at each layer are set

as,

w(�) ∼ U

[
− 1√

n(�−1)
,

1√
n(�−1)

]
, (3.1)

where ∼ U [−α, α] is a uniform distribution in the interval (−α, α), and n(�−1) is

the number of hidden neurons in the previous layer.

However, it was observed that the use of the uniform random initialisation causes

the variance of the gradient of the cost function on the input biases at each layer

to become smaller (i.e. vanishing) as it is propagated deeper into the network

[65]. Thus, a normalised initialisation scheme, called Xavier initialisation [65], was

proposed to maintain the variances of these gradients across all the layers. The

Xavier initialisation [65] has the bias set to 0 and the weights, w, at each layer set

as,

w(�) ∼ U

[
−

√
6√

n(�−1) + n(�+1)
,

√
6√

n(�−1) + n(�+1)

]
, (3.2)

where ∼ U [−α, α] is a uniform distribution in the interval (−α, α), n(�−1) is the

number of hidden neurons in the previous layer and n(�+1) is the number of hidden

neurons in the next layer.

The Xavier initialisation scheme results in a significantly faster convergence

compared to the random initialisation scheme [65]. However, it was only proven [65]

to be significantly helpful in a network that uses activation functions with symmetry

around 0 and an output between -1 and 1 (e.g. Tanh) in its hidden neurons.

For networks that use ReLU (or its variations) activation functions in its

hidden neurons, the best initialisation scheme is known as He initialisation [59],

where it specifically considers the asymmetry of the ReLU activation function. He

initialisation [59] has the bias set to 0 and weights, w, at each layer set as,

w(�) ∼ N

(
0,

2

n(�−1)

)
, (3.3)

45



CHAPTER 3. CONSIDERATIONS IN THE IMPLEMENTATION OF A
NEURAL NETWORK

where ∼ N
(
μ, σ2

)
is a normal distribution with a mean of μ, a standard deviation

of σ, and n(�−1) is the number of hidden neurons in the previous layer.

He initialisation has been proven to be superior to Xavier initialisation in the

training of a very deep CNNs (up to 30 layers) with ReLU activation functions [59].

3.2.2 Learning rate

Learning rate, η, is a parameter in the gradient descent optimisation algorithm that

controls the step size at every iteration towards the minimum point of the cost

function [45]. The learning rate determines the speed of which model convergence

occurs during training [45]. A small learning rate generally leads to small updates

on the synaptic weights and slower convergence to a minimum, while a large learning

rate leads to large updates on the synaptic weights and hence faster convergence to

a minimum. The learning rate also affects the convergence of a model [45]. If the

chosen learning rate is too large, it may cause the learning progress to be oscillatory

or unstable, in which it may never reach a minimum. On the other hand, if the

learning rate is too small, it may get stuck in a local minima or other suboptimal

stationary point.

In the most basic implementation of the gradient descent optimisation algorithm,

a fixed learning rate is used [45]. However, in practice, a gradual decrease of the

learning rate may result in a better generalisation and a faster convergence [45]. The

gradual decrease of learning rate can be achieved by the use of either a decaying or

adaptive learning rate.

The most basic type of decaying learning rate decreases linearly over a fixed

number of iterations and then stays constant for the remaining iterations. It is

formulated as,

η(t) = (1− β)η0 + βητ , (3.4)

where η(t) denotes the current learning rate, t denotes the current iteration number,

β = t
τ , τ denotes the total number of iterations over which the learning rate decays,

η0 denotes the initial learning rate and ητ denotes the constant learning rate. A
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general rule of thumb is to set τ to be the number of iterations required to pass

through the entire training set by a few hundred passes, i.e. epochs, while ητ is

usually set to be approximately 1% of η0. However, the same trade-offs exists

as in the fixed learning rate scheme when determining η0. Unfortunately, η0 can

only be determined empirically by monitoring the cost function for the first several

iterations and adjusting it according to the observed speed of convergence and

learning progress.

Unlike the decaying learning rate that adjusts the learning rate over time within

a predetermined number of iterations, the adaptive learning rate adjusts the learning

rate through the entire learning process. The adaptive learning rate will be discussed

in Section 3.2.4.

3.2.3 Momentum

A learning algorithm, known as momentum, is designed to accelerate learning and

avoid instability by including previous weight updates in the weight update equation.

It uses a momentum constant, α, defined in the range of 0 to 1 to control the

proportion of the previous weight update to be included in subsequent updates [45].

The application of a momentum algorithm [45] results in a more stable weight

update, as it accumulates an exponentially decaying moving average of all the

previous weight updates [66] [45]. It prevents extreme weight update by amplifying

the weight update that is in the same direction with the past weight updates and vice

versa [66]. The updates on the synaptic weights, Δw, and biases, Δb, at iteration

t become,

Δw(�)(t) = −η
∂J(w,b)

∂w(�)
(t) + αΔw(�)(t− 1), (3.5)

Δb(�)(t) = −η
∂J(w,b)

∂b(�)
(t) + αΔb(�)(t− 1), (3.6)

where J(w,b) is the cost function, w is the synaptic weights, b is the biases, η

denotes the learning rate and α denotes the momentum constant.
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3.2.4 Adaptive Learning Rate

An adaptive learning rate can be implemented through the entire learning process

with an adaptive optimisation algorithm, such as adaptive gradients (AdaGrad),

root mean squared propagation (RMSProp) and adaptive moments (Adam).

The AdaGrad algorithm [45] implements the adaptive learning rate by scaling

the weight update by the inverse of the square root of the accumulated squared

gradients. The updates on the synaptic weights, Δw, and biases, Δb, at iteration t

become,

v
(�)
w (t) = v

(�)
w (t− 1) +

[
∂J(w,b)

∂w(�)
(t)

]2
, (3.7)

Δw(�)(t) = − η

ε+

√
v
(�)
w (t)

∂J(w,b)

∂w(�)
(t), (3.8)

v
(�)
b (t) = v

(�)
b (t− 1) +

[
∂J(w,b)

∂b(�)
(t)

]2
, (3.9)

Δb(�)(t) = − η

ε+

√
v
(�)
b (t)

∂J(w,b)

∂b(�)
(t), (3.10)

where J(w,b) is the cost function, w denotes the synaptic weights, b denotes the

biases, v denotes the accumulated squared gradients, � indicates the layer of the

weights, η denotes the learning rate, and ε denotes a small constant (∼ 10−7) applied

for numerical stability.

As can be seen in Eq. 3.7 to Eq. 3.10, AdaGrad causes the learning rate to

decrease over time in accordance with the accumulated squared gradients that will

increase over time. In the case where the accumulated squared gradients become

too large, the learning will no longer be effective [45].

The RMSProp algorithm [45] is based largely on the AdaGrad algorithm.

However, unlike AdaGrad which includes all of the past gradients, RMSProp uses

an exponentially decaying average to prevent the accumulation of the past gradients

from becoming too large and reducing the effective learning rate. The updates on
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the synaptic weights, Δw, and biases, Δb, at iteration t become,

v
(�)
w (t) = ρv

(�)
w (t− 1) + (1− ρ)

[
∂J(w,b)

∂w(�)
(t)

]2
, (3.11)

Δw(�)(t) = − η√
ε+ v

(�)
w (t)

∂J(w,b)

∂w(�)
(t), (3.12)

v
(�)
b (t) = ρv

(�)
b (t− 1) + (1− ρ)

[
∂J(w,b)

∂b(�)
(t)

]2
, (3.13)

Δb(�)(t) = − η√
ε+ v

(�)
b (t)

∂J(w,b)

∂b(�)
(t), (3.14)

where J(w,b) is the cost function, w denotes the synaptic weights, b denotes the

biases, v denotes the moving average of the squared gradients, � indicates the layer

of the weights, η denotes the learning rate, ε denotes a small constant (∼ 10−6)

applied for numerical stability and ρ ∈ [0, 1) denotes the decay rate for the moving

average.

As can be seen in Eq. 3.11 to Eq. 3.14, RMSProp does not always cause the

learning rate to decrease as in AdaGrad, as it adapts more quickly to the gradients

of recent iterations. It has been empirically proven that RMSProp is more effective

and practical than AdaGrad for deep neural networks [45].

The Adam algorithm [45] is designed to combine the benefits of the AdaGrad

and RMSProp algorithms [67]. Adam uses the exponentially decaying average of

the gradients and the squared gradients to scale the learning rate. The updates on

the synaptic weights, Δw, and biases, Δb, at iteration t become,

m
(�)
w (t) = ρ1m

(�)
w (t− 1) + (1− ρ1)

∂J(w,b)

∂w(�)
(t), (3.15)

v
(�)
w (t) = ρ2v

(�)
w (t− 1) + (1− ρ2)

[
∂J(w,b)

∂w(�)
(t)

]2
, (3.16)
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m̂
(�)
w (t) =

m
(�)
w (t)

1− ρ1(t)
, (3.17)

v̂
(�)
w (t) =

v
(�)
w (t)

1− ρ2(t)
, (3.18)

Δw(�)(t) = −η
m̂

(�)
w (t)

ε+

√
v̂
(�)
w (t)

, (3.19)

where J(w,b) is the cost function, w denotes the synaptic weights, b denotes the

biases, m denotes the moving average of the gradients, v denotes the moving average

of the squared gradients, � indicates the layer of the weights, ρ1 ∈ [0, 1) denotes the

decay rate for the moving average of the gradients (usually set to 0.9) [45], ρ2 ∈ [0, 1)

denotes the decay rate for the moving average of the squared gradients (usually set

to 0.999) [45], m̂ denotes the bias correction for m, v̂ denotes the bias correction

for v, η denotes the learning rate and ε denotes a small constant (∼ 10−8) applied

for numerical stability.

This set of equations also applies to the biases, b. Adam is known as a

robust optimisation algorithm that implements adaptive learning rate for general

applications. However, it is sometimes still necessary to adjust the default learning

rate, η, empirically [45].

3.2.5 Regularisation

Regularisation is a technique used to prevent overfitting and improve the

generalisation capability of a model. Overfitting occurs when a model becomes too

complex that it fits the noise of the training data and fails to generalise. It is the

opposite of underfitting, which occurs when a model becomes too simple such that it

fails to capture the overall representation of the data [36]. Both the underfitting and

ovefitting problems can be avoided by controlling the complexity of a model [45].

One way to control the complexity of a model is to use regularisation [45].

Regularisation can be implemented by adding an additional term to the cost

function. The regularisation term includes a constant, λ, multiplied by either an
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L1 or L2 measure of the weights [45]. The L1 regularisation term is the sum of

the absolute value of the weights of each neuron, while the L2 regularisation term

is the sum of the squared weights of each neuron. L1 regularisation often results

in a sparse model as some weights tend to be shrunk to zero and removed. L2

regularisation minimises the weights without resulting in a sparse model as the

weights are minimised according to the quadratic term. Hence, L1 regularisation

is typically used for feature selection, while L2 regularisation is generally used for

other purposes [36].

The cost function with L1 regularisation [36] is given by,

J(w,b) =− 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log

(
hk

(
x(i)

))
+
(
1− y

(i)
k

)
log

(
1− hk

(
x(i)

))]

+ λ

L∑
�=1

s�∑
i=1

∣∣∣w(�)
i

∣∣∣ ,
(3.20)

where J(w,b) is the cost function, w is the synaptic weights, b is the biases, K is

the number of output units, m is the number of data samples, x(i) denotes the ith

data sample from a dataset, hk(x
(i)) is the output response of data x(i) at neuron

k, y(i) is the target label of data x(i), λ is the regularisation constant, L is the total

number of layers in the network and s� is the number of units in layer � without the

bias unit.

The cost function with L2 regularisation [36] is given by,

J(w,b) =− 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log

(
hk

(
x(i)

))
+
(
1− y

(i)
k

)
log

(
1− hk

(
x(i)

))]

+ λ

L∑
�=1

s�∑
i=1

(
w

(�)
i

)2
.

(3.21)

If λ is too small, the regularisation might not affect the training and the trained

model may still suffer from overfitting. On the other hand, if λ is too large, the model
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might be overly simplified so that the trained model may suffer from underfitting

instead. Thus, λ has to be tuned properly for the best fit of the model with

regularisation. The appropriate value of λ can be found by using a cross-validation

method, which is a model evaluation method that will be discussed in Section 3.5.

3.3 Data Pre-processing

Data pre-processing is a process that transforms data into a format that suits

the input of a network. It can also be used to transform the input data into a

different representation to facilitate the learning process, and to achieve a better

generalisation capability of a network. In most practical applications, data pre-

processing is an important element of a solution that defines the effectiveness of the

learning [37].

The most common data pre-processing for neural network applications includes

normalisation, enhancement, augmentation and balancing.

3.3.1 Normalisation

Normalisation is a process that rescales data into values of a similar range, usually

between 0 to 1. This is particularly important when processing data with different

SI units, where actual values may not directly reflect the importance of the data in

achieving the desired output [37].

The most basic normalisation method is the min-max normalisation [68] which

is expressed as,

x′ =
x−min(X)

max(X)−min(X)

(
max(X ′)−min(X ′)

)
+min(X ′), (3.22)

where x is an element of initial dataset X, x′ is the normalised value and X ′ denotes

the normalised set.

The main disadvantage of min-max normalisation is that it may encounter

an error if any new data does not fall within the initial input range, i.e.

[min(X),max(X)]. Thus, this method is only suitable for input data with a known

and fixed data range [68].
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Another type of normalisation is the z-score normalisation [68], known also as

standardisation. It centres the data to 0 and divides it by the standard deviation of

the data, i.e.,

x′ =
x−Xμ

Xσ
, (3.23)

where x is an element of set X, x′ is the normalised value, Xμ is the mean of set X

and Xσ denotes the standard deviation of set X.

As can be expected from Eq. 3.23, the z-score normalisation solves the problem

of the “out-of-bounds” error in min-max normalisation. In image data, Xμ and Xσ

can be calculated globally across all channels (e.g. red, green and blue channels in

an RGB image) or locally per channel across the data in a mini-batch or the entire

training dataset [64].

3.3.2 Enhancement

Data enhancement is a technique used to improve the representation of the data

for a particular task. It can be applied to any type of data, including image data.

Image enhancement can be performed by modifying attributes, such as the contrast,

brightness or intensity distributions, and can be applied in both the spatial and

frequency domains to achieve the desired results. In the case of its application in

the spatial domain, the enhancement operation is applied directly on the pixel values

of an image. For its application in the frequency domain, the enhancement operation

is applied on the Fourier transform of an image [69].

Point Operations

A point operation is a type of an image enhancement operation where the output

at each pixel location is generated solely based on the pixel at the corresponding

location in the input image, i.e. the operation is independent to its neighbouring

pixels [70]. Contrast stretching [70] is a basic point operation that uses a piecewise-

linear transformation function to stretch the pixel range of an image so that it

occupies the full pixel range, e.g. [0, 255] for an 8-bit image. Contrast stretching
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increases the dynamic range of the intensity levels of a low-contrast image [71]. The

operation is,

y(i, j) =
x(i, j)−min(x)

max(x)−min(x)
(max(y)−min(y)) + min(y), (3.24)

where y is the output image, x is the input image, i, j are the row and column

index respectively that represent the location of a pixel in the image. An example

of the contrast stretching operation is shown in Figure 3.1. The resulting image has

a higher contrast than the input image, hence more details can be observed in the

image.

Figure 3.1: Example of a contrast stretching operation. The image and the
histogram of the pixel values in the image of the input (top) and output (bottom).

Contrast stretching can also be performed with thresholding so that the output

image contains only two intensity levels with extremely high contrast [70]. This

operation is usually performed on a greyscale image and expressed as,
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y(i, j) =

⎧⎪⎨
⎪⎩

255 if x(i, j) ≥ T

0 if x(i, j) < T,
(3.25)

where y is the output image, x is the input image, i, j are the row and column index,

respectively that represent the pixel location in the image and T is the threshold

value.

The threshold value can be determined by various threshold selection techniques,

including grey-level histogram analysis and grey-level averaging [70]. An example

of a contrast stretching operation with a threshold that is determined based on a

grey-level histogram analysis is shown in Figure 3.2.

Figure 3.2: Example of a contrast stretching operation with thresholding. The
image and the histogram of the pixel values in the image of the input (top) and
output (bottom).

Another contrast enhancement operation is called histogram equalisation [71].

The objective of histogram equalisation is to modify the image so that the histogram

of the output image is approximately uniform [72]. The histogram equalisation

operation is,

y(i, j) =

⎢⎢⎢⎣(K − 1)

x(i,j)∑
k=0

cx(k)

MN

⎥⎥⎥⎦ , (3.26)

where y is the output image, x is the input image, M and N are the height and
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width of the image in pixels respectively, K is the number of intensity levels used

for the pixel values and cx is the total number of a specific pixel value in the input

image.

As can be seen from the example of a histogram equalisation operation in Figure

3.3, the equalised image has a higher contrast than the input image.

Figure 3.3: Example of a histogram equalisation operation. The image and the
histogram of the pixel values in the image of the input (top) and output (bottom).

Neighbourhood Operations

A neighbourhood operation, generally known as a filtering operation, is a type of

image enhancement operation where the output at each pixel location is generated

based on the pixel at the corresponding location and the neighbouring pixels in the

input image [70]. Filters are usually categorised into two types, linear and non-linear.
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Linear Filter A linear filter combines the pixel values in a linear fashion using

convolution. The output at each pixel location is generated by convolving a filter

mask or kernel with the pixel at the corresponding location and its neighbouring

pixels in the input image [70]. The filter mask or kernel specifies the size and shape

of the input image region to be used for each computation, along with the individual

pixel weights. The convolution operation [45] is,

y(i, j) = (k ∗ x)(i, j) =
∑
m

∑
n

x(i−m, j − n)k(m,n), (3.27)

where ∗ is the convolution operator, y is the output, x is input image, k is the

matrix of the filter kernel and m and n are the row and column index of the filter

kernel, respectively, with the centre of the kernel indicated by (0,0). Note that the

input image is padded with zeros to maintain the dimension of the output.

Unlike a convolution operation in CNNs that actually is a cross-correlation

operation [45], the filter kernel of the convolution operation is rotated by 180� about

its centre element, hence the negative sign in x(i − m, j − n), before performing

the multiplication and summation. However, if the filter kernel is symmetric, the

rotation can be omitted.

There are various types of linear filters. Two of the most commonly used linear

filters in data pre-processing for neural networks are the smoothing and difference

filters [73].

A smoothing filter computes a weighted average of the input image pixels in the

region of the filter kernel and produces an image with smoothed edges as shown in

Figure 3.4. This filter comprises of only positive weight coefficients [73].
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Figure 3.4: Example of a smoothing filter application. The input image (left) and
the output of the smoothing filter (right).

The simplest smoothing filter is called a box filter. It is called a box filter as its

shape is similar to a box [73]. The filter has positive weights coefficients with equal

values. An example of a box filter is shown in Figure 3.5.

1 1 1

1 1 1

1 1 1

1 1 1 1 1

1 1

1 1

1 1

1 1 1 1 1

(a) (b) (c)

Figure 3.5: Example of a box filter. (a) 3D illustration; (b) Profile; (c) Discrete
filter matrices approximations of the continuous function in (a).

One of the applications of a box filter is as an averaging filter. By setting all the

filter coefficients to be 1 and dividing the convolution result by the sum of the filter

coefficients, the output will be equal to the mean of the pixel values within the filter

region [71].

Since the box filter has sharp cut-offs around its edges, it produces transients

or strong “ringing” effects in the frequency domain [73]. To reduce this unwanted

effect, a Gaussian filter is preferred as a smoothing filter as it is “well-behaved” in

the frequency domain, since the filter places more emphasis on the pixels in the

centre and less emphasis on the distant pixels, as shown in Figure 3.6.
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0 2 4 2 0

2 6 10 6 2

4 10 18 10 4

2 6 10 6 2

0 2 4 2 0

(a) (b) (c)

Figure 3.6: Example of a Gaussian filter. (a) 3D illustration; (b) Profile; (c)
Discrete filter matrices approximations of the continuous function in (a).

The coefficients of a two-dimensional Gaussian filter [73] can be determined by,

k(m,n) = e−
m2+n2

2σ2 , (3.28)

where σ is the standard deviation of the bell-shaped function, m and n are the

number of rows and columns from the centre of the filter respectively.

A difference filter, e.g. the “Laplace” or “Mexican hat” filter, is another

type of linear filter that computes the weighted difference between the centre and

the surrounding pixels. The weighted difference is performed by having positive

coefficients at the centre of the filter and negative coefficients surrounding the centre,

or vice versa, as shown in Figure 3.7 [73].

0 0 -2 0 0

0 -2 -4 -2 0

-2 -4 32 -4 -2

0 -2 -4 -2 0

0 0 -2 0 0

(a) (b) (c)

Figure 3.7: Example of a Laplacian filter. (a) 3D illustration; (b) Profile; (c)
Discrete filter matrices approximations of the continuous function in (a).

This type of filter enhances the local intensity discontinuities and diminishes the

regions with slowly varying intensity levels, which results in light edge lines and dark

background. Therefore, it is usually used for edge detection as shown in Figure 3.8.
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Figure 3.8: Example of a Laplacian filter application for edge detection. The input
image (left) and the output of the Laplacian filter (right).

Non-linear Filter Similar to the linear filters, non-linear filters generate each

output pixel from the input pixels within the filter kernel region. However, instead

of using a linear function, non-linear functions are used to generate the output.

Non-linear filters are usually applied to remove impulse noise, also known as salt

and pepper noise [71], that appears as black and white dots scattered on an image.

The simplest non-linear filters are the minimum and maximum filter [73]. The

minimum filter assigns each output pixel with the minimum pixel value of the input

pixels within the filter kernel region [73], as defined by,

y(i, j) = min {x(i+m, j + n) | (m,n) ∈ R} , (3.29)

where y denotes the output, x denotes the input image andR denotes the filter kernel

region. Note that the input image is padded with constant values to maintain the

dimension of the output.

The maximum filter assigns each output pixel with the maximum pixel value of

the input within the filter kernel region [73], as defined by,

y(i, j) = max {x(i+m, j + n) | (m,n) ∈ R} . (3.30)

Another type of non-linear filter is the median filter. The median filter assigns

each output pixel with the median pixel value of the input within the filter kernel

region [73], as defined by,

y(i, j) = median {x(i+m, j + n) | (m,n) ∈ R} . (3.31)
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The median pixel is computed by sorting the pixel values within the filter kernel

region in ascending sequence and then picking the middle value (for an odd number

of elements) or the mean of the two middle values (for an even number of elements).

3.3.3 Augmentation

Data augmentation is a technique used for creating new training data from an initial

training dataset to improve the generalisation capability of a network [64]. Its main

objective is to expand the initial training set with new plausible examples, i.e. to

increase the representation of various data samples that are likely to be seen in the

future. Data augmentation can be applied to any type of data, including image data.

Image augmentation includes various operations, such as shifting, flipping, rotating,

zoom, and it is performed while keeping the dimension of the image fixed [64]. These

operations can be implemented in many different ways depending on the desired

learning outcome.

The shifting operation, also known as a translation operation, moves all pixels of

an image in either a horizontal or vertical direction [64]. This is a useful operation as

objects can be located at various locations in an image. The objective is to integrate

a translation invariance property into the model, so that it can recognise an object

regardless of its location in an image.

Flipping and rotating operations vary the viewpoint of an object. The flipping

operation, also known as a mirroring operation, reverses the pixel arrangement in

either a horizontal or vertical direction [64]. While the rotating operation randomly

rotates an image by a specific angle, between 0 to 360 degrees [64]. The objective is

to integrate a viewpoint invariance property into the model, so that it can recognise

an object regardless of the angle from which an object is viewed from.

A zoom operation randomly zooms an image by either adding new pixel values

around the image, i.e. zoom-out, with an extrapolation technique or adding new

pixel values within the image, i.e. zoom in, with an interpolation technique [64].

This operation is useful for most objects, as size varies depending on the viewing

distance or the type of object itself. The objective is to integrate a size invariance

property into the model so that it can recognise an object regardless of the size of
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the object in an image.

There are many more image augmentation techniques, including those that may

be designed specifically for a certain task. The use of different image augmentation

techniques should be considered on a case by case basis, depending on the type

of images and the desired learning outcome. For example, it is unnecessary to

apply random flipping and rotating operations on medical images as they have a

specific coordinate system that can be used to calibrate all the images to a certain

orientation.

3.3.4 Balancing

A class imbalanced dataset (i.e. skewed data distributions) occurs frequently in

many real-world applications. However, in training a neural network, it is very

important to ensure that both the minority and majority classes are well represented.

Data balancing is a method of balancing the proportion of data samples in a training

set. Data balancing is performed so that each class, whether it is within (intra-

class) or between classes (inter-class), has enough representation in the training

set [74] [75]. It is one of the most critical steps in training a neural network. There

are two basic techniques that can be performed automatically, the data-level method

and the cost sensitive learning method.

The data-level method is a technique that modifies the training distribution

to balance out the data samples from different classes [74]. It includes two basic

techniques, random under-sampling (RUS) and random over-sampling (ROS) [74].

The RUS removes random data samples from the majority class, while ROS

duplicates random data samples in the minority class. The main disadvantage of

this method is that under-sampling reduces the amount of information for the model

to learn from, while over-sampling may increase the training time due to the size

increase of the training set.

Cost sensitive learning is a method that assigns different cost values for the

misclassification of different class samples, e.g. the cost of misclassifying an infected

person as a healthy person is higher than the contrary [76]. Although it can

significantly increase the classification performance, it can only be applied if the
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misclassification cost values are known [76]. The misclassification cost value can be

estimated with various methods, including the use of the inverse ratio of the class

representation [77], e.g. if the ratio of infected persons to healthy persons is equal

to 1:10, the cost of misclassifying an infected person as a healthy person should be

ten times higher than the contrary. The implementation of cost sensitive learning

varies on a case by case basis.

3.4 Data Post-processing

Data post-processing is a process that transforms output data into the required

format. It may also be used to enhance or clean the output data to achieve a better

overall performance. The process often incorporates prior knowledge of the desired

output, such as the shape and minimum size of a target class in a segmentation

task [37].

The most fundamental data post-processing processes for image segmentation

includes mathematical morphology and connected component labelling operations.

3.4.1 Mathematical Morphology

Mathematical morphology is a set of operations used to analyse and process

morphological structures in an image that is based on set theory and topology [70].

The most common set of operations include the hit or miss transformation as well

as erosion and dilation. These operations use a set of points called the structuring

element, denoted by Bx, that is centred at x to extract structure in a set, X.

Hit or miss transformation is usually defined as a point by point transformation,

which means that the structuring element, Bx, has to match exactly, i.e. hits, the

set X, as illustrated in Figure 3.9. The hit or miss transformation [70] of a set X

with B is denoted by X ⊗B and its operation is defined as,

X ⊗B =
{
x | B1

x ⊂ X;B2
x ⊂ X�

}
, (3.32)

where ⊂ denotes set inclusion, � denotes complement, B1
x denotes the subset of Bx

whose element belongs to the foreground and B2
x denotes the subset of Bx whose
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element belongs to the background.

(a) (b) (c)

Figure 3.9: Example of a hit or miss operation. (a) Structuring Element B; (b)
Image set X; (c) Result of hit or miss operation X ⊗B.

Erosion has a similar concept to the hit or miss transformation except that it

does not include the background elements in the equation. The erosion of a set X

with B is denoted as X 
B. Its operation [70] [78] is illustrated in Figure 3.11 and

is defined by,

X 
B = {x | Bx ⊂ X} . (3.33)

(a) (b) (c)

Figure 3.10: Example of an erosion operation. (a) Structuring Element B; (b)
Image set X; (c) Result of the erosion operation X 
B.

Dilation is the dual of the erosion operation, which means that the dilation of

the foreground is equal to the erosion of the background. The dilation of a set X

with B is denoted by X ⊕B. Its operation [70] [78] is illustrated in Figure 3.11 and

is defined by,

X ⊕B =
(
X� 
B

)�
. (3.34)
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(a) (b) (c)

Figure 3.11: Example of a dilation operation. (a) Structuring Element B; (b)
Image set X; (c) Result of the dilation operation X ⊕B.

The combination of the erosion and dilation operations results in applications

such as opening and closing.

A binary opening is erosion followed by a dilation operation. The binary opening

of a set X with B is denoted by X ◦B. Its operation [70] [71] [78] is defined by,

X ◦B = (X 
B)⊕B. (3.35)

The erosion operation eliminates foreground structures that are smaller than the

structuring element, while the dilation operation restores the remaining structures

to their original size.

A binary closing is dilation followed by an erosion operation. The binary closing

of a set X with B is denoted by X •B. Its operation [70] [71] [78] is defined by,

X •B = (X ⊕B)
B (3.36)

The dilation operation closes holes and fissures that are smaller than the

structuring element in the foreground structures, while the erosion operation reduces

the dilated structures to their original size.

3.4.2 Connected Component Labelling

The connected component labelling operation scans an image and assigns labels to

each pixel depending on its connectivity with the neighbouring pixels. It is usually

applied to detect the number of connected components in an image, e.g. a binary

image. It outputs a symbolic image that contains a label assigned to each pixel of the
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input image. The operation [79] [80] usually involves examining n-neighbourhood

pixels with an n-connected components operator, where n denotes the number of

pixels used to determine the label of a pixel.

The most basic connected component operators are the 4-connected and 8-

connected component operators, shown in Figure 3.12 (a) and Figure 3.12 (b)

respectively. Examples of the application of a 4-connected and 8-connected

components operator on a binary image are shown in Figure 3.13 (b) and Figure

3.13 (c) respectively. As can be seen from the examples, a new label is only assigned

to the pixel in the centre, •, of the n-connected components operator when the

neighbouring pixels, ◦, have not been assigned with any label, otherwise it will be

assigned with the existing label of the n-neighbourhood pixels.

(a) (b)

Figure 3.12: Example of n-connected components operators, where • denotes
the centre pixel and ◦ denotes the neighbouring pixels used in the n-connected
component operator. (a) 4-connected component operator; (b) 8-connected
component operator.

(a)

0 1 0
1 0 1
0 1 0

(b)

0 1 0
2 0 3
0 4 0

0 1 0
1 0 1
0 1 0

(c)

Figure 3.13: Example of connected component labelling. (a) The binary input
image; (b) Connected component labelling results produced by the 4-connected
component operator on (a); (c) Connected component labelling results produced
by the 8-connected component operator on (a).

The connected component labelling operation can be used to remove output

artefacts that do not belong to the desired output structure.
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3.5 Evaluation Method

In the implementation of a neural network, once a model is developed, it is important

to evaluate the model to ensure that it is able to generalise. Cross-validation

and holdout methods are model evaluation methods that are generally adopted to

evaluate the generalisation capability with respect to a performance measure, such

as the cross-entropy cost function (Eq. 2.8).

In cross-validation, a dataset is often partitioned into two subsets, i.e. a training

and a test set [36]. Generally, a ratio of 80% to 20% is adopted for partitioning

the data into training and test sets, respectively. The training set is used to train

the model while the test set is used to evaluate the performance of the model on

an unseen set of data. If the amount of data is sufficient, the training set can be

further partitioned into training and validation sets with a ratio of 75% to 25%.

The validation set can be used to evaluate the model on an unseen dataset during

training for hyperparameter tuning and model selection.

The data partitioning in the cross-validation method is generally performed

repeatedly with the validation results averaged over the repetitions [36]. Based

on the way the data is partitioned for the validation, there are two main types of

cross-validation, i.e. exhaustive and non-exhaustive [36].

In the exhaustive cross-validation method, a fixed number of data samples is used

as the test set and the remaining data samples are used as the training set for each

validation round. It is repeated n!
p!(n−p)! times, i.e. for every possible partitioning of

the dataset, where n denotes the total number of data samples in the dataset and p

denotes the number of data samples to be used as the test set [81]. This method is

named according to the number of data samples used as the test set, e.g. leave-p-out

cross-validation for p > 1 and leave-one-out cross-validation for p = 1. The main

disadvantage of this method is that it can be very slow [36].

In the non-exhaustive cross-validation method, the dataset is partitioned into

certain partitions, i.e. folds, and not all possible partitions are considered. The

non-exhaustive cross-validation method includes k-fold cross-validation. In k-fold

cross-validation, the dataset is partitioned into k equal-sized folds (k > 1), where
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one fold of data is used as the test set and k−1 folds of data are used as the training

set. The validation method is repeated k times, with each fold of the data being the

test set once only [36]. The common values [36] for k are 3, 5 and 10.

In the hold out method, the data is partitioned like in a k-fold cross-validation

method, but the data validation is only performed once instead of k times to estimate

the performance of a model. The main disadvantage of this method is that not all

data samples will be in the test set [36].

The k-fold cross-validation method is the most applicable as it takes a reasonable

time to run and gives a better insight into the model generalisation performance than

the hold out validation method [36].

3.6 Conclusion

In this chapter, we discussed some fundamental considerations which need to be

made to ensure an effective implementation of a neural network. We introduced

the most common hyperparameters and algorithms that can be utilised in a neural

network. We also discussed several data pre- and post-processing techniques that

can be employed to enhance the input and output to improve the overall performance

of the network. Finally, we presented several evaluation methods that can be used

to demonstrate the generalisation capability of the developed model.
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CHAPTER

4

CNN Structure and Parameter Study for a

Liver Segmentation Problem

In this chapter, we propose a two-dimensional CNN for an organ segmentation

task that incorporates a novel adjacent upsampling method, which is trainable and

only requires a single computation step to perform upsampling. We first identify

some limitations of typical segmentation networks and then propose an alternative

that performs well in comparison. We show that with the appropriate structure, a

CNN doesn’t require an excessive number of trainable parameters in order to solve a

particular problem. We also show that a CNN can be deployed and trained efficiently

with limited resources.
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4.1 Introduction

As discussed in Section 1.1, the CNN is the state-of-the-art deep learning algorithm

in image segmentation for many different applications. In Section 2.4.3, it was noted

that a major achievement in image segmentation [17] was made by the modification

of a very deep classification CNN, the VGG network, to an FCN for image

segmentation. Although the FCN is slow in real-time execution at high resolution, it

is a very successful CNN for image segmentation [82]. Since the development of the

FCN, many other networks have been developed using the structure and components

of a classification architecture to perform image segmentation irrespective of the

classification CNNs’ inherent spatial invariance characteristic [19].

When CNNs are used for image classification, pooling layers are typically

employed to decrease the computational cost in the deeper layers and to introduce

spatial invariance in the network by extracting the most significant features from

the previous layer. This means that spatial information is lost in CNNs designed for

image classification [83]. However, when designing a CNN for an image segmentation

task the spatial information needs to be retained during the feature extraction phase

to predict the class of each pixel. Most networks (e.g. FCN [17], U-Net [18],

Cascaded FCNs [84], FCN-Based [85], U-Net and DenseNet-Based [86]) still adopt

the combination of convolutional layers and max-pooling layers without addressing

this problem. On the other hand, V-Net [47] and networks based on V-Net [87] avoid

the use of max-pooling and use 2-strided convolutional layers instead. However, their

architecture fails to take full advantage of the retained spatial information because

they still use a contracting-expanding structure to learn the features at the original

input resolution to perform image segmentation.

To address the spatial invariance and inefficient network structure problems in

CNNs, we propose a simple network that uses an efficient upsampling method [88] to

optimise the use of the extracted high-level features to perform image segmentation.

Data from a well established liver segmentation task [89] is used as a benchmark

to evaluate the performance of the proposed network and other state-of-the-art

networks in performing liver segmentation.
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4.2 Related Work

In this section, we will briefly discuss several techniques and components used in our

proposed network. We will also discuss the receptive field calculation and sub-pixel

convolution method that motivate the proposed upsampling method.

Strided Convolution

As discussed in Section 2.3.2, pooling layers in the form of either linear (e.g. average

pooling or strided convolution) or non-linear (e.g. max pooling) filters can be

adopted in CNNs to incorporate downsampling in a network. However, pooling

layers based on non-linear filters may cause the network to lose spatial information

[83]. Pooling layers based on a linear filter, such as strided convolution, have been

used in several high performing segmentation network architectures [47] [87]. It has

also been shown that a stack of standard 1-strided and a 2-strided convolutional

layers can be used in place of a 2× 2 max pooling layer to improve the performance

of a CNN [90].

Large Kernel

In performing image segmentation, a well-designed CNN architecture should be able

to perform classification and localisation at the same time [91]. Each pixel should

be classified correctly as well as aligned in accordance to the pixel coordinate in the

input image. However, to perform a classification task, the network output has to

be transformation invariant. On the other hand, to perform a localisation task, the

network output has to be transformation sensitive [91].

It is shown that the use of large kernels can help to mitigate the contradiction

between classification and localization [91]. For example, the use of a 5 × 5 kernel

results in better image segmentation performance as compared to the use of a 3× 3

convolution kernel [91].
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Dropout

As discussed in Section 2.3.2, dropout is a regularisation technique used in CNNs

to prevent overfitting. A dropout rate between 0.2 - 0.5 is usually adopted in a

segmentation network [86] [92]. However, a high dropout rate may cause underfitting

in the network. Thus, a typical dropout rate of 0.2 is preferred for a starting

point [93].

Deep Networks with Residual Learning

As discussed in Section 2.3.2, a skip connection with an element-wise summation

layer can be implemented to incorporate a residual learning framework in a CNN.

The skip connection with an element-wise summation layer can be implemented in

every convolution block [52] [47]. Here, a convolution block refers to a block that

consists of two or more convolutional layers with the same feature map resolution.

Receptive Field

Receptive field (RF) refers to the filter size of a layer, which specifies the region that

a neuron is connected to in its previous layer [94]. Effective receptive field (ERF)

refers to the area of the input data that can influence the activation of a neuron

in the network. Thus, both RF and ERF of the first convolutional layer are the

same, whereas the ERF of each layer grows larger as the network becomes deeper,

as briefly discussed in Section 2.3.1.

The ERF of each layer relative to the network input [38] is a function of the

receptive fields of all previous layers and it can be expressed as,

ERF(�) = ERF(�−1) +
(
f (�) − 1

)
×

�−1∏
i=1

s(i), (4.1)

where � denotes the index of the layer, f (�) denotes the f × f filter size in a

convolutional layer used to produce feature maps in layer �, s(�) denotes the stride

length in a convolutional layer used to produce feature maps in layer � and the

effective receptive field of the previous layer is denoted as ERF(�−1).
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Other than filter size and stride length, as indicated in Eq. 4.1, padding also

influences the ERF of a feature in a layer. As discussed in Section 2.3.2, padding

is usually applied in a CNN to maintain the output resolution of a layer. Padding

also produces extra features at the corner and edges of the output of a convolutional

layer, i.e. the feature maps. However, the ERFs at the corner and edges are smaller

than the ERFs at any other place. Thus, to find the minimum ERF of a layer with

padding, the following equation can be used,

ERF
(�)
min =

⎢⎢⎢⎣
(
ERF(�−1) +

(
f (�) − 1

)×∏�−1
i=1 s

(i)
)

2

⎥⎥⎥⎦+ 1. (4.2)

The RF and ERF in a 2-layer CNN with a 3 × 3 filter size, stride length of 1,

with and without the use of padding are shown in Figure 4.1 (top) and (bottom)

respectively. As can be seen from the figure the receptive fields of both convolutional

layers, RF(1) and RF(2), are 3×3 as both layers use the same filter size. The effective

receptive field of layer one, ERF(1), is the same with its receptive field, RF(1). The

effective receptive field of layer two, ERF(2), is increased to 5× 5. As can be seen in

Figure 4.1 (top), the outer values of the feature map in layer one, a(1), and two outer

values of the feature map in layer two, a(2), the padding produces extra information

at the corner and edges of the output of the convolutional layers as compared to

Figure 4.1 (bottom).

However, the ERF of the features resulting from the padded input is smaller than

the ERF calculated from Eq. 4.1. As can be seen from Figure 4.1 (top), the ERF

of the very first feature in layer two, a(2), (with value of -87) is only of size 3 × 3,

which is the ERF
(�)
min from Eq. 4.2, instead of the calculated ERF of 5 × 5, while

the ERF of the second feature in layer two, a(2), (with value of 152) is only of size

3× 4. Therefore, in the application where it is important to know the ERF of every

feature in a feature map, minimum ERF should be considered when calculating the

ERF in a network which uses padding.
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-10 -2 -5
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(1)

(2)

(2)

(0)

(1)

Figure 4.1: Receptive field in a 2-layer CNN with padding (top) and without
padding (bottom), where the input layer is denoted as a(0), the output due to
convolution filters 1 and 2 are denoted as a(1) and a(2) respectively. The green
area indicates the receptive field region of each convolutional layer (RF(1) and
RF(2)), while the blue area indicates the effective receptive field region of the second
convolutional layer (ERF(2)) on the input layer.

Sub-pixel Convolution

Sub-pixel convolution is an upsampling method that can be used to increase the

resolution of the input. Similar to the transposed convolution method, discussed

in Section 2.3.2, sub-pixel convolution parameters can be adjusted through training

via the backpropagation.

Sub-pixel convolution can be naively interpreted as a convolution followed by

a periodic shuffling operation [88] to form a higher resolution output [51]. The

advantage of a sub-pixel convolution is that it is more efficient than a transposed

convolution or resize convolution [51].
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(H(0) W(0) C(0))x x

(0)
(H(1) W(1) C(1))x x

(1)
(H(L) W(L) C(L))x x

(L)

Low Res
Image (Input)

Convolution f (1)xf (1) Convolution f(L)xf(L) Periodic shuffling

High Res
Image (Output)

(H(L-1) W(L-1) C(L-1))x x

(L-1)

Hidden Layers Sub-pixel convolutional layer

(1) (L)

(H(Out) W(Out) C(Out))x x

(Out)

Figure 4.2: Example of a sub-pixel convolutional layer in a sub-pixel convolutional
neural network used to upsample low resolution feature maps. The sub-pixel
convolutional layer produces a number of feature maps in low resolution space and
rearranges it to build a higher resolution image in a single step. The H(�), W (�)

and C(�) indicate the height, width and channels of the feature maps in each layer,
respectively, while L indicates the last layer.

The sub-pixel convolution operation used on low resolution feature maps

extracted from a low resolution input image, a(0), to produce a higher resolution

output image, a(Out), as in Figure 4.2 can be expressed as follows,

a(Out) = PS
(
a(L)

)
= PS

(
k(L) ∗ a(L−1) + b(L)

)
(4.3)

where PS denotes the periodic shuffling operation [88] that rearranges the elements

in a tensor of H(L)×W (L)×C(Out) · r2 to a tensor of r ·H(L)× r ·W (L)×C(Out), i.e.

C(L) = C(Out) · r2 , H(Out) = r · H(L) and W (Out) = r ·W (L), r is the upsampling

factor, k(L) is the convolution kernel used to produce the last layer, b(L) is the bias

of the convolution kernel in the last layer and a(L−1) are the feature maps in the

layer before the last layer.

4.3 Proposed Adjacent Upsampling

In this section, we explain our proposed adjacent upsampling method.

Similar to sub-pixel convolution, adjacent upsampling adopts trainable

upsampling parameters and requires a single computation step to perform

upsampling. However, unlike sub-pixel convolution where it uses an arbitrary size
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of convolution kernel prior to the periodic shuffling operation, adjacent upsampling

requires the use of a one dimensional convolution operation to perform the prediction

of the corresponding pixel and its adjacent pixels. The idea is that it uses the

information from the effective receptive field covered by the highest level features

(i.e. lowest resolution feature maps) of the network to make single step predictions

of the corresponding pixel and its adjacent pixels without the use of any overlapping

features. Hence, the information in each feature location of the lowest resolution

feature maps will be responsible for the final predictions of the pixel and its adjacent

pixels at the corresponding feature location.

Input Output

(H(2) W(2) C(3))· x
(H(2) W(2) C(2))· x

(H(2) W(2) C(2))x x

(H(0) W(0) C(0))x x

(H(1) W(1) C(1))x x

Adjacent Upsampling

Convolution 3x3 Reshape Periodic shufflingConvolution C(3)x1

(H(Out) W(Out) C(Out))x x

(Out)(0)
(1)

(2)

(2) (3)

Figure 4.3: Example of an adjacent upsampling operation.

In Figure 4.3, the input layer is denoted as a(0), the output of the first and second

3×3 convolutional layers are denoted as a(1) and a(2) respectively, while the output

of the one dimensional convolution used for the adjacent upsampling operation is

denoted as a(3) and the final output is denoted as a(Out). The green border indicates

the receptive field region of each convolutional layer (RF(1) and RF(2)), while the

blue border indicates the effective receptive field region of the second convolutional

layer (ERF(2)) on the input layer.

Adjacent upsampling begins with an effective receptive field calculation to ensure

that the lowest resolution feature maps, i.e. a(2) in Figure 4.3, cover the effective

receptive field area of the higher resolution output to be predicted, the dashed box

in a(Out) of Figure 4.3. The lowest resolution feature maps at each pixel location

should then be flattened to one dimensional tensors before the one dimensional

convolution operations take place (similar operations can also be performed using
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1×1 convolution filters with a stride length of 1). The number of convolution filters

required corresponds to the square of the upsampling factor, r, i.e. C(3) = r2. Thus,

each filter is used to predict a certain pixel in each upsampling area where the weights

of the convolution filters are shared among the inputs of the adjacent upsampling

layer, i.e. a(2) in Figure 4.3. Finally, the outputs of the filters are reshaped to

two-dimensional tensors and arranged with a periodic shuffling operation [88].

4.4 Proposed Network

In this section, we describe the network architecture and show how the proposed

network achieves comparable performance in terms of both DSC and Jaccard scores,

yet is superior in terms of computational time and memory usage. The proposed

network is compared to both U-Net [95] and a modified 1-strided FCN [17] (FCN-1s)

in order to show these properties. We note that the existing networks use transposed

convolution or a resize convolution, as discussed in Section 2.3.2, to perform image

segmentation at the original input resolution.

4.4.1 Proposed Network Architecture

The configuration of our proposed network architecture for image segmentation is

shown in Figure 4.4.
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Figure 4.4: Proposed adjacent network architecture.

As can be seen from the network architecture in Figure 4.4, a standard 3 × 3

convolution network is adopted across the network, as a stack of 3× 3 convolutional

layers alone is sufficient to achieve state-of-the-art performance [90]. Furthermore,

2-strided convolution is adopted instead of max-pooling to avoid losing the spatial
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information of each extracted feature. A 5× 5 convolution kernel is used on the 2-

strided convolutional layer to capture the large spatial relationship of a feature and

its surroundings, without adding too much computational burden, as would be the

case if it were applied on every convolutional layer. A skip connection is used in each

convolution block to create a residual learning framework to reduce the degradation

problem [48]. A dropout rate of 0.2 is used to incorporate regularisation with low

risk of underfiitting [93]. Finally, the extracted high-level features at each feature

location are used to perform the final classifications of the corresponding pixel and

the adjacent pixels of the high-level features, i.e. adjacent upsampling.

To perform adjacent upsampling, the ERF and the minimum ERF of the lowest

resolution feature maps are computed to ensure that the area of the high resolution

output to be predicted is covered by the network.

The receptive field of the input layer, f (0), is always 1 as it is the reference layer

on which we are calculating the ERF. The first convolutional layer uses a filter size

of 3× 3 (denoted as Conv 3) and the ERF can be calculated using Eq.4.1,

ERF(�) = ERF(�−1) +
(
f (�) − 1

)
×

�−1∏
i=1

s(i),

where � = 1, ERF(�−1) = ERF(0) = 1, f (1) = 3 and
∏�−1

i=1 s
(i) = s(0) = 1, which

results in ERF(1) = 3.

Since the second and third convolutional layers have the same layer parameters

(filter size and stride length), the receptive field calculation will have the same

accumulative effect to the previous layer, which is an increment of ERF(1)−ERF(0) =

2. Thus, the ERF(2) and ERF(3) are 5 and 7 respectively.

The fourth convolutional layer uses a filter size of 5×5 (denoted as Conv 5) and

the ERF can be calculated using Eq.4.1, where � = 4, ERF(�−1) = ERF(3) = 7, f (4)

= 5 and
∏�−1

i=1 s
(i) = s(0) × s(1) × s(2) × s(3) = 1, which results in ERF(4) = 11.

As the product of the stride length of all the previous layers after the fourth

layer becomes 2, the ERF increment of the Conv 3 layer after layer 4 is 4. Thus,

the ERFs of the two consecutive Conv 3 layers (ERF(5) and ERF(6)) are 15 and 19

correspondingly.
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Similar to the effect of the Conv 5 layer in the fourth layer, where it multiplies

the stride length product of all the previous layers by 4, ERF(7) becomes 27. It also

causes the product of the stride length of all the previous layers to be 4 and the ERF

of the two consecutive Conv 3 layers (ERF(8) and ERF(9)) to increase by 8 from the

ERF of their previous layer.

Lastly, the Conv 5 layer in the tenth layer results in an ERF(10) of 59, it also

increases the stride length product of all the previous layers to 8. Thus, the ERFs

of the remaining Conv 3 layers (ERF(11) and ERF(12)) are 75 and 91 respectively.

Similar computations also apply to the minimum ERF calculation. The ERF

and the minimum ERF for each layer in the network of Figure 4.4 are given in Table

4.1.

Table 4.1: Adjacent Network ERF

Layer (�) Layer Type Output Shape Filter Size (f (�)) Stride Length (s(�)) ERF(�) ERF
(�)
min

0 input 224x224x1 1 1 1 1

1 Conv 3 224x224x16 3 1 3 2

2 Conv 3 224x224x16 3 1 5 3

3 Conv 3 224x224x16 3 1 7 4

4 Conv 5 112x112x32 5 2 11 6

5 Conv 3 112x112x32 3 1 15 8

6 Conv 3 112x112x32 3 1 19 10

7 Conv 5 56x56x64 5 2 27 14

8 Conv 3 56x56x64 3 1 35 18

9 Conv 3 56x56x64 3 1 43 22

10 Conv 5 28x28x128 5 2 59 30

11 Conv 3 28x28x128 3 1 75 38

12 Conv 3 28x28x128 3 1 91 46

Once the ERF and minimum ERF of the last layer has been computed, adjacent

upsampling with an upsampling factor less than or equal to the minimum ERF can

be applied to make high resolution predictions efficiently. This omits the need of

using step-by-step upsampling learning to project the high-level feature back to its

original input resolution before making the final class prediction. In this case, as

we are adopting an FCN feature extraction architecture, our network is capable of

performing upsampling with a factor of 46. However, only an upsampling factor of

8 is required to perform the predictions at the original input resolution.
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4.4.2 Configuration Detail

The proposed network, shown in Figure 4.4, takes a 224×224×1 input. The network

starts with a convolution block consisting of a stack of three convolutional layers and

dropout layer, with a dropout rate of 0.2, in between each convolutional layer. The

skip connection links the first convolutional layer to the third convolutional layer.

Next, a 2-strided convolutional layer is used to reduce the dimension by one half,

followed by a convolution block consisting of a stack of two standard convolutional

layers using twice as many filters as the convolution filters in the previous convolution

block. The network configuration continues in this pattern until the feature layer

dimension is one-forth of the original input dimension, i.e. 28 × 28. Next, the

28 × 28 × 128 feature layer is reshaped to a 784 × 128 feature layer before being

convolved with the last 64, 1 × 128, convolution filters. The final 224 × 224 × 1

output is obtained by rearranging the 64 predictions at each feature location to

8× 8, as shown at the bottom of the network in Figure 4.4.

The ReLU activation function is used after each convolutional layer in the

network as it is the most successful activation function being used in the state-

of-the-art networks [46] [26] [29] [48] [30] [17] [18], while the sigmoid activation

function is used in the final prediction layer as there are only two classes involved

in this problem, i.e. the background and the liver, as discussed in Section 2.3.2.

4.5 Automatic Liver Segmentation

Liver segmentation in CT scans is a fundamental step in many medical imaging

related tasks associated with the abdomen. It can aid automatic liver tumour and

vessel segmentation, as well as 3D visualisation and surgery planning [96]. Liver

segmentation remains a challenging task due to reasons, such as low liver contrast

compared to other surrounding organs, blurry boundaries, adjacent vessels having

various appearances and pathologies with heterogeneous densities [96]. In addition,

high variations in liver appearances, e.g. shapes and sizes, at different cross-sectional

axial positions also contribute to the difficulty of automatic segmentation.

In this section, we describe the data and challenges in the data preparation
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processes, as well as the training process. We then present the results obtained

using the proposed adjacent network on a public dataset [89].

4.5.1 Data

To evaluate the performance of the proposed adjacent network against two state-of-

the-art 2D CNNs U-Net [95] and FCN-1s [17], we use datasets from the MICCAI 2017

LiTS Challenge [89] consisting of 130 professionally labelled CT scans. The MICCAI

2017 LiTS Challenge datasets and segmentations are provided by six medical centres

from several clinical sites around the world. The datasets come in two batches with

sizes of 28 and 102 CT scans. As the scans come from different medical centres,

some of the scan parameters are also different, e.g. scan dimensions, voxel size and

scan orientation. Each scan consists of a different number of 2D slices ranging from

42 to 1026 slices. In these datasets a 2D slice is composed of 512 × 512 pixels.

The voxel size of the 2D slices, both width and height, varies from 0.557 to 1mm,

while the slice thickness varies from 0.45 to 6mm. The scan orientation comes in

3 different anatomical coordinate systems, which are left-anterior-superior (LAS),

right-anterior-superior (RAS) and left-posterior-superior (LPS) [97].

The 2D CNN architecture proposed in this chapter is not affected by the high

variance of the slice thickness as each of the processing layers operate on 2D data. For

the scan orientation, data augmentation can be used to learn different orientations

or anatomical coordinate systems. However, it is unnecessary to make the learning

more complex as they can all be reordered and flipped to a certain coordinate

systems. Here, we use the LAS coordinate system.

Prior to training and testing, data is prepared by reshaping the given 512× 512

two-dimensional slice images to 224 × 224 to fit the model input layer. Next, the

abdominal area is masked using an edge detection filter and connected component

labelling operation, to omit the background produced by different scanners. Finally,

the images are enhanced with contrast stretching and histogram equalization before

being centred by mean subtraction. The data pre-processing results are shown in

Figure 4.5.
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Original image Mask Masked image Enhanced image

Figure 4.5: Data pre-processing results prior to training and testing.

4.5.2 Training

From the available 130 scans available, 46 scans are used for training, validation

and testing. For training, 26 scans are taken from the batch of 28, with 2 randomly

selected datasets to be used as the validation set. The test set consists of the 2

scans that were used for validation and 18 scans randomly picked from the batch of

102. The testing is done twice in batches of 10 scans, i.e. 2 split tests (Split 1 and

Split 2). This allows the evaluation of the generalization capability of each of the

networks on datasets from unseen scanners.

For training, He initialisation is used for the weight initialisation and the Adam

optimiser is used with a 10−4 learning rate and a binary cross-entropy cost function.

As can be seen from Table 4.2, the proposed adjacent network has the least

number of trainable parameters and the fastest training time per epoch when

compared to U-Net and FCN-1s. This comparison is made on 4Gb GeForce GTX

960 GPU with Intel(R) Core(TM) i5-3550 CPU @3.30GHz and 16Gb RAM.
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Table 4.2: Network Performance Comparison

Network Trainable Parameters Training Time per Epoch

U-Net 31M 1931 Seconds

FCN-1s 14.7M 790 Seconds

Adjacent Net 669.6k 211 Seconds

4.5.3 Results

In this segmentation problem we use overlap based scores, i.e. Dice’s similarity

coefficient (DSC) and Jaccard similarity coefficient (JSC), as the performance

metrics to evaluate the three networks.

The DSC metric is twice the cardinality of the intersection, in voxels, between

the predicted (P ) and the ground truth (GT ) regions divided by the sum of the

cardinalities of the P and GT regions [98], given by

DSC =
2|P ∩GT |
|P |+ |GT | , (4.4)

where |P | and |GT | are the cardinalities of the P and GT regions respectively.

The JSC metric is the cardinality of the number of voxels in the intersection of

the predicted (P ) and ground truth (GT ) regions divided by the cardinality of the

number of voxels in their union [98], given by

JSC =
|P ∩GT |
|P ∪GT | . (4.5)

As discussed in Section 4.5.2, the networks are evaluated on 2 split tests.

Performance results of each split test are shown in the box-and-whiskers plots of

Figures 4.6 and 4.7.

We can see from Figures 4.6 and 4.7 that the adjacent network has the highest

maximum DSC and JSC in both split tests. This shows the capability of the adjacent

network to exceed the performance of its competitors in both evaluation metrics. It

also achieves the highest minimum DSC and JSC on the split 2 test when compared

to the others. Although the minimum split 1 test score of the adjacent network
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Figure 4.6: Box-and-whiskers plot of U-Net, FCN-1s and Adjacent Network DSC
for split 1 and split 2 tests. The × symbol in the box indicates the mean value,
while the line in the box indicates the median value. The ◦ represents the outlier,
the box represents the interquartile range and the whiskers represent the upper and
lower extreme, excluding the outliers.

is not the highest, it is approximately the same as the competitors (0.2% lower

DSC than U-Net and 0.5% higher DSC than FCN-1s; 0.3% lower JSC than U-Net

and 0.8% higher JSC than FCN-1s). Figures 4.6 and 4.7 show that the adjacent

network performs comparably well in terms of both the DSC and JSC, while using

considerably less trainable parameters.

Table 4.3: Network Performance Comparison

Network
Avg Dice Score (in %) Avg Jaccard (in %)

Split 1 Split 2 Avg Split 1 Split 2 Avg

U-Net 93.20 92.18 92.69 87.30 85.52 86.41

FCN-1s 92.89 91.57 92.23 86.79 84.49 85.64

Adjacent Net 93.42 92.16 92.79 87.70 85.51 86.61

The overall performance results are summarised in Table 4.3, which includes

the average (Avg) of both split test scores. All the networks evaluated in the

comparison achieve high DSC and JSC. The proposed adjacent network performs

comparably well to the other more complex networks, even though the training
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Figure 4.7: Box-and-whiskers plot of U-Net, FCN-1s and Adjacent Network JSC
for split 1 and split 2 tests. The × symbol in the box indicates the mean value,
while the line in the box indicates the median value. The ◦ represents the outlier,
the box represents the interquartile range and the whiskers represent the upper and
lower extreme, excluding the outliers.

time is significantly less (see Table 4.2), achieving a slightly higher average in both

the DSC (0.1% higher than U-Net and 0.56% higher than FCN-1s) and JSC (0.2%

higher than U-Net and 0.39% higher than FCN-1s). In the Split 1 test, the proposed

network achieves a 0.22% higher DSC and a 0.4% higher JSC than U-Net. However,

in the Split 2 test, U-Net achieves a 0.01% higher DSC and JSC than the proposed

network. On the other hand, FCN-1s scores just slightly lower than both U-Net and

the proposed adjacent network in both tests.

A selection of labelled and segmented CT images are shown in Figures 4.8, 4.9

and 4.10.
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None of the networks achieve perfect scores, and some segmentation errors occur

in their predictions, as shown in Figure 4.8.

U-Net FCN-1s Adjacent Network

Figure 4.8: Liver segmentation results by U-Net, FCN-1s, Adjacent Network on 3
different CT scan slices (row 1 to 3). The red, green and yellow contours show the
network prediction, ground truth and correct prediction respectively.
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As can be seen in Figure 4.9, when the scan contains multiple liver parts, all of

the networks have similar difficulties in detecting the smaller parts. However, the

majority of the predictions are correct as shown in Figure 4.10.

U-Net FCN-1s Adjacent Network

Figure 4.9: Liver segmentation results by U-Net, FCN-1s, Adjacent Network on 3
different CT scan slices (row 1 to 3). The red, green and yellow contours show the
network prediction, ground truth and correct prediction respectively.
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U-Net FCN-1s Adjacent Network

Figure 4.10: Liver segmentation results by U-Net, FCN-1s, Adjacent Network on
3 different CT scan slices (row 1 to 3). The red, green and yellow contours show the
network prediction, ground truth and correct prediction respectively.

4.6 Conclusion

In this chapter, we propose a CNN that incorporates a novel adjacent upsampling

method to make a more effective pixel-wise prediction from the extracted high-level

features. The proposed adjacent network uses a much smaller number of trainable

parameters and less memory, whilst it is able to perform comparably well with

respect to state-of-the-art networks such as U-Net and FCN-1s. Also, the proposed

network is much easier to train due to the smaller number of trainable parameters,

and is significantly faster in computation time due to its more efficient architecture.

89





CHAPTER

5

Optimisation of a U-Net Architecture for

Automatic Prostate Segmentation on MRI

In this chapter, we develop an optimised U-Net architecture by considering the effects

of each individual component on the overall network performance specifically for a

prostate segmentation task. The segmentation network is optimised with respect to

the Dice score, while maintaining a small number of trainable parameters. U-Net

is chosen for this optimisation as it is a well known state-of-the-art segmentation

network and its contracting-expanding structure offers a range of flexibility for its

components. The optimised network is shown to outperform traditional methods on

a private dataset as well as other comparable state-of-the-art 2D networks reported

on a public dataset, PROMISE12. For the model evaluation on the public dataset,

the model predictions were submitted to the grand-challenge website and evaluated

by the organiser.
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5.1 Introduction

In this chapter, a prostate segmentation dataset is used due to its level of complexity.

Unlike liver, prostate has fuzzy boundaries and pixel intensities that vary largely

inside and outside the prostate [99]. The prostate also has similar range of pixel

intensities within the prostate and non-prostate region [99]. These factors cause

prostate segmentation to be a very challenging task that is suitable for this study.

Radiation therapy (radiotherapy) is a cancer treatment that uses ionizing

radiation to kill cancer cells or control the growth of tumours. It is a very common

treatment for all stages of prostate cancer. However, this treatment can damage

the normal cells around the cancer cells, putting surrounding organs at risk of post-

treatment complications [100]. In the case of prostate cancer, the main objective is to

deliver a maximum dose of radiation to the prostate and minimise the dose received

by the bladder and rectum [101]. For this reason, accurate prostate segmentation is

required.

As discussed briefly in Section 1.1, manual labelling of an organ can be a

time consuming and challenging process. It involves one or more experts scanning

through the dataset and labelling the organ. As a result, labels produced by

experts are subject to intra-and inter-expert variability due to varying expertise

levels [102]. Intra-expert variability means that an expert may segment a specific

image differently when performed multiple times, while inter-expert variability

means that different experts may segment the same image differently [103].

Automatic segmentation can speed up the segmentation process as well as

minimise the intra-and inter-expert variability problem [104, 105]. The main two

traditional methods employed for automatic prostate segmentation on MRI images

are the atlas-based and deformable model-based methods [106]. In the atlas-based

method, a set of images and their corresponding labels are combined together after

non-rigid registration (NRR) to create a reference atlas and a corresponding labelled

structure. The atlas image, in this case, contains the prostate and its surrounding

tissue with the corresponding labelled structure representing the probability of a

voxel being a part of the prostate. The NRR of the atlas to the new, unseen MRI
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scan is used to obtain the segmentation of the prostate of a new patient [106]. In the

deformable model-based method, a good initialisation of the model is required. The

model can be initialised by atlas-based segmentation [106, 107], where a surface is

extracted from a thresholded probabilistic segmentation and the model is deformed

to closely match the organ boundary by the use of the grey-level information of the

image. The grey-level model is developed offline with one-dimensional grey-level

profiles taken along the normals for each vertex of the surface for the images. A

distance metric is then used to match the profiles of the model and the profiles

extracted from the image [106]. As both methods either rely on the atlas-based

method or a good initialisation, they are prone to errors [108] and can be time

consuming [106].

Deep learning models based on a CNN have achieved outstanding results in

automatic prostate segmentation tasks [12] [109–114]. There are many CNNs that

differ by both the components and the way these components are constructed in

their architectures, as discussed in section 2.3.2. Many studies often present a

performance comparison of completely different model architectures [109–113] or

CNN based approaches which include different post-processing methods in their

pipeline [12] [115] [116]. As a result, the comparison is unreliable and the effect of

an individual component on the overall performance is hard to distinguish and/or

is unknown.

In order to develop an efficient and effective deep learning model based on a

CNN, it is important to understand which components are most beneficial for a

segmentation task. Thus, we focus on the effects of the individual components to

the network in performing prostate segmentation.

In this chapter, we use a private dataset [117] of T2 weighted MR images with

a fixed 2D resolution and voxel size across the whole dataset to optimise a 2D U-

Net architecture [18] in terms of the network DSC score in performing a prostate

segmentation. The use of this dataset, with a fixed 2D resolution and voxel size,

allows us to mitigate the possibility of artefacts caused by resizing operations in

the data preparation process that may ultimately affect the optimisation process.

Performance evaluation of networks with different architectures will be presented to
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provide an insight into the contribution of each network component in a prostate

segmentation application.

Performance of the optimised network is evaluated on both a private dataset [117]

and the public dataset, PROMISE12 [118], of T2 weighted MR images. With

respect to the private dataset, we show that the performance of the optimised

network is a significant improvement over that of the traditional segmentation

methods [117, 119]. With respect to the PROMISE12 dataset, the performance

of the optimised network is compared to other state-of-the-art 2D CNNs as can

be seen on the public leaderboard [118] scored by the organiser. Challenges due

to inter-expert variability associated with the dataset are also discussed, as this is

a problem that is often overlooked in medical imaging segmentation. We provide

suggestions about how the optimised network could be used to address aspects of

this problem.

5.2 Dataset and Performance Metric for Optimisation

In this section, we describe the dataset and performance metric used for the

optimisation process.

5.2.1 Dataset

For the network architecture optimisation in Section 5.3, we use a private dataset

[117] which is collected following ethical approval and informed consents. The

dataset is obtained using a Siemens Skyra 3.0 Tesla magnet, without the use of

an endorectal coil, located at the Calvary Mater Newcastle Hospital, Australia. The

dataset consists of 41 prostate, T2 weighted, MRI scans with three expert (E1,

E2 and E3) manual delineations on each scan. Each scan contains 320 × 320 × 60

voxels with a voxel size of 0.625× 0.625× 2 mm. The expert E2 labels are used for

both training and testing due to having the highest mean Dice’s similary coefficient

score against the majority voting labels [120]. The majority voting labels are the

labels agreed by at least 2 out of the 3 experts. As majority voting tends to remove

information, such as uncertain labels [121], it is not used for the evaluation process
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to reduce bias in the optimisation process towards smaller volumes of the organ

being segmented.

5.2.2 Performance Metric

The Sørensen–Dice coefficient or Dice’s similary coefficient [98], DSC, is used to

evaluate the performance of each model. The DSC metric is given in Eq. 4.4.

Five-fold cross-validation is used for the evaluation of the model on the entire

dataset. First, one scan is extracted to be used as the validation set and the

remaining 40 scans are shuffled randomly and then divided into 5 folds. Every

fold consists of 32 scans for the training set and 8 scans for the test set. The average

DSC score is the mean score of the five-fold cross-validation.

5.3 Network Architecture Optimisation

In this section, we determine the components that can improve the performance

of a 2D U-Net for prostate segmentation in terms of Dice’s score. The specific

components we consider are associated with downsampling, upsampling, skip

connections, dropout, normalisation and activation layers.

As discussed in Section 2.4.3, a U-Net has an equal number of downsampling

and upsampling layers in the architecture, forming a contracting-expanding structure

that can be beneficial for a segmentation task [18]. Thus, we use a U-Net architecture

[95] for our base architecture. We begin with what we denote as UNet S, a simplified

U-Net that uses a quarter of the number of filters used in the U-Net of [95], which

results in a significantly lower number of trainable parameters (∼ 1.9M) than the

original architecture (∼ 31M). The UNet S architecture is shown in Figure 5.1.

The UNet S consists of multiple convolution blocks in its architecture. Each

convolution block (Conv Block) contains two pairs of 3 × 3 convolution and ReLU

activation layers as shown in Figure 5.2 (a). For downsampling, a 2×2 max pooling

layer with stride length of 2 is used. For upsampling, a 2×2 resize convolution with

ReLU activation is used. Skip connections concatenate the same resolution feature

maps from the contracting part to the expanding part, however, none are within the
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convolution block. There are 2 dropout layers with a dropout rate of 0.5 after the

fourth and fifth convolution block. Finally, a 1× 1 convolutional layer with sigmoid

activation is used to produce a probability map.

Output 320 x 320 x 1Input 320 x 320 x 1

Conv Block 9

Resize Conv

40 x 40 x 128

Sigmoid Activation
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Figure 5.1: UNet S architecture, the base architecture.

Several components of the network architecture will be investigated to find the

most suitable components for prostate segmentation problem. For the downsampling

component, we will investigate the use of 2-strided convolution, RMS pooling, L2

pooling and average pooling in the place of max pooling. The 2-strided convolution

and average pooling layers are the pooling layer that are being used by some of

the state-of-the-art CNNs [39] [48] [30] [49] [47]. While, RMS and L2 pooling are

the other possible pooling methods that we think have the potential to replace the

max-pooling layer. For the upsampling component, we will investigate the use of

transposed convolution, as it was being used successfully by FCN [17] and V-Net [47],

in comparison to resize convolution. For the skip connection, we will investigate its

use within the convolution block, by comparing the original implementation with

the summation operation, as in ResNet [48] and V-Net, [47] and the modified
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implementation with concatenation operation, as in DenseNet [30]. Then, we

investigate the need of using dropout by comparing the use of the most common

dropout value that was adopted in the state-of-the-art CNNs [46] [26] [17] [47],

i.e. 0.5, to not using dropout, i.e. 0. We also investigate the need of using a

batch normalisation layer, as well as its most suitable placement with respect to

the convolution and activation layers. Finally, we investigate the use of LReLU, as

LReLU is the most basic modified ReLU that was suggested to overcome the dying

ReLU problem as discussed in Section 2.3.2.

In summary, for the optimisation process, we use 6 phases to determine an

optimised U-Net architecture:

1. Determine the appropriate downsampling and upsampling component

2. Determine the appropriate operation for a skip connection

3. Determine the requirement of dropout

4. Determine the requirement of batch normalisation

5. Determine the appropriate pooling layer

6. Determine the appropriate activation function and placement of batch

normalisation

Table 5.1 provides the components of the network being optimised.
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Table 5.1: Network architecture details.

Phase Network

Components

Downsampling Upsampling

Skip Connection

Dropout
Batch

Activationwithin
Normalisation

Conv Block

UNet S Max Pooling Resize Conv� - 0.5 - Relu

1 UNet S1 Max Pooling Transposed Conv∗ - 0.5 - Relu

UNet S2 Strided Conv† Resize Conv� - 0.5 - Relu

2

UNet S.1 Max Pooling Resize Conv� Summation 0.5 - Relu

UNet S1.1 Max Pooling Transposed Conv∗ Summation 0.5 - Relu

UNet S2.1 Strided Conv† Resize Conv� Summation 0.5 - Relu

UNet S.2 Max Pooling Resize Conv� Concatenation 0.5 - Relu

UNet S1.2 Max Pooling Transposed Conv∗ Concatenation 0.5 - Relu

UNet S2.2 Strided Conv† Resize Conv� Concatenation 0.5 - Relu

3 UNet S.2.1 Max Pooling Resize Conv� Concatenation 0 - Relu

4 UNet S.2.0.1 Max Pooling Resize Conv� Concatenation 0.5 Before Activation Relu

5

UNet S.2.0.1.1 Avg Pooling‡ Resize Conv� Concatenation 0.5 Before Activation Relu

UNet S.2.0.1.2 RMS Pooling Resize Conv� Concatenation 0.5 Before Activation Relu

UNet S.2.0.1.3 L2 Pooling Resize Conv� Concatenation 0.5 Before Activation Relu

6
UNet S.2.0.1.1.1 Avg Pooling‡ Resize Conv� Concatenation 0.5 Before Activation LRelu

UNet S.2.0.1.1.2 Avg Pooling‡ Resize Conv� Concatenation 0.5 After Activation Relu

�Resize Conv refers to resize convolutional layer. ∗Transposed Conv refers to transposed
convolutional layer. †Strided Conv refers to strided convolutional layer. ‡Avg Pooling refers to
average pooling layer.

In phase 1 of the evaluation, we investigate the performance of the convolutional

layers in performing upsampling and downsampling. The UNet S1 is UNet S where

the resize convolution is replaced with a transposed convolution, and UNet S2 is

UNet S where max pooling is replaced with 2× 2, 2-strided convolution. As can be

seen from the DSC results shown in Table 5.2 phase 1, the UNet S with max pooling

and resize convolution components produced the highest DSC score.

For phase 2, we examine the use of a skip connection in each convolution

block to improve the performance of the networks in phase 1. Two configurations

of the skip connection are considered for the convolution blocks in the network.

The UNet S.1, UNet S1.1 and UNet S2.1 have skip connections with element-wise

summation (Figure 5.2b), whilst the UNet S.2, UNet S1.2 and UNet S2.2 have skip

connections with concatenation (Figure 5.2c).
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Figure 5.2: Convolution blocks. (a) Convolution block in UNet S, UNet S1 and
UNet S2; (b) Skip connection with element-wise summation in UNet S.1, UNet S1.1
and UNet S2.1; (c) Skip connection with concatenation in UNet S.2, UNet S1.2 and
UNet S2.2.

As can be seen in Table 5.2, phase 2, the skip connection with element-wise

summation decreases the performance of UNet S.1, UNet S1.1 and UNet S2.1 when

compared to the UNet S. On the other hand, the skip connection with concatenation

improves the performance of UNet S.2, UNet S1.2 and UNet S2.2 as compared to

UNet S.

From phases 1 and 2, we conclude that the use of max pooling for downsampling

and resize convolution for upsampling combined with a concatenation skip

connection in each convolution block, i.e. UNet S.2, performs better than the other

configurations (see Table 5.2). In phase 3, we perform the modifications only on the

best network from phase 2.

In phase 3, we modify the dropout rate from 0.5 to 0 to investigate the need of

dropout. As can be seen from Table 5.2, phases 2 and 3, the network with a dropout

rate of 0.5, UNet S.2, performs better than the modified network, UNet S.2.1, which

has a dropout rate of 0.

In phase 4, we investigate the effect of batch normalisation on the best network

achieved so far, i.e. UNet S.2. In UNet S.2.0.1, batch normalisation layers are placed

in between the convolution and activation layers, as shown in Figure 5.3 (a).
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Convolution

Batch Normalisation

Activation

(a)

Convolution

Activation

Batch Normalisation

(b)

Figure 5.3: Batch normalisation layer implementations. (a) Batch normalisation
layer after each convolutional layer in UNet S.2.0.1. (b) Batch normalisation layer
after each activation layer in UNet S.2.0.1.1.2.

It can be seen in Table 5.2 phase 4, that the previous best result obtained by

UNet S.2 is improved by including batch normalisation layers, as in UNet S.2.0.1.

This is due to the result of the additional model regularisation introduced by the

use of the batch normalisation layer, as discussed in Section 2.3.2.

As discussed in Section 2.3.2, the max pooling layer extracts significant features,

such as light edges and lines, of the previous layer. However, the prostate does

not have a well-defined boundary, hence a different pooling layer may perform a

better segmentation. Therefore, in phase 5, we replace the max pooling layer in the

UNet S.2.0.1 with average pooling (UNet S.2.0.1.1), RMS pooling (UNet S.2.0.1.2)

and L2 pooling (UNet S.2.0.1.3) layers.

The network with the average pooling layer, UNet S.2.0.1.1, is shown to perform

better than the networks utilising the other types of pooling layers, as can be

observed in Table 5.2 phase 5.

Finally, we investigate an alternative activation function and placement of batch

normalisation layers on the best network, UNet S.2.0.1.1. First, we replace the ReLU

with LReLU activation layers in UNet S.2.0.1.1.1. Then, we investigate the network

performance when placing the batch normalisation layer after the activation layer,

as shown in Figure 5.3 (b), in UNet S.2.0.1.1.2. The results are shown in Table

5.2 phase 6. It can be observed that neither the modification of the ReLU to the

LReLU nor the change in position of the batch normalisation layer with the ReLU

layer improves on the performance of the UNet S.2.0.1.1.
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Table 5.2: Network architecture optimisation results.

Phase Network
5-Fold Cross-Validation DSC (%)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg

UNet S 85.28 86.86 83.36 86.16 81.53 84.64

1 UNet S1 85.26 83.04 79.66 81.43 79.16 81.70

UNet S2 85.07 85.25 80.20 81.18 80.84 82.51

2

UNet S.1 84.40 86.30 80.29 80.49 82.98 82.89

UNet S1.1 83.37 84.22 78.04 82.05 79.35 81.41

UNet S2.1 83.70 82.53 79.19 82.68 82.03 82.03

UNet S.2 85.46 88.01 82.91 84.76 84.89 85.21

UNet S1.2 85.43 84.67 79.06 80.60 83.13 82.58

UNet S2.2 85.28 81.63 81.08 84.35 80.33 82.53

3 UNet S.2.1 82.31 84.97 80.11 84.08 81.47 82.59

4 UNet S.2.0.1 84.33 87.26 82.80 88.79 84.73 85.58

5

UNet S.2.0.1.1 84.02 88.87 83.97 89.23 85.07 86.23

UNet S.2.0.1.2 84.55 84.71 81.36 87.38 83.98 84.40

UNet S.2.0.1.3 84.12 87.55 82.80 88.92 84.17 85.51

6
UNet S.2.0.1.1.1 81.68 83.89 79.45 88.06 84.00 83.41

UNet S.2.0.1.1.2 84.64 87.95 82.68 87.75 84.68 85.54

Therefore, the UNet S.2.0.1.1 is selected as the network that is best suited

to the prostate segmentation task. It is a simplified U-Net with a concatenation

skip connection in each convolution block, 2 × 2 average pooling layers used for

downsampling and a batch normalisation layer placed between each convolution and

ReLU activation layer. It achieved an average increase of 1.59% and a maximum

increase of 3.54% in the DSC score compared to the initial simplified UNet. It has

a minimum DSC score of 83.97% and a maximum DSC score of 89.23%, while the

simplified UNet has a minimum DSC score of 83.36% and a maximum DSC score of

86.86%.
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5.4 Optimised Network Architecture

The configuration of the optimised network, UNet S.2.0.1.1, architecture is shown

in Figure 5.4. The network takes a 320×320×1 input and processes it directly with

a batch normalisation layer. The network comprises of multiple convolution blocks

with each block consisting of two 3×3 convolutional layers, two batch normalisation

layers and two ReLU activation layers. A skip connection with concatenation is

used to pass the feature maps between the outputs of the activation layers within

a convolution block to combine the feature maps using a concatenation. The

concatenated feature maps are passed deeper into the contracting part as well as

to the expanding part to improve the spatial information in the higher level feature

maps. Four 2 × 2 average pooling layers are used to downsample the feature maps

from a resolution of 320 × 320 to a resolution of 20 × 20. A dropout layer, with

a dropout rate of 0.5, is applied after the fourth and fifth convolution blocks. A

2 × 2 resize convolution with batch normalisation and ReLU is used to perform

upsampling. Finally, a 1 × 1 convolutional layer with batch normalisation and

sigmoid activation layers is used to produce a probability map.
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Figure 5.4: Optimised UNet S.2.0.1.1 architecture .
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5.5 Prostate Segmentation using the Optimised U-Net

In this section, we explain the training process and the results of the optimised

U-Net on both the private and the PROMISE12 [118] datasets.

5.5.1 Application on the Private Dataset

The same dataset (scan dimension of 320 × 320 × 60 voxels with voxel size of

0.625 × 0.625 × 2 mm) used for the model evaluation, in Section 5.2, is used for

both training and testing in this section. However, instead of using labels from one

expert as the label of the prostate, we use the majority voting of the labels from

three experts, as used in the other studies [117,119] on the same dataset, to extract

the consensus label of the prostate for training.

Performance Metric for the Private Dataset

Five-fold cross-validation mean DSC, median DSC, average symmetric surface

distance (ASD) and Hausdorff distance are used for the evaluation of the model

performance.

The ASD is the average Euclidean distance from all the points on the predicted

region boundary, BP , to the nearest ground truth region boundary, BGT , and from

all the points on the BGT to the nearest BP [98], given by

ASD =

(∑
x∈BP

D (x,BGT ) +
∑

y∈BGT
D (y,BP )

)
|BP |+ |BGT | , (5.1)

where the |BP | and |BGT | are the cardinalities of the BP and BGT regions

respectively and the distance from a voxel x to a set of voxels A is given by

D(x,A) = min
y∈A

d(x, y), (5.2)

with d(x, y) denoting the Euclidean distance between 2 voxels, x and y.

The Hausdorff distance measures the maximum distance from a point in the set

of surface points of the predicted regions, P , to the nearest point in the set of surface
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points of the ground truth regions, GT , [98], given by

dH(P,GT ) = max
x∈P

min
y∈GT

d(x, y). (5.3)

Training on the Private Dataset

The training process consists of two pre-processing steps, i.e. data balancing and

normalisation. As discussed in Section 3.3.4, to minimise bias on the weight tuning

in the training process, a balanced portion of the data from each classes has to be

used for training. In this case, we use RUS to extract an equal number of slices with

and without prostate labels. We extract all the 2D scan slices in a volume that have

a prostate label, then randomly select an equal number of the 2D scan slices that do

not have a prostate label. For the normalisation, we use z-score normalisation where

we subtract the mean of the training set from each voxel of the training, validation

and test sets, then divide the result by one standard deviation of the training set.

The weights are initialised with the He initialisation. An Adam optimiser

initialised with a 10−4 learning rate and a binary cross-entropy cost function are

used for the training.

The model is developed with Keras [122]. Both training and testing are

performed on 4 Gb GeForce GTX 960 GPU with Intel(R) Core(TM) i5-3550 CPU

@3.30 GHz and 16 Gb RAM. The training time per epoch is approximately 275 s,

while testing time is 2.85 s per scan and 0.0474 s per slide.

Results on the Private Dataset

The performance difference between the optimised U-Net and three traditional

prostate segmentation methods [117, 119] is presented in this section. The three

prostate segmentation methods that were used in previous studies are the multi-

atlas [117], multi-object weighted and standard (unweighted) deformable model

approaches [119].

Examining the scores over the whole dataset, the optimised U-Net has a mean

DSC of 87.38%, median DSC of 88.19%, median ASD of 0.72 mm and median

Hausdorff of 4 mm. As shown in Table 5.3, the optimised U-Net outperforms the
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traditional methods by at least 7% and 6% in mean and median DSC, respectively,

1.32 mm in median ASD and 5.6 mm in median Hausdorff distance.

Table 5.3: Performance comparison between the optimised U-Net and traditional
methods.

Method
Mean Median Median Median

DSC DSC ASD (mm) Hausdorff (mm)

Multi-atlas 0.80 0.82 2.04 13.3

Weighted 0.79 0.81 2.08 9.6

Unweighted - 0.70 3.20 12.9

UNet S.2.0.1.1 0.87 0.88 0.72 4

As shown in Figure 5.5, the optimised U-Net performed well on all the cross-

validation folds by having DSC scores in the range of 0.73 to 0.94, where the third

quartile of the five folds are at least 0.9, and only 4 out of 40 predictions have a

DSC score below 0.81. The mean DSC scores, across all folds, are at least 0.86 and

the median DSC scores are at least 0.87, while the best mean and median DSC

scores achieved by the traditional method are 0.80 and 0.82, respectively in this

dataset [117, 119]. Without the outliers, the minimum DSC scores of fold 2, 3, 4

and 5 are all 0.84 and above, which is above the mean and the median DSC scores

achieved by the traditional methods.
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Figure 5.5: Box-and-whisker plot of the optimised U-Net five-fold cross-validation
Dice’s similary coefficient scores, where the × symbol in the box indicates the mean
value and the line in the box indicates the median value. The ◦ represents the
outlier, the box represents the interquartile range and the whiskers represent the
upper and lower extreme, excluding the outliers.

Excluding the obvious outliers in Figure 5.5, we present the best and worst

predictions of the segmentation in Figure 5.6 (a) and (b) respectively. These

prediction volumes have DSC scores of 0.94 and 0.73. It is easily observed that

the prediction volume with a DSC score of 0.94 is very similar to the ground truth

segmented volume. We note that even for the worst case, having a DSC score of

0.73, the majority of the prediction volume still agreed well with the ground truth

segmented volume.
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(a)

(b)

Figure 5.6: Prostate segmentation results from the optimised U-Net. Model
prediction in red, ground truth in green. (a) Prediction with DSC score of 0.94;
(b) Prediction with DSC score of 0.73.
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5.5.2 Application on the PROMISE12 Dataset

The PROMISE12 dataset [118] consists of 80 T2-weighted MR images of the

prostate. It is collected with different acquisition protocols, e.g. different slice

thickness, with/without endorectal coil, from multiple centres and vendors. The

training set consists of 50 T2-weighted MRI scans with a single prostate label, i.e.

the reference segmentation. The test set consists of 30 T2-weighted MRI scans

without any label.

Performance Metric for the PROMISE12 Dataset

The organiser of the PROMISE12 challenge [118] evaluates the models according

to the segmentation from a reference standard and second observer. The reference

standard segmentations were set by an experienced observer and revised by another

experienced observer. The second observer segmentations were performed in a

blind fashion and revised by the other experienced observer for completeness and

anomalies. The second observer segmentations are used to obtain the average user

errors for each measure.

Mean DSC, absolute relative volume difference, average boundary distance and

95% symmetric Haussdorff distance are used to calculate the overall score for each

model [118]. The overall score is the average of all the performance metrics. Each

measurement score is based on the following,

score(x) = max(ax+ b, 0) (5.4)

where a and b are set in such a way that the maximum score obtained when the

segmentation is identical to the second observer is equal to 85 points, i.e. a and

b are equal to 88.24 and 11.76, respectively. A maximum of 100 points can be

achieved when the segmentation excludes the segmentation errors made by the

second observer [118].

The DSC and average boundary distance (i.e. ASD) have been discussed in

Section 5.2.2 and 5.5.1 respectively.

The absolute relative volume difference of the reference standard segmentation
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region, GT , and model segmentation region, P , is given by [118],

aRVD(GT,P ) =

∣∣∣∣100×
( |GT |

|P | − 1

)∣∣∣∣ , (5.5)

where the |GT | denotes the number of voxels in the reference standard segmentation

region and |P | denotes the number of voxels in the model segmentation region.

The symmetric Hausdorff distance is the maximum of the Hausdorff distance

from the predicted regions, P , to the ground truth regions, GT , and vice versa. It

is given by [118],

dsymH (P,GT ) = max (dH(P,GT ), dH(GT,P )), (5.6)

but instead of the maximum, the 95th percentile of the Hausdorff distance is used.

Training on the PROMISE12 Dataset

In addition to the two pre-processing steps, i.e. data balancing and normalisation,

2D resizing to a size of 320×320 is required in this dataset, as the MRI scans come in

two different sizes, 320×320 and 512×512. The resizing is performed by resampling

the pixels based on the pixel area relation, where the weighted sum of pixel values

within the scale window will be divided by the area of scale window at each pixel

location [123].

The weights are initialised with the He initialisation. An Adam optimiser

initialised with a 10−4 learning rate and a binary cross-entropy cost function are

used for the training.

The model is developed with Keras [122]. Both training and testing are

performed on 4 Gb GeForce GTX 960 GPU with Intel(R) Core(TM) i5-3550 CPU

@3.30 GHz and 16 Gb RAM. The training time per epoch is approximately 200 s,

while the testing time is 2.85 s per scan and 0.0474 s per slide.

Results on the PROMISE12 Test Set

In this section, the performance of the optimised U-Net is evaluated on

the PROMISE12 test set and compared to the state-of-the-art CNNs on the
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PROMISE12 leaderboard by submitting the network predictions to the MICCAI

PROMISE12 grand-challenge website [118] where the scoring is conducted by the

organiser. Here, the test set mean DSC and PROMISE12 overall score [118] are used

for the evaluation of the networks. The performance results of some networks as well

as the architecture type, pre-processing and post-processing details are presented

in Table 5.4. Further details of the results can be obtained from the MICCAI

PROMISE12 grand-challenge website [118].

In Table 5.4, the optimised U-Net is compared with the top 12 state-of-the-art

2D CNNs on the PROMISE12 leaderboard. All the 3D and combined 2D/3D CNNs

have been excluded from the table as they are not directly comparable to the network

architecture in this chapter. We also exclude networks that incorporate any data-

enhancing pre- or post-processing and those with stacked networks as discussed in

the sequel.

Table 5.4: Performance comparison between the optimised U-Net and state-of-the-
art 2D CNNs on the PROMISE12 test set [118].

Rank Team Network Type
Pre- Post- Mean Overall

processing DSC (%) Score

35 u3004443 Z-Net Single Yes Yes 90.50 87.8068

59
hkuandrewzhang

Z-Net Single Yes No 90.24 87.3217
(Revised U-net)

86 wanlichen (WNet) W-Net [22] Stacked No No 89.96 86.5028

92 sho89512
U-Net w/

Single No No 88.98 86.3676
Dense Dilated Block

95 fumin
RUCIMS (U-Net w/

Single Yes No 88.75 86.2589
Dense Dilated Block)

122 Indri92 UNet S.2.0.1.1 (U-Net) Single No No 89.00 85.4954

140 ddd52317102008 Adversial Network Adv. Net. No No 87.90 84.5935

163 mirzaevinom MBIOS (U-Net) Single Yes No 88.06 83.6633

167 ppppppppjw U-Net w/ Dense Block Single No No 86.80 83.5027

168 michaldrozdzal UdeM 2D (ResNet) Stacked No Yes 87.42 83.4522

179 mariabaldeon AdaResU-Net [32] Single Yes No 86.51 82.7937

194 wanlichen (WNet)
U-Net w/

Single No No 86.29 82.1644
skip connection

As can be seen in Table 5.4, both of the Z-Nets perform better than our optimised

U-Net in terms of both mean DSC and overall score. However, both teams that use

Z-Net employ either data-enhancing pre-processing, or post-processing, to improve
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the model performance. Therefore, the Z-Nets results are incomparable with our

results as we do not employ any data-enhancing pre-or post-processing. W-Net

does not use any data-enhancing pre- or post-processing and it has a mean DSC

of 0.8996 and overall score of 86.5028. However, W-Net is a stacked U-Net, i.e. it

utilises a double U-Net to perform the segmentation, hence it is not comparable

with our optimised U-Net architecture that consists of a single U-Net. Similar

to our approach, sho89512 uses a single U-Net architecture and does not employ

any data-enhancing pre-or post-processing method. However, although it performs

better in the overall score (86.3676 vs. 85.4954), it performs slightly worse than our

optimised U-Net in the mean DSC (0.8898 vs. 0.89). As can be seen in Table 5.4, our

optimised U-Net performs significantly better compared to the rest of the 2D U-Net-

based networks with or without the use of data-enhancing pre-and post-processing.

Note that, it also performs better than the adversial network.

Most importantly, the optimised U-Net is seen to be better than U-Net (MBIOS),

U-Net with residual connection (Udem 2D) and U-Net with skip connection (by

wanlichen (WNet)) as a result of the optimisation. Another key point to note is

that the optimised U-Net performs better than the U-Net with dense block (by

ppppppppjw), and only slightly worse than U-Net with dense dilated block (by

sho89512 and fumin).

A couple of examples of the PROMISE12 segmentation results are shown in

Figure 5.7 (a) and (b) respectively. These prediction volumes have DSC scores of

0.93 and 0.88, respectively. As the ground truth of both examples are not available,

only the prediction volumes are presented in Figure 5.7.
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(a)

(b)

Figure 5.7: PROMISE12 segmentation results from the optimised U-Net. Model
prediction in red. (a) Prediction with DSC score of 0.93; (b) Prediction with DSC
score of 0.88.
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5.6 Discussion

From the results, we can see that our U-Net performs better than other U-Nets

as a result of the optimisation. This shows that several components that were

added/modified works well for the prostate segmentation problem. For example,

the average pooling works better than max pooling as prostate does not have a well-

defined boundary, the resize convolution results in better higher-resolution feature

mapping than the transposed convolution, the concatenation operation at the end of

skip connections helps in retaining the low-level features to be used in deeper layers,

while the dropout and batch normalisation layer help in the training of the network

to prevent overfitting.

We also found that the inter-expert variability on the labelling of a dataset may

cause the development of a CNN model to be difficult. As can be seen in the box-

and-whisker plot in Figure 5.8(a), the inter-expert variability (between experts E1

and E2, E1 and E3, and E2 and E3) is very large for the prostate segmentation of

the private dataset.

It is known that the labelling of medical images is always subject to the problem

of intra-and inter-expert variability. One possible solution is to create larger labelled

datasets by using an automatic segmentation model. In this way, the model can be

used to provide an initial segmentation as a reference for the expert to save time.

For example, our optimised U-Net can be used to provide assistance for the expert

as it is shown in the box-and-whisker plot in Figure 5.8(b) that its performance is

within the performance range of the experts. It can also be seen that the optimised

U-Net performs better than expert one, E1, and almost as well as the other experts

with respect to the majority voting label.
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Figure 5.8: Box-and-whisker plots, where the × symbol in the box indicates the
mean value and the line in the box indicates the median value. The ◦ represents
the outlier, the box represents the interquartile range and the whiskers represent
the upper and lower extreme, excluding the outliers. (a) Inter-expert DSC scores to
highlight the inter-expert variability problem; (b) DSC scores of the three experts
and the network against the majority voting label (MV).
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5.7 Conclusion

In this chapter, we developed an optimised 2D U-Net with respect to the Dice

score while maintaining a small number of trainable parameters to perform prostate

segmentation, without any data-enhancing pre- or post-processing. We established

the importance of the individual components within the U-Net architecture to

perform prostate segmentation. We found that resize convolution results in better

performance for upsampling than transposed convolution. Within each convolution

block, combining feature maps with a skip connection is only beneficial when using

a concatenation operation. With respect to pooling, the use of average pooling

offers significant improvement over strided convolution, max, RMS or L2 pooling.

The implementation of model regularisation by including a dropout layer, with a

dropout rate of 0.5, and a batch normalisation layer before the activation layer,

also improves the network performance. We show that the optimised U-Net in

this chapter outperforms traditional segmentation methods on a private dataset

by approximately 6% and 7% in a median and mean DSC scores, respectively.

Furthermore, it outperforms (in terms of DSC) other comparable state-of-the-

art 2D CNNs on the PROMISE12 public dataset as can be seen on the public

leaderboard [118] scored by the organiser. In addition, we discuss intra-and inter-

expert label variability and its effect on network performance, as well as provide

suggestions to reduce the associated errors.
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CHAPTER

6

Objective Quantification of Nerves in

Immunohistochemistry Specimens

In this chapter, we develop a novel CNN based approach for a complex digital

pathology segmentation problem. We provide a performance comparison between

a CNN based approach and existing manual and automated quantification methods.

We propose a novel augmented classification structure to improve the performance

of a U-Net for an object detection task. We address common critical challenges

that are often encountered in developing a CNN based approach with clinical data by

closely considering the data pre-processing for the training of the network.
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CHAPTER 6. OBJECTIVE QUANTIFICATION OF NERVES IN
IMMUNOHISTOCHEMISTRY SPECIMENS

6.1 Introduction

A growing number of studies have shown that nerves are involved in the initiation

and progression of a number of cancers [124]. For example, in prostate, breast,

pancreatic and bowel cancers, the presence of nerves has been associated with

increased tumour aggressiveness and a higher potential for metastatic spread [125]

[126] [127]. With respect to thyroid cancer, it has been shown that nerve density

is higher in papillary thyroid cancer (PTC) compared to follicular thyroid cancers

(FTC) and benign thyroid tissues [128].

The detection of nerves in tissue sections presents challenges. Large nerve trunks

that distribute the axons of central neurons to their peripheral targets are relatively

easy to identify. However, the terminal fields of neurons consist of individual fine

axons with diameters between 500 nm and 1 �m. As such, experts need to use

specific neuronal markers and examine specimens at high magnification to identify

them. This narrows the field of view and makes manual quantification challenging.

A number of manual counting strategies exist, in which small regions of interest

are first identified, followed by counting of the stained nerves (as determined by

immunohistochemical labelling of specific neuronal markers) by a trained expert in

these regions [129] [125] [128] [130] or in a random selection of these regions [127]

[126]. Automatic methods, e.g. computerised nerve planimetry, involve an expert

manually selecting a few regions of interest centred around the target observation to

define a colour filter range in each image. The image is then converted to a binary

format using the colour filter, where the planimetry of the total nerve surface area

will be determined [129] [130].

Manual counting has high precision. However, it is labour-intensive and usually

has a low sensitivity [131]. It is also susceptible to bias and inconsistency due to

intra- and inter-expert variability, as fatigue and other external factors may affect

an expert’s judgement [131]. On the other hand, computerised nerve planimetry is

very fast and has a high sensitivity, but typically has a very low precision. It should

be noted that some studies, that use computerised nerve planimetry, use manual

region definition prior to planimetry analysis [129] [130].
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Nerves vary largely in size and appearance. Figure 6.1 contains several examples

of the different ways in which a nerve can be observed in a immunohistochemical

sample, while Figure 6.2 contains a number of different nerve appearances.

50 μm

Figure 6.1: Examples of different views of a nerve.

Appearance 2Appearance 1

Appearance 3 Appearance 5

Others

Appearance 4

Figure 6.2: Examples of variation in the appearance of nerves.

As can be seen from both figures, the main identifier of the nerves is the

immunohistochemical labelling that gives the colour contrast to the nerves, brown

in this case. Unfortunately, the colour cannot be solely used as the nerve detection

criteria. A key problem is that even the most specific immunohistochemical labelling
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of nerve proteins inevitably has some degree of non-specific labelling of background

tissue that contributes to false positive nerve detection. There are many different

types of non-specific staining, a selection of which are shown in Figure 6.3. As can be

seen from Figure 6.1, Figure 6.2 and Figure 6.3, the differences between non-specific

staining and the nerves are not obvious in terms of colour, size and appearance. This

non-specific staining causes the nerves to be difficult for the experts to distinguish

and also leads to an overestimation of the number of nerves by the existing automatic

methods.

Figure 6.3: Examples of non-specific staining.

The variation of nerves in size and appearance also results in no formal definition

of a standardised nerve detection criteria. As a result, it is difficult to compare

detection and quantification methods across studies. It can be seen from Figure

6.1 that the size of the nerve can vary from 25μm2 to 22, 500μm2. While, from

Figure 6.2, it can be seen that nerves can have many different appearances, e.g. a

nerve can appear like a single formation (appearance 1), separated small formations

(appearance 2), separated formations (appearance 3), separated clusters (appearance

4), smudges (appearance 5) or other appearances (appearance 6). Although a nerve

trunk can be easily detected due to its characteristic morphology and location

features, a cluster of axons is more difficult to objectively quantify. A non-

standardised detection criteria makes the development of an objective approach

difficult.

Another significant challenge is presented by the very large image size, e.g.
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40, 000× 40, 000 pixels, of a digital whole-slide section. The large image size causes

fatigue in experts and a large computational time in computerised methods. There

are also problems due to incomplete expert annotations and coarsely annotated

data. The data used in this chapter is from a recent study [128], where expert

manual counting occurred at 4x magnification, hence it is inevitable that many

smaller nerves are not detected or annotated.

In this chapter, we propose a nerve detection approach that uses a CNN

to improve nerve quantification for thyroid cancer biomarker studies. The

main contribution is the development of a nerve detection approach based on a

segmentation network incorporating a novel augmented classification structure. We

evaluate the potential of our proposed CNN based approach in performing the nerve

detection and quantification task on data made available from the study in [128].

6.2 Related Work

Many CNN based approaches have been applied to object detection tasks, for

example, object detection in photographs [132] [27] [28], organ detection in medical

images [84] [133] or mitosis, cytoplasm and nuclei detection in stained whole slide

images (WSIs) [134] [135] [136]. However, to our best knowledge, no CNN based

approach has been applied specifically to the nerve detection and quantification

problem. In this section we will present the rationale for our approach based on

some object detection problems that are applicable to this nerve detection problem.

6.2.1 Colour Thresholding

In image processing it is typical to convert an image from the red, green and blue

(RGB) colour space to the hue, saturation and value (HSV) colour space for the

purpose of colour image segmentation and/or thresholding [137]. This is because the

HSV colour space organises colour in a similar way to the perception of the human

eye [137], in that luma/intensity information are separated from chroma/colour

information in the HSV colour space [138]. This makes colour range definition in

the HSV colour space more straightforward in comparison to the RGB colour space.
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To perform colour thresholding (i.e. filtering) on a WSI in a typical image

processing program, e.g. ImageJ [139], an expert takes a sample of the target

instances to initialise the colour filter range in the HSV colour space. Then, the

expert will adjust the threshold limit manually until the desired segmentation output

is obtained.

6.2.2 Object Detection Approaches in a WSI

In computer vision, an object quantification task is usually formulated as an object

detection task [140] [141]. Some of the most successful approaches in object detection

evolved from a reliance on either a multi-scale sliding-window (i.e. exhaustive

search) [142] [143] [144], a selective-search [145] [132] [27] [146] or cascaded deep

learning models [28].

However, a WSI generally has a size of approximately 40, 000× 40, 000 pixels, or

larger, instead of 500 × 500 pixels as in a typical object detection task using deep

learning [142] [143] [144] [145] [132] [27] [146] [28]. Hence it is inefficient to apply

a sliding-window or selective search to the entire WSI [82] or input the entire WSI

to the deep learning model. Therefore, small image patches are generally generated

by an ROI extraction algorithm, e.g. a sampling algorithm [147] [148] [75] or a

segmentation algorithm [149] [135], from each WSI. Sampling algorithms extract

ROIs from sampled image patches, while segmentation algorithms extract ROIs from

every image patch. Sampling algorithms are usually applied to global-level tasks,

e.g. tissue-level cancer localisation, where the target observation is at the WSI

level [82]. On the other hand, segmentation algorithms, e.g. colour thresholding

or its variants [149] [135], are usually applied to local-level tasks, e.g. cell or nuclei

detection, where the target observation is at the pixel level [82]. Once the ROIs have

been obtained, the features can then be extracted and processed through either a

manual [149] [135] or an automatic [135] operation.

For the manual operation, the features are usually extracted according to a

specific handcrafted characteristic before going through a process of selection (e.g.

principal component analysis [135]) to remove irrelevant and redundant features

[150]. The selected features will then be passed to a classical machine learning
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classifier, such as a support vector machine (SVM) [82], random forest [135] or

decision tree (DT) [150], to be used for the final prediction. The commonly used

features are usually based on morphological and statistical characteristics [150].

Examples of the more commonly used morphological features are the measure of

area, roundness and elongation, while examples of commonly used statistical features

are the mean, median and variance.

For the automatic operation, the features are usually extracted and predicted

simultaneously by a CNN. Although both U-Net and FCN have been shown to

be successful in various WSI segmentation applications [82], U-Net has proven to

be superior [151]. U-Net has also been shown to outperform human experts for

lymphocyte detection in immunohistochemically stained tissue sections of breast,

colon and prostate cancer [151]. The superiority of U-Net performance against the

FCN has also been shown on the application of renal tissue segmentation [152].

6.2.3 Training a Deep Learning Model

To develop a deep learning model for segmentation, including a CNN, a complete

pixel-wise annotated dataset is required as the ideal supervision information [153].

However, as a complete pixel-wise annotated dataset is often unavailable in real-

world applications, a basic assumption, e.g. a cluster assumption or a manifold

assumption, can be adopted to annotate the non-annotated data for training [153].

Besides maximising the use of non-annotated data for training, it is crucial to ensure

that the data for each class is balanced.

6.3 Tissue Preparation and Segmentation Label

Extraction

In this section, we describe the tissue preparation and digitisation process to create

the dataset. Then, we define the nerve detection criteria and describe the process

used to obtain the segmentation label from incomplete coarsely annotated data.
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6.3.1 Tissue Preparation and Digitisation

The images used in this chapter are from a dataset of histological specimens of benign

and malignant thyroid tissue that has previously been described [128]. This study

was approved by the Hunter New England Human Research Ethics Committee, who

granted a waiver of consent for access to archival pathology material and approved

the experimental protocol (2019/ETH13695). All study methodologies were carried

out in accordance with relevant guidelines and regulations. This dataset [154]

was chosen, firstly, because of the high specificity of the immunohistochemistry

for nerve tissue with minimal background staining, and secondly, because a digital

library of annotated nerves was already available. Briefly, 112 whole slide sections

of 4 �m thickness, from formalin-fixed paraffin-embedded blocks of benign and

malignant thyroid tissue, were labelled with immunohistochemistry for the pan-

neuronal marker protein gene-product 9.5 (PGP9.5) using the Ventana Discovery

automated slide stainer (Roche Medical Systems, Tuscon, Az), then counterstained

with haematoxylin. The primary antibody was the anti-rabbit polyclonal PGP9.5

antibody (catalogue number #Ab15503, Abcam, Cambridge, United Kingdom) at

1:600 dilution. Slides were then digitised at 20 �magnification using the Aperio AT2

scanner (Leica Biosystems, Victoria, Australia). The dataset had been annotated by

manual counting of where the annotated large nerve trunks met the following criteria:

immunoreactivity (positive PGP9.5 staining), typical anatomical appearance, and

three or more axons visualised. Smaller nerves and individual axons were not

manually annotated. Manual review was performed using a grid overlay and manual

scanning of the specimens by two human operators at 4 � magnification using

QuPath (Queens University, Belfast) [155].

6.3.2 Criteria for Nerve Detection

As discussed in Section 6.1, nerve detection is considered to be a difficult task, as

nerves vary in size, appearance and immunoreactivity to the PGP9.5 staining colour

range. However, it is critical to define comprehensive criteria to reduce bias in the

study. Thus, we develop the criteria based on four parameters: size, morphology,
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anatomical location and immunoreactivity to PGP9.5 as detailed in Table 6.1.

Table 6.1: Criteria for Nerve Detection

Criterion Definition Justification

Anatomical
location

Plausible anatomical
location for neural tissue
(e.g. vasa nevorum,
interstitial spaces)

Structures outside of a plausible
anatomical location were excluded.

Size Greater than 25�m2

(∼100 pixels)
Corresponds to a minimum size of
3 axons in cross-section. Smaller
structures are difficult to confidently
distinguish from non-specific staining

Morphology Typical neural structures
Axon: linear structure, discrete edge

Nerve: cluster of axons surrounded by
perineurium

Immunoreactivity Focal and discrete
PGP9.5 staining

Diffuse and non-specific uptake of Dab
was excluded.

As can be seen from Table 6.1, a nerve should be in a plausible anatomical

location and have a minimum size of 25 �m2 (∼100 pixels). In terms of appearance

and colour, a nerve should show immunoreactivity to PGP9.5 staining (i.e. be brown

in colour) and show typical neural structure (e.g. edges) clearly.

However, the minimum size of the manually annotated nerve in the dataset

from [128] is approximately 100 �m2 (400 pixels), which is about four times the

minimum nerve size that we would like to detect. Hence, we use a 20×20 pixel (400

pixels) morphological closing operation, as discussed in Section 3.4.1, to combine

predicted positive instances located close to each other and consider it as a single

predicted positive instance. Predicted positives instances that are far from each

other (e.g. axons of a nerve cluster) and that cannot be morphologically closed, will

be counted as discrete predicted positive instances.

6.3.3 Segmentation Label Extraction

Here we consider the case of incomplete coarsely annotated data. Thus, we use

assumptions, based on colour and location, to determine the pixel-wise segmentation

labels of the coarsely annotated data to maximise the use of non-annotated data for

learning, as discussed in Section 6.2.3. If a pixel is brown in colour and intersects

with the annotations, it is labelled positive, otherwise it is labelled negative.
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The main challenge is in determining the colour filter range for the pixel-wise

segmentation labels that results in a minimum number of label artifacts. It is difficult

to determine a colour filter range that can detect the immunoreactivity to PGP9.5

staining with high sensitivity and high precision (i.e. high true positives and low

false positives), as a colour filter range with high sensitivity usually results in low

precision. Moreover, all the true positives and false positives cannot be determined

from incomplete annotations. Thus, the range is defined empirically by observing the

number of true positives (i.e. detected annotations) and estimated false positives (i.e.

label artifacts from detected non-annotated brown stains). A colour filter predicted

positive instance is considered to be a true positive if the predicted positive instance

intersects with any of the annotations. Here we use a colour filter range that results

in approximately 98% sensitivity to minimise the label artifacts.

Another challenge is to extract true negative training data samples. With

incomplete coarsely annotated data of only true positives, the negative data samples

cannot be extracted reliably. There are many nerves that were falsely annotated

negative by exclusion in the expert-annotated data. Therefore the colour filter

predicted positive instances located outside the annotations cannot be used directly

as negative training data samples. To solve this problem, we define an area within

each training WSI where negative training data samples are to be extracted. The

regions are chosen such that the number of unspecified brown stains is maximised

and the number of false negatives is minimised.

6.4 Nerve Detection Approach and Proposed

Architecture

In this section, a detailed description of the proposed nerve detection approach is

provided. We describe a novel classification structure to augment a U-Net to improve

the performance of the object detection task.
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6.4.1 Nerve Detection Approach

The nerve detection approach consists of three main stages: pre-processing, network

prediction and post-processing. The approach starts with the pre-processing for ROI

extraction using a colour filter, followed by image patch preparation for the CNN

input and ends with the combination of the network prediction results for nerve

quantification. The end-to-end process can be seen in Figure 6.4.

Figure 6.4: End-to-end process flowchart.

Pre-processing includes a filtering process based on colour for the extraction

of ROIs and network input preparation. For the extraction of the ROIs, we

downsampled the WSI by 4 to give an image of approximately 10, 000 × 10, 000

pixels. The WSI is then divided into 256 non-overlapping image blocks, where each

image block consists of approximately 625 × 625 pixels. We then apply the colour

filter as described in Section 6.3.3. Note that the binary output of the colour filter is

quite noisy, as it catches many small artifacts of brown stains that do not belong to

a nerve. A 20× 20 pixel morphological closing is then performed to combine brown

stains that potentially belong to a nerve, i.e. separated axons in a nerve fibre or

nerve trunks, and extract the resulting combined structures that exceed 100 pixels

as ROIs. Finally, we combine ROIs that overlap each other to form a larger ROI.

The ROI extraction flowchart is given in Figure 6.5.

Figure 6.5: ROI extraction flowchart.

The CNN we use accepts a fixed 160× 160 pixel, 3 channel (RGB) image. Due
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to the variation in the size of the nerves, we convert each of the arbitrary size ROIs

to 160× 160 pixel image patches. To accomplish this, we use the process shown in

Figure 6.6. Here, we divide the ROI into 50% overlapping, 160 × 160 pixel image

patches without the use of any reshaping function. Basically, we check if the size of

the ROI is greater than 160× 160 pixels; if it is true, we divide the ROI height and

width with the image patch size and obtain the number of image patches that will

be extracted from the ROI. The number of image patches extracted from each ROI

can be calculated as follows,

Nd = 2

⌈
ROId
Pd

⌉
− 1, (6.1)

where d denotes the dimension in pixels (either height or width), N denotes the

number of 50% overlapping patches that are required to cover the size of either the

ROI height or width, and P denotes either the patch height or width.

Figure 6.6: Network input preparation flowchart.

After the pre-processing process is complete, a CNN is used to perform pixel-

wise segmentation of the nerve in each image patch. The output of the network is

the same size as the input and is a binary array of pixel-wise predictions. However,

the output may still contain predicted positive instances that are too small, or a

cluster of predicted positive instances that are separated from each other. Hence,

a post-processing process is required to omit the small predicted positive instances

below the minimum size threshold, or to combine the predicted positive instances

into a larger instance for better nerve quantification.

The post-processing begins with an assembly process to combine the prediction

patches to form a complete ROI. Then, the complete ROI is processed by a 20× 20
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pixel morphological closing with a 100 pixel minimum size thresholding, as performed

in the pre-processing step. However, for the combination process, only the prediction

boxes that overlap by at least 50% are combined to ensure the final predictions are

as precise as possible. Hence if there are two prediction boxes that slightly overlap

each other, we count them as two individual nerves. The post-processing flowchart

is shown in Figure 6.7.

Figure 6.7: Post-processing flowchart.

6.4.2 Proposed Architecture

In this section, we propose the addition of a classification structure to the U-

Net architecture from Chapter 5, as the nerve detection task involves an image

classification process. Although a multi-stage classification and segmentation

approach can be used, the training can be computationally expensive, as separate

training processes are required. Thus, we propose to augment the U-Net architecture

from Chapter 5 with an image classification structure that can be trained in an end-

to-end manner to improve the segmentation results.

As discussed in Chapter 5, the U-Net uses a contracting-expanding structure to

perform pixel-wise classifications. The contracting part of the network is used for

automatic feature extraction of the input image, while the expanding part of the

network is used to map the extracted high-level features back to the original input

resolution and use them to perform pixel-wise classification for the segmentation

output. The augmented classification structure is designed to use the extracted high-

level features for image classification and then have the classification output assist

the final segmentation results. The aim of the augmented classification structure is

to reduce the false positive predictions of the segmentation network. The proposed

network architecture with the augmented classification structure is shown in Figure

6.8.
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Flatten
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Figure 6.8: Proposed network architecture with augmented classification structure.

The augmented classification structure consists of a 1 × 1 convolutional layer

for a feature layer dimensional reduction, a 2-layer fully connected network for

classification and a reshaping layer for the classification output shape adjustment.

The reshaping layer takes the 1 × 1 classification output (with probability range

of 0 to 1) and reshapes it to the input image size of 160 × 160 by duplication. A

dropout layer, with a dropout rate of 0.5, is applied after the 1×1 convolutional layer
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and before the last fully connected layer for regularisation. Finally, the reshaped

output is multiplied with the output of the segmentation network to obtain the final

network output, which will be thresholded by 0.5. This results in a segmentation

network that only produces a positive segmentation output when the results of the

classification and segmentation output are higher than 0.5. The block diagram of

the proposed network with the augmented classification structure is shown in Figure

6.9.

Figure 6.9: Block diagram of the proposed network architecture with augmented
classification structure.

6.5 Training and Results

In this section, we describe the training process, including the way in which the

dataset is used and divided for the development of the model, as well as the test

results at a WSI level. The results of the proposed approach are compared with the

results from the manual counting and other automatic approaches.

6.5.1 Dataset

The dataset consists of 112 stained thyroid tissue WSIs annotated by two experts

(see Section 6.3.1). The dataset is split into training, validation and test sets. The

training set consists of 80 WSIs, which includes 52 WSIs containing the largest

number of annotated nerves and 28 randomly selected WSIs. The validation set

consists of 10 randomly selected WSIs, while the test set consists of the remaining

22 WSIs.
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6.5.2 Training

To ensure the training is effective, a balanced dataset is required. Here training is

performed with a training generator that performs data augmentation (e.g. flip and

rotate) and generates balanced training data samples, where an equal number of

positive and negative data samples are randomly chosen at every iteration.

The He initialisation is used for the weight initialisation. The Adam optimiser

is utilised in the model training using a learning rate of 10−4 and a binary cross-

entropy cost function. The model is trained over 250 epochs with handpicked positive

training data samples (∼2000 data samples). A few examples of both the positive

and negative training data samples and their corresponding labels are shown in

Figure 6.10.

Positive image 1
0

50

100

100
150

Positive label 1
0

50

100

100
150

Negative image 1
0

50

100

100
150

Negative label 1
0

50

100

100
150

Positive image 2
0

50

100

100
150

Positive label 2
0

50

100

100
150

Negative image 2
0

50

100

100
150

Negative label 2
0

50

100

100
150

Negative image 3
0

50

100

100
150

Positive label 3
0

50

100

100
150

Positive image 3
0

50

100

100
150

Negative label 3
0

50

100

100
150

Figure 6.10: Examples of the positive and negative training samples.

We exclude about 500 positive training data samples that contain a significant

number of label artifacts to ensure accurate representation of the target class, i.e.

nerves. Examples of excluded positive training data samples due to label artifacts
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are shown in Image A and B of Figure 6.11, while the pixel-wise segmentation labels

of the corresponding image patches are shown in Label A and B of Figure 6.11.

As can be seen from example A and B, a significant number of label artifacts, i.e.

positive pixel-wise labels located outside the red box, are apparent in the form of a

blob and scattered structure respectively.

Image A Label A Image B Label B

Figure 6.11: Excluded positive training data samples due to label artifacts from
the colour filter. The red box surrounds the actual nerve.

6.5.3 Performance Metric

The main objective of this chapter is to provide an automatic approach for the

quantification of nerves in a thyroid tissue WSI. From this perspective, it is

important to evaluate the proposed approach at a WSI level instead of at a

patch level. As there is no precise pixel-wise label available, the performance will

be evaluated by a hit or miss method. A hit indicates a true positive, while

a miss indicates either a false negative or false positive. A hit is determined

when a predicted positive instance intersects with an expert annotation, i.e. true

positive from manual annotations, TPm. When multiple predicted positive instances

intersect with an expert annotation, it will be scored as one hit. An expert

annotation that has no intersection with any predicted positive instance will be

scored as a miss, i.e. false negative, FN . If a predicted positive instance does

not intersect any of the expert annotations, a hit is then determined by experts,

who evaluate whether the predicted positive contains any nerve, i.e. additional

detection true positive, TPa. If the predicted positive instance contains no nerve, as

determined by the experts, it will be scored as a miss, i.e. false positive, FP . The

evaluation (scoring) is performed by three experts, i.e. E1, E2 and E3, and the final
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number of true positives will be determined from the average across the experts.

Sensitivity, also referred to as true positive rate (TPR), is used to evaluate the

number of annotated nerves detected. Sensitivity [156] is given by,

TPR =
TPm

(TPm + FN)
, (6.2)

where TPm indicates the number of true positives detected from the manual

annotations and FN indicates the number of false negatives.

Precision, also referred to as positive predicted value (PPV ), is used to evaluate

the ability of an approach to detect nerves. Precision [156] is given by,

PPV =
TP

(TP + FP )
, (6.3)

where TP indicates the total number of true positives, i.e.

TP = TPm + TPa, (6.4)

TPa indicates the number of true positives in the additional detections, i.e. nerves

missed by the experts in the manual annotations, and FP indicates the number of

false positives.

6.5.4 Results

In this section, we present a performance comparison between manual counting by

experts and two automatic approaches, i.e. colour filter and CNN based approaches.

The colour filter based approach (CF) relies only on a colour filter, while the CNN

based approach uses a CNN to perform a pixel-level nerve detection on the colour

filter output, as described in Section 6.4.1. Here, the two CNN based approaches

are denoted as APR-A and APR-B. APR-A indicates the use of the U-Net from

Chapter 5 (Figure 6.8 without the augmented classification structure) and APR-B

indicates the use of the proposed U-Net, which includes the augmented classification

structure, as shown in Figure 6.8. The main objective of this section is to evaluate

the proposed CNN based approach (APR-B) in terms of performance for automatic
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nerve detection.

Sensitivity (TPR) and precision (PPV ) are used for performance evaluation of

the three approaches on each WSI in the test set. The evaluation scores of the

corresponding metrics for each WSI are presented in Table 6.2 and Table 6.3. Due

to the large number of predicted positive instances by the CF, we use a random

sampling to obtain 100 predictions for each WSI to facilitate the experts in the

evaluation of the true positives. The performance evaluation of the CF in Table 6.3

will be based on these 100 samples, where the proportion of correct predictions will

be multiplied by the total number of predictions, and hence denoted as estimated

performance.

Table 6.2 provides the number of detected nerves for the CF, APR-A and

APR-B with respect to the expert manual annotations. The identified manual

annotations columns indicate the number of expert annotations that are detected

by each approach. The additional detection columns indicate nerves detected by

the approaches that were missed by the experts. Note, however, that the additional

detections may contain false positives.
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Table 6.2: Results with respect to the expert manual annotations

WSI Manual
Identified manual annotations

Additional detections

ID Annotations
CF APR-A APR-B

TPm TPR TPm TPR TPm TPR CF APR-A APR-B

10012 10 9 0.9 9 0.9 9 0.9 847 21 14

10023 12 12 1 11 0.92 11 0.92 2658 9 11

10029 11 11 1 8 0.73 8 0.73 3390 7 7

10036 9 8 0.89 7 0.78 8 0.89 4316 239 159

10039 35 35 1 34 0.97 34 0.97 6591 421 274

10049 15 15 1 14 0.93 13 0.87 7185 27 20

10064 28 28 1 27 0.96 28 1 1922 18 21

10067 27 27 1 27 1 25 0.93 815 117 61

10071 21 20 0.95 17 0.81 17 0.81 3113 42 28

10072 15 14 0.93 13 0.87 13 0.87 492 22 12

10073 2 2 1 1 0.5 1 0.5 8348 11 9

10078 15 15 1 13 0.87 12 0.8 9884 208 102

10087 0 0 - 0 - 0 - 877 8 6

10088 8 8 1 8 1 8 1 1689 28 47

10093 11 11 1 10 0.91 10 0.91 2773 3 5

10096 1 1 1 1 1 1 1 1019 24 10

10097 19 18 0.95 17 0.89 18 0.95 6907 356 203

10102 25 25 1 24 0.96 24 0.96 4799 224 167

10113 16 15 0.94 14 0.88 13 0.81 1504 83 38

10114 14 14 1 14 1 14 1 6529 819 507

10116 16 16 1 15 0.94 15 0.94 5005 148 74

10121 8 8 1 8 1 8 1 4278 215 121

Overall 318 312 0.98 292 0.90 290 0.89 84941 3050 1896

Abbreviations: WSI: Whole Slide Image; CF: Colour filter; APR-A: CNN based approach A
; APR-B: CNN based approach B; TPm: True positives detected from the manual annotations;
TPR: Sensitivity.

As can be seen from Table 6.2, the CF has the highest rate of annotated nerve

detection, with an average sensitivity of 98%. The CNN based approaches have

an average sensitivity of 90% for APR-A and 89% for APR-B. However, the CF

predicted a total of 84,941 additional positive detections, while the CNN based

approaches predicted a total of 1,896 (APR-B) and 3,050 (APR-A), which is more

than an order of magnitude less than the CF. However, the quality of the overall

performance can only be determined by the evaluation of the true positives of these

predictions.
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Table 6.3: Precision score of each automatic approach

WSI
Additional detections Total

ID
CF APR-A APR-B CF APR-A APR-B

Est. TPa Est. FP TPa FP TPa FP TP PPV TP PPV TP PPV

10012 45 802 17 4 11 3 54 0.06 26 0.87 20 0.87

10023 89 2569 5 4 7 4 101 0.04 16 0.80 18 0.82

10029 0 3390 5 2 5 2 11 0.00 13 0.87 13 0.87

10036 432 3884 169 70 126 33 440 0.10 176 0.72 134 0.80

10039 712 5879 270 151 220 54 747 0.11 304 0.67 254 0.82

10049 48 7137 19 8 16 4 63 0.01 33 0.80 29 0.88

10064 26 1896 8 10 13 8 54 0.03 35 0.78 41 0.84

10067 244 571 93 24 56 5 271 0.32 120 0.83 81 0.94

10071 197 2916 23 19 22 6 217 0.07 40 0.68 39 0.87

10072 77 415 18 4 9 3 91 0.18 31 0.89 22 0.88

10073 167 8181 4 7 7 2 169 0.02 5 0.42 8 0.80

10078 659 9225 92 116 54 48 674 0.07 105 0.48 66 0.58

10087 9 868 6 2 5 1 9 0.01 6 0.75 5 0.83

10088 146 1543 18 10 33 14 154 0.09 26 0.72 41 0.75

10093 55 2718 2 1 3 2 66 0.02 12 0.92 13 0.87

10096 27 992 5 19 5 5 28 0.03 6 0.24 6 0.55

10097 1036 5871 268 88 155 48 1054 0.15 285 0.76 173 0.78

10102 720 4079 145 79 125 42 745 0.15 169 0.68 149 0.78

10113 140 1364 70 13 31 7 155 0.10 84 0.87 44 0.86

10114 1372 5157 533 286 314 193 1386 0.21 547 0.66 328 0.63

10116 233 4772 112 36 58 16 249 0.05 127 0.78 73 0.82

10121 399 3879 65 150 29 92 407 0.09 73 0.33 37 0.29

Overall 6833 78108 1947 1103 1304 592 7145 0.09 2239 0.70 1594 0.78

Abbreviations: WSI: Whole Slide Image; CF: Colour filter; APR-A: CNN based approach A;
APR-B: CNN based approach B; Est.: Estimated performance based on 100 samples; TPa:
The number of true positives in the additional detections; FP : False Positives;
TP : Total true positives; PPV : Precision.

Table 6.3 details the additional detections from the colour filter and CNN based

approaches in terms of true and false positives. It provides the number of nerves (i.e.

true positives, TPa) that were not detected by expert manual annotation, and the

number of predicted positive instances that were not nerves (i.e. false positives, FP )

for each of the automatic approaches. It also shows the precision of the automatic

approaches.

As can be seen from Table 6.3, all of the automatic approaches are capable of

detecting a significantly higher number of true positives, at least five times more
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than the number of nerves manually detected by the experts shown in Table 6.2.

However, compared to the CF, the APR-A and APR-B perform substantially better

in correctly identifying nerves (precision). The CF has an average precision of 9%,

while APR-A and APR-B have an average precision of 70% and 78%, respectively.

Although, the CF has the highest number of additional positive detections, the

number of false positives is extremely large, hence the detection is not meaningful.

This significant improvement in precision makes the detection substantially more

meaningful.

A summary of the sensitivity and precision of each of the approaches, as evaluated

on the test set, is presented in the box-and-whiskers plots shown in Figure 6.12 where

it can be seen that APR-B outperforms the CF and APR-A.
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Figure 6.12: (a) Sensitivity of the CF, APR-A and APR-B in the detection of the
expert annotated nerves; (b) Precision of CF, APR-A and APR-B in the detection
of nerves (bottom). The × symbol in the box indicates the mean value, while the
line in the box indicates the median value. The ◦ represents the outlier, the box
represents the interquartile range and the whiskers represent the upper and lower
extreme, excluding the outliers.

Several examples of true positives detected by the automatic approaches but

missed by the experts are shown in Figure 6.13 (A-H). It can be seen that the

automatic approaches can detect nerves of various sizes and appearances. Nerves
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within the model input size (160 × 160 pixels) can be detected as shown in Figure

6.13 (A-D and G-H), as well as larger nerves as shown in Figure 6.13 (E-F). A nerve

in the form of a cluster of axons that are close to each other is considered as a

single nerve, as shown in Figure 6.13 (A-F). A nerve in the form of multiple clusters

of axons that are far apart from each other is considered as separate nerves and

quantified as multiple discrete nerves, as shown in Figure 6.13 (G-H).

B D F H

C E GA

Figure 6.13: Examples of nerves missed by the experts which are detected (i.e.
true positives, TPa) by the automatic approaches. Each image patch contains one
prediction instance, indicated by a green box.

The results show that the average precision score of APR-B is 8% higher than

APR-A. The use of the augmented classification structure reduced the number of

false positives by approximately 46% of the U-Net used in APR-A. The augmented

classification structure helps to reduce the false positive predictions, for example, by

excluding those shown in the top row of Figure 6.14. However, some false positives,

especially those located in the vicinity of nerves, still remain, as shown at the bottom

row of Figure 6.14.

Although APR-B has the highest average precision score in the test set, it does

not perform as well on some WSIs. We found that the reduction of precision in some

of the WSIs can be caused by either fewer detected true positives or the presence of

a large number of a specific type of unspecified brown stains in the WSI, as shown

in Figure 6.15.

Overall, the experts detect the least number of nerves in the test set, with a
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Figure 6.14: Excluded false positives by APR-B (top row). False positives retained
by APR-B (bottom row). Green box indicates a false positive instance.

Figure 6.15: Examples of a specific type of unspecified brown stain present in
some WSIs, causing a large number of false positives detected by APR-B. Green
box indicates a false positive instance.

very high precision and low sensitivity. The CF detects approximately 22 times the

nerves detected by the experts, however, with an extremely low precision of 9% due

to the large number of false positives. The CNN based approaches have an average

precision of 70%, APR-A, and 78%, APR-B. This shows that incorporating a CNN

into a traditional workflow will result in a considerable improvement, with more

meaningful results obtained.
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6.6 Discussion

The proposed CNN based approach has significantly improved the precision of the

detections compared to the existing automatic methods, however, there are a small

number of slides where the performance is not that good. For example on slide

10078 and 10121, there is a degradation in performance that is caused by a lack of

representation of some of the unspecified brown stains in the training and validation

set. The proposed CNN based approach results in a low precision score when a large

number of poorly represented unspecified brown stains are present in the slide.

High inter-and intra-expert variance causes the training set and the scoring

criteria to be inconsistent, which also leads to a degradation in performance. This

inconsistency makes the learning as well as the development of a CNN model more

difficult and complicated. The inter-expert variance can be seen in Table 6.4, where

the percentage of the scoring agreements between the experts (E1 and E2, E1 and

E3, and E2 and E3) has an average of 78.73%. This means that there is a margin

of error in the scoring of approximately 22%.

Table 6.4: Inter-expert scoring agreement

Experts Average Agreement (%)

E1,E2 76.49

E1,E3 81.45

E2,E3 78.27

Average 78.73

The proposed CNN based approach has a large dependency on the colour

filter output, hence the performance of the CNN based approach is limited by the

performance of the colour filter.
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6.7 Additional Implementation Considerations

In this section, we will address the insufficient class representation problem in the

training set, as well as the dependency of the proposed CNN based approach on the

performance of the colour filter.

6.7.1 Refinement of Data Representation

In this section, we will reduce the insufficient representation problem in the training

set by reselecting the negative training data samples. We will present our approach

for selecting the negative training data samples as well as the results of our proposed

network, used in APR-B, trained with the reselected negative training data samples.

As discussed in Section 6.2.3, it is important to develop a deep learning model

with a balanced dataset. In Section 6.5.2, we used a balanced set of 50% positive

and 50% negative training data samples in every iteration of the training to fulfil

the requirement. However, even though the data samples are balanced in terms of

classes, the random sampling method used to extract the balanced dataset does not

take the intra-class variance into account. When taking the intra-class variance into

consideration, the classification problem becomes more specific to the morphological

criteria, because the non-target class, i.e. the non-specific brown stains, has most

of the properties in our target class, i.e. detection criteria in terms of anatomical

location, size and immunoreactivity. Hence, the non-target class should be further

divided into multiple categories and the negative training data samples should be

extracted evenly from each category to ensure the representation of each category

is sufficient. However, due to its size, it is not practical to hand pick the negative

training data samples individually.

From a manual observation of the types of non-specific brown stains present in

our training set, we can organise them into multiple categories depending on their

morphological appearance, as shown in Figure 6.16. Then, we define the upper limit

on the amount of data samples to be extracted from each WSI according to the

varieties of the non-specific brown stains present in the WSI. Finally, the negative

data samples are extracted automatically in a random order from the WSIs in the
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training set according to the pre-defined upper limit.

Figure 6.16: Negative training data sample categories according to their
morphological appearance.

The results of the proposed network, used in APR-B, trained with the resampled

training data, APR-BR, are given in Table 6.5. The average sensitivity decreased

by 4% (from 89% to 85%), however, the average precision improved by 9% (from

78% to 87%) for APR-BR with respect to APR-B. The total number of detected

nerves (TP ) also increased by approximately 55% compared to APR-B (from 1594

to 2484), which is approximately seven times more than the number of nerves

manually detected by the experts. Furthermore, the precision of slide 10078 and

10121 significantly improved from 58% and 29% to 78% and 79% respectively for

APR-BR with respect to APR-B. This shows that the performance of a deep learning
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model can be improved by increasing the representation of various unspecified brown

stains that are present within the class, i.e. intra-class representation.

Table 6.5: Additional results of APR-B with resampled training data samples
(APR-BR)

WSI Manual IMA (APR-BR) AD (APR-BR) Total (APR-BR)

ID Annotations TPm TPR Total TPa FP TP PPV

10012 10 9 0.90 24 21 3 30 0.91

10023 12 11 0.92 9 7 2 18 0.90

10029 11 7 0.64 6 5 1 12 0.92

10036 9 5 0.56 158 138 20 143 0.88

10039 35 30 0.86 240 199 41 229 0.85

10049 15 13 0.87 13 10 3 23 0.88

10064 28 25 0.89 9 7 2 32 0.94

10067 27 25 0.93 68 62 6 87 0.94

10071 21 16 0.76 17 16 1 32 0.97

10072 15 13 0.87 12 10 2 23 0.92

10073 2 1 0.50 8 7 1 8 0.89

10078 15 11 0.73 97 73 24 84 0.78

10087 0 0 - 5 4 1 4 0.80

10088 8 8 1.00 37 28 9 36 0.80

10093 11 10 0.91 3 3 0 13 1.00

10096 1 1 1.00 7 4 3 5 0.63

10097 19 17 0.89 341 287 54 304 0.85

10102 25 23 0.92 215 182 33 205 0.86

10113 16 14 0.88 98 93 5 107 0.96

10114 14 13 0.93 947 786 161 799 0.83

10116 16 15 0.94 174 144 30 159 0.84

10121 8 8 1.00 157 123 34 131 0.79

Overall 318 275 0.85 2645 2209 436 2484 0.87

Abbreviations: WSI: Whole Slide Image; IMA: Identified manual annotations; AD:
Additional detections; APR-BR: Proposed network in APR-B trained with resampled training
data; TPm: True positives detected from the manual annotations; TPR: sensitivity; TPa:
indicates the number of true positives in the additional detections; FP : False Positives; TP :
Total true positives; PPV : Precision.
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6.7.2 Direct Implementation

In this section, we will remove the dependency of our proposed CNN based approach

on the colour filter, that was used for the purpose of training data selection and

implementation efficiency. As discussed in Section 3.3.4, for highly skewed data, the

training set should represent the intra-class variance well enough to train the model

effectively. Without the colour filter, it will be difficult to select significant negative

data samples from the WSI for the training. The use of a colour filter also reduces

the time of the testing process as the ROI extraction process, in Section 6.4.1, can be

applied on 4× downsampled images without significantly affecting the final results

and the extracted ROIs can be utilised repeatedly to evaluate any other model.

Here, we perform a direct implementation of our best model, used in APR-BR,

on the WSIs in the test set with a 50% sliding window in both horizontal and

vertical directions. We omit the ROI extraction process from the nerve detection

approach in Section 6.4.1 and begin the detection with the network input preparation

process that divides the WSI into 160× 160 image patches with a 50% overlapping

window. This direct implementation takes approximately 20 times longer than the

nerve detection approach using a colour filter. However, the implementation is more

straightforward and its performance does not rely on the output of the colour filter.

The results are presented in Table 6.6 in the Direct APR-BR column.

As can be seen from Table 6.6, the number of identified manual annotations

decreases from 275 to 266. This leads to an investigation that reveals the network

input preparation process results in the ROIs extracted by the colour filter to be

mostly located in the middle of the image patches. In this case, as the adopted data

augmentation does not include a shifting or translation operation, the network lacks

sufficient integration of the translation-invariance property as discussed in Section

3.3.3. Thus, we apply both horizontal and vertical shifting data augmentation on

the 160 × 160 image patches and train the network further. The results are shown

in Table 6.6 in the Direct APR-BRS column. As can be seen from the table, the

detection of the manual annotations increased from 266 (Direct APR-BR) to 287

(Direct APR-BRS), which means that by performing shifting data augmentation,
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we can increase the sensitivity of the network.

Table 6.6: Additional results on direct implementation of APR-BR and APR-BRS

WSI Manual
Identified manual annotations Additional detections Total

ID Annotations
Direct APR-BR Direct APR-BRS Direct APR-BRS Direct APR-BRS

TPm TPR TPm TPR Total TPa FP TP PPV

10012 10 10 1.00 9 0.90 50 34 16 43 0.73

10023 12 11 0.92 11 0.92 63 39 24 50 0.68

10029 11 5 0.45 8 0.73 21 11 10 19 0.66

10036 9 5 0.56 9 1.00 385 304 81 313 0.79

10039 35 28 0.80 31 0.89 419 316 103 347 0.77

10049 15 12 0.80 12 0.80 26 15 11 27 0.71

10064 28 23 0.82 25 0.89 33 21 12 46 0.79

10067 27 23 0.85 25 0.93 146 126 20 151 0.88

10071 21 18 0.86 18 0.86 40 29 11 47 0.81

10072 15 13 0.87 14 0.93 45 37 8 51 0.86

10073 2 1 0.50 1 0.50 25 17 8 18 0.69

10078 15 13 0.87 13 0.87 99 70 29 83 0.74

10087 0 0 - 0 - 11 10 1 10 0.91

10088 8 8 1.00 8 1.00 100 70 30 78 0.72

10093 11 9 0.82 11 1.00 17 11 6 22 0.79

10096 1 1 1.00 1 1.00 32 18 14 19 0.58

10097 19 16 0.84 18 0.95 511 395 116 413 0.78

10102 25 22 0.88 24 0.96 405 285 120 309 0.72

10113 16 13 0.81 14 0.88 245 185 60 199 0.77

10114 14 13 0.93 13 0.93 1059 806 253 819 0.76

10116 16 15 0.94 15 0.94 318 222 96 237 0.71

10121 8 7 0.88 7 0.88 296 198 98 205 0.68

Overall 318 266 0.83 287 0.89 4346 3219 1127 3506 0.75

Abbreviations: WSI: Whole Slide Image; APR-BR: Proposed network in APR-B trained
with resampled training data; APR-BRS: Proposed network in APR-B trained with
resampled training data and shifted augmentation; TPm: True positives detected from the
manual annotations; TPR: sensitivity; TPa: indicates the number of true positives in the
additional detections; FP : False Positives; TP : Total true positives; PPV : Precision.

We increased the average sensitivity of Direct APR-BRS, with respect to APR-

BR, to 89%, however, the average precision (75%) is lower than the APR-BR (87%)

and also APR-B (78%). However, the minimum precision of Direct APR-BRS is

58%, which is much higher than APR-A (24%) and APR-B (29%) while only slightly

lower than APR-BR (63%). The precision of slide 10078 (74%) and 10121 (68%) are

also within the range of other slides. This shows that, similar to APR-BR, Direct

APR-BRS is not longer suffering from insufficient representation. Also, Direct APR-
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BRS detects the most number of nerves (3506) compared to APR-A (2239), APR-B

(1594) and APR-BR (2484). The overall lower precision score may be caused by

higher misidentification of small nerves, either by the model or the expert, as Direct

APR-BRS detects significantly more small nerves compared to APR-A, APR-B and

APR-BR. However, we show that the proposed network architecture is capable of

achieving satisfactory performance without being dependant on other algorithms.

We also show that the performance of a network can be improved with an improved

implementation.

6.8 Conclusion

In this chapter, we defined a detailed nerve quantification criteria and developed an

automatic nerve detection system based on a CNN. We proposed a novel augmented

classification structure for a U-Net to reduce the number of false positives in an

object detection task. This new CNN based approach, APR-B, resulted in having

a much higher precision score (78%) with respect to the colour filter (9%) while

also being more consistent than the manual counting. The proposed approach also

resulted in an increase of the nerve detection capability of approximately 5 times with

respect to manual counting by the experts, while maintaining an 89% sensitivity.

In addition, we presented results that show that some additional considerations

with respect to the training data, particularly class representation, can be used to

further improve the performance of a CNN.
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7

Conclusion and Further Research

This thesis investigated on the development of effective and efficient CNN based

approaches for image segmentation tasks in terms of time and resources. The

research focussed on the development of a CNN that is more efficient, as well

as an implementation that is more effective. This chapter summarises the main

contributions and results of all the studies in this thesis, and provides some directions

that can be pursued in further research.
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7.1 Conclusion

A CNN is a type of a deep learning algorithm that has been remarkably successful

in performing automatic segmentation in various clinical applications. Automatic

segmentation is an important field of research in clinical applications as it minimises

errors that are due to bias, fatigue and expert variability. It enables the analysis

of a larger amount of data with higher speed, accuracy and consistency in various

clinical applications. However, the application of CNNs has become increasingly

expensive in terms of both time and memory usage in recent years.

In this thesis, we investigated several CNN architectures, in terms of their

structure, number of trainable parameters and components, to develop a number

of CNNs that are capable in achieving state-of the-art performances efficiently on

different clinical segmentation tasks. We also demonstrate the implementation of

some considerations that can improve the effectiveness in the development of a CNN

based approach for a clinical application.

In Chapter 4, we investigated the state-of-the-art CNNs for image segmentation

in terms of structure and number of trainable parameters. We proposed a CNN

with a novel adjacent upsampling method that uses smaller number of trainable

parameters while still being able to perform comparably well with other networks

that use a significantly larger number of trainable parameters. We found that a CNN

can be structured according to a given task for a more efficient implementation in

terms of time and memory usage.

In Chapter 5, we investigated the main components of a U-Net with respect to

the network performance in a medical image segmentation task. We examined the

contribution of each component on the overall performance in terms of Dice’s score.

As a result, we developed an optimised U-Net architecture that uses a significantly

lower number of trainable parameters than the original architecture. The optimised

U-Net uses average pooling for pooling, resize convolution for upsampling, skip

connection with concatenation for combination of feature maps in each convolution

block, dropout and batch normalisation for model regularisation and ReLU for

activation layers throughout the network. We showed that the optimised U-Net
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outperforms other CNNs with similar structures and components on the public

dataset, PROMISE12 [118].

In Chapter 6, we implemented the optimised U-Net developed in Chapter 5 on

a complex digital pathology segmentation problem for an object detection task.

We compare the performances of a CNN based approach and existing manual

and automated quantification methods. We also developed a novel augmented

classification structure to improve the performance of a U-Net for an object detection

task. We discussed some data pre-processing considerations for the training of the

network to address critical challenges that are often encountered in the development

of a CNN based approach with clinical data.

In conclusion, we demonstrated that, with the right CNN architecture,

a computationally efficient network with state-of-the-art performance can be

developed. We also showed that the results of a CNN based approach depend

not only on the network architecture, but also on data quality, data quantity and

implementation. Finally, the results showed that with the right CNN architecture

and implementation, an effective and efficient CNN based approach can be developed

for various segmentation problems.

7.2 Suggestions for Further Research

Based on the results of this thesis, there are a number of further research directions

that can be pursued for the development of a more effective and efficient CNN based

approach.

For the optimisation of a CNN architecture in terms of the structure and number

of trainable parameters, we found that it is important to identify the required model

properties for a specific task. Thus, determining the required properties, e.g. the

invariance properties, minimum number of layers/depth, minimum number of filters

in each layer, given the type of a task could be a focus for future study. Automatic

design algorithm, such as policy gradient algorithm [157] and genetic algorithm [158],

could be explored in the future for a more efficient optimisation process.

For the optimisation of a CNN architecture in terms of the component, the
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Attention Gates (AGs) [159] and Squeeze-and-Excitation (SE) blocks [160,161] could

be the next components to investigate and compare as they have been shown to

increase the performance of a U-Net in performing segmentation [159, 161]. In

addition, optimisation of the components for 3D CNNs would be a logical and

next step to further the work in this thesis, as it processes 3D input and extracts

3D features, which can be beneficial for performing volumetric medical image

segmentation [162].

For the development of a higher performing CNN in terms of Dice’s score,

the adjacent network, developed in Chapter 4, with the integration of the best

performing components in Chapter 5 could be the next architecture to investigate

for an image segmentation task. While the novel augmented classification structure,

developed in Chapter 6, could be further investigated when it is integrated in other

segmentation network for an object detection task.

For the development of a CNN model for a specific organ segmentation

application, a combination of different types of medical images could be investigated

as an input to the neural network model to provide more initial features for the

network to use to perform the segmentation, as a combination of Multiparametric

MRI (such as T1w, T2w, ADC and PDw) has been shown to be significantly

beneficial in prostate segmentation [114,163] and prostate cancer detection [164].

For the data, we found that inconsistency in data labelling due to inter-and

intra-expert variance can make the learning as well as the development of a deep

learning model more difficult and complicated. However, as the inter-and intra-

expert variance in medical image labelling cannot be avoided, a larger quantity of

data could be used to minimise the effect of the inter-and intra-expert variances in

the data. Thus, in future study, an automatic segmentation model could be used to

provide basic guidance for the expert to produce a larger labelled dataset so that a

more robust model can be developed.

Finally, other performance metrics should be the next to consider for the

optimisation of the CNN architecture in terms of structure, trainable parameters

and components in future study.
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