Stress-wave monitoring of erosive particle impacts

By

Stephen Phillip Allen, Bachelor of Engineering (Mechanical)

Submitted to

The University of Newcastle

For the degree of

DOCTOR OF PHILOSOPHY

November 2004
Statement of Sources

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution

Stephen Phillip Allen
Acknowledgements

I would like to give special thanks to the Cooperative Research Centre for Advanced Composite Structures (CRC-ACS) who provided funding for this project. The staff at CRC-ACS were friendly and offered many words of encouragement, in particular I would like to thank Stuart Dutton, Murray Scott, Ian Crouch and Rodney Thompson for advice and constructive comments. I was also privileged to work closely with Bruce Cartwright of CRC-ACS and Bruce provided many hours of technical advice and words of encouragement.

I would like to thank the technical staff at the University of Newcastle. The workshop staff led by Phillip Reddy provided materials and expertise. I would like to thank Ian Miller who provided many hours of expertise in the design, construction and implementation of electrical instrumentation.

I would like to thank my supervisor Dr Paul Dastoor of the Physics department for motivation and guidance. I would like to give a special thanks to my supervisor Professor Neil Page who I regard in the highest esteem. I met regularly with Professor Page and he gave me the guidance and encouragement to pursue the task, typical of his own professional manner.

I would like to thank my parents Bob and Jean and my sisters Janette and Vicki for their support and words of encouragement. Lastly, I would like to thank my wife Corinna, who supported me in times of need and who encouraged me all the way to complete the task.
Table of Contents

Statement of Sources ii
Acknowledgements iii
Table of Contents iv
Abstract viii
Nomenclature xi
Published Works xii

CHAPTER 1
INTRODUCTION
1
1.1 Introduction to Erosion 1
1.1.1 Erosion mechanisms 2
1.1.2 The physics of the erosion process 6
1.3 Stress-waves and the study of erosion 9
1.3 FEA and the study of erosion 10
1.4 Thesis Objective 15
1.5 Thesis Outline 15

CHAPTER 2
LITERATURE REVIEW
17
2.1 Introduction 17
2.2 Erosion models 18
2.1.1 Erosion models for ductile metals 18
2.1.2 Erosion models for polymers 22
2.2 FEA Material Models 26
2.2.1 FEA material model for AISI 1020 steel 27
2.2.2 Review of mild steel at high strain-rates 28
2.2.3 FEA material models for polymers 29
2.2.4 Review of ductile polymer at high strain-rates 32
2.3 Past erosion studies involving stress-wave monitoring processes 34
2.3.1 Literature review of stress-waves produced by small particle impacts 34
2.4 Chapter summary 36
CHAPTER 3
EXPERIMENTAL METHODS 39

3.1 Introduction 39

3.2 Considerations for stress-wave monitoring process 40
 3.2.1 Stress-waves and wave dispersion 40
 3.2.2 Study of stress-time profiles for an elastic and elasto-plastic impact 45

3.3 Piezo-electric transducer design 47
 3.3.1 Considerations for the design of a piezo-electric transducer 47
 3.3.2 Matlab computer program for the design of piezo-electric transducer 48
 3.3.3 Results of Matlab simulations 49
 3.3.4 Piezo-electric transducer design 50
 3.3.5 Piezo-electric materials 53
 3.3.6 Natural frequency response of the piezo-electric transducer 60
 3.3.7 Electrical coupling considerations for the piezo-electric transducer 61
 3.3.8 Application of piezo-electric materials to stress-wave monitoring 62
 3.3.9 Consideration of a three-dimensional stress state at the wear material sensing element interface 64
 3.3.10 Recording device considerations 65
 3.3.11 Rise-time consideration of piezo-electric transducer response 66

3.4 Apparatus 67
 3.4.1 Stress-wave monitoring apparatus 67
 3.4.2 Particle velocity calculations 73
 3.4.3 Clamping of the wear material to the piezo-electric transducer 73
 3.4.4 Stress-wave monitoring chamber and gas-blast apparatus 74
 3.4.5 Particle characterisation 76
 3.4.6 Erosion testing 79
 3.4.7 Mass loss measurements 85

3.5 Chapter summary 87

CHAPTER 4 89
FEA MODELLING OF STRESS-WAVES 89

4.1 Introduction 89

4.2 Impact modelling by the FEA method 91
 4.2.1 Implicit and explicit FEA modelling 91
 4.2.2 The LS DYNA FEA code 92
 4.2.3 Axisymmetric modelling techniques 93
 4.2.4 Mesh size considerations 94
 4.2.5 Numerical stability of the FEA model 97
 4.2.6 Mesh size consideration for elastic stress-wave motion 99
 4.2.7 FEA modelling of contact 101
 4.2.8 Spatial averaging considerations of FEA model 107

4.3 Chapter summary 110
CHAPTER 5
STRESS-WAVE MONITORING RESULTS

5.1 Introduction

5.2 Experimental and FEA study of impacts and stress-wave motion of AISI 1020 steel

5.2.1 Implementing the Johnson-Cook FEA material model

5.2.2 Experimental and FEA stress-wave monitoring study of AISI 1020 steel under low velocity impact conditions

5.2.3 Experimental impacts to AISI 1020 steel at higher impact velocities

5.2.4 Comparison of experimental and FEA stress-wave recordings of AISI 1020 steel under higher velocity impact conditions

5.2.5 Sensitivity study of FEA model parameters due to strain-rate effects

5.2.6 Validation of Johnson-Cook model by impact crater study

5.2.7 Sensitivity of strain-hardening terms under high strain impact conditions

5.2.8 Strain-rate of impacts extracted from FEA model

5.2.9 Stress-strain curves related to stress-wave monitoring

5.3 Experimental and FEA study of impacts and stress-wave motion to polymer wear surfaces

5.3.1 Introduction

5.3.2 Implementation of the FEA material model

5.3.3 Specimen manufacture

5.3.4 High velocity impact and FEA modelling of polymer materials

5.3.5 Impact crater study

5.3.6 Stress-strain curve obtained from FEA model

5.4 Chapter summary

CHAPTER 6
EROSION MODELLING

6.1 Introduction

6.2 Stress-wave monitoring results applied for the study of erosion

6.2.1 Energy based approach to erosion

6.2.2 Development of FEA solid model for the study of erosive impacts

6.2.3 Erosion testing procedure

6.2.4 Specimen manufacture and material properties

6.2.5 Temperature and strain-rate values obtained from FEA simulations

6.2.6 Erosion results compared with erosion model prediction

6.3 Chapter Summary
CHAPTER 7
DISCUSSION AND CONCLUSION

7.1 Important findings

7.1.1 Introduction
7.1.2 Piezo-electric transducer design
7.1.3 Stress-wave interpretation
7.1.4 Effects of stress-wave recording from piezo-electric transducer coupling
7.1.5 Stress-wave monitoring of erosive particle impacts
7.1.6 Implementation of stress-wave monitoring process for the study of erosion

BIBLIOGRAPHY

APPENDIX A
MATLAB PROGRAMS

A.1 Matlab programs
A.1.1 Matlab program for the design of the piezo-electric transducer
A.1.2 Matlab program to measure volume loss of wear specimens
A.1.3 Matlab program to compare experimental stress-wave recordings with FEA model prediction

APPENDIX B
LS DYNA FEA PROGRAMS

B.1 LS DYNA programs
B.1.1 LS DYNA input code for stress-wave monitoring FEA model
B.1.2 LS DYNA input code for FEA erosion modelling

APPENDIX C
MATERIAL PROPERTIES

C.1 Material property specifications
C.1.1 Material property data sheets for AISI 1020 steel
C.1.2 Material property data sheets for AISI 1006 steel
C.1.3 Material property data sheets for UHMWPE
C.1.4 Material property data sheets for VER
C.1.5 Material property data sheets for piezo-electric material
Abstract

The impact of a small particle with a wear surface can lead to very high strain-rates in the material being encountered. Often predictive erosion models are based on material property parameters taken from quasistatic test conditions. However, the material properties of the impacted wear surface can change dramatically with strain and strain-rate, leaving some doubt as to the validity of an erosion model based on quasistatic parameter values. In this study, a new stress-wave monitoring process is developed for the study of material characteristics and erosion phenomena, at strain-rates approaching 10^6s^{-1}. For this study a newly designed piezo-electric transducer was used to monitor the stress-waves produced by small erosive particle impact events. A computational study was also conducted to aid in the transducer design and location distance from the impact source by considering the effects caused by spatial averaging. Spatial averaging affects the recorded stress-wave signal and is caused by the curvature of the stress-wave as the wave passes through the flat piezo-electric sensing element.

This study was conducted using a computational and experimental approach. The joint study allowed significant knowledge to be gained for the study of elasto-plastic impact and stress-wave motion. Finite element analysis (FEA) was used to model the experimental system in detail. The stress-waves produced by the experimental process were directly compared to the FEA model. Once the FEA model was validated, detailed information from the impact event at the surface could be obtained from the model, which would otherwise be difficult if not impossible to obtain experimentally.

The issues of wave dispersion have been an underlying problem in the correct interpretation of stress-wave phenomena for many years. The impact of the wear surface causes stress-waves with many frequency components, each component propagating through the wear material at distinct wave velocities. Wave dispersion causes the initial stress-wave pulse to be dispersed into many waveforms. In this study the longitudinal stress-wave was the main waveform studied. FEA simulations were conducted for a purely elastic impact and an impact causing significant plastic deformation of the surface. A comparison between these waveforms showed that in the case of impacts causing plastic deformation, the initial part of the stress-wave, measured from the time
of arrival to the first peak, corresponded to the elastic stress component of the impact event at the surface. The characterisation of the waveform in regards to elastic and plastic stress components at the surface was significant for validating model parameters of the Johnson-Cook material model.

The stress-wave monitoring process was applied in the first instance to erosive particle impacts to AISI 1020 steel at impact velocities up to 104 m/s. A specially designed erosion apparatus, fitted with a modified double disc system was used to impact the 10mm thick steel plate. The piezo-electric transducer was firmly clamped to the rear surface, directly behind the point of impact to obtain the stress-wave signals produced by impacts of 0.4mm zirconia spheres. The study showed that the contact interface of the wear material and the piezo-electric transducer could cause a phase change and amplitude reduction of the stress-wave transmitted to the transducer at wave frequencies above 0.9MHz. The results showed that the most likely cause for the phase shift to occur was the restriction of tensile stresses across the contact interface. For wave frequencies below 0.9MHz, no phase shift or amplitude reduction was apparent in the experimental stress-wave recordings.

The combined experimental / FEA study was shown to be able to validate the strain-rate parameter of the Johnson-Cook model. The parameters, which could not be validated by the stress-wave monitoring process, were the parameters relating to plastic deformation of the surface, which were the strain-hardening terms of the Johnson-Cook model. These terms were later validated by studying the extent of plastic deformation at the surface, which occurred in the form of impact craters. By comparing the predicted impact crater depths from the FEA model with the experimental results, the strain-hardening parameters of the Johnson-Cook model could be validated.

The robustness of the stress-wave monitoring process was proven for the impact study of ultra high molecular weight polyethylene (UHMWPE) and vinyl ester resin (VER). Unlike AISI 1020 steel, little is know about the high strain-rate response of these polymers. Initial estimates of material property parameters were made by applying computational curve fitting techniques to the stress-strain curves of similar polymers, which were from published results obtained from split Hopkinson’s pressure bar method. The impact and stress-wave study showed UHMWPE and VER to be highly
sensitive to strain-rate effects. The main effect was a substantial increase in hardness with increasing strain-rate and it was considered that the hydrostatic stress component contributed to the strain hardening of the polymers.

The stress-wave monitoring and FEA computational techniques developed in this study were implemented in the development of an improved erosion model. The model form is similar to that of the well-known Ratner-Lancaster model. The Ratner-Lancaster model assumes wear rate to be proportional to the inverse of deformation energy, where deformation energy is approximated as the product of the ultimate stress and ultimate strain. The improved Ratner-Lancaster model uses the Johnson-Cook model to obtain the von-Mises stress as a function of strain. The area integral of the stress-strain curve is used to derive the deformation energy capacity of the material in the deformed zone close to the surface. The model accounts for strain, strain-rate and thermal effects and is therefore more soundly based on material deformation characteristics valid for erosion events than the Ratner-Lancaster model assumptions. The model developed in this work was applied to the erosion study of 1020 steel, UHMWPE and VER, with good correlation being obtained between experimental erosion rates and model predictions.
Nomenclature

<table>
<thead>
<tr>
<th>Quantity symbol</th>
<th>Term</th>
<th>Unit symbol</th>
<th>First text reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>The angle of the particle trajectory relative to the wear surface</td>
<td>Degrees</td>
<td>2.1.1</td>
</tr>
<tr>
<td>H</td>
<td>Material hardness</td>
<td>Pa</td>
<td>2.1.1</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
<td>kg</td>
<td>2.1.1</td>
</tr>
<tr>
<td>W</td>
<td>Wear or erosion rate</td>
<td>mm g⁻¹</td>
<td>2.1.1</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
<td>Kg m⁻³</td>
<td>2.1.1</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
<td>m s⁻¹</td>
<td>2.1.1</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
<td>N m</td>
<td>2.1.1</td>
</tr>
<tr>
<td>σₚ</td>
<td>Ultimate stress, defined by the stress at the point of failure</td>
<td>Pa</td>
<td>2.1.2</td>
</tr>
<tr>
<td>εₜₚ</td>
<td>Ultimate strain, defined by the strain at the point of failure</td>
<td>Dimensionless</td>
<td>2.1.2</td>
</tr>
<tr>
<td>μ</td>
<td>Coefficient of friction</td>
<td>Dimensionless</td>
<td>2.1.2</td>
</tr>
<tr>
<td>σₚₑ㎏</td>
<td>Yield stress</td>
<td>Pa</td>
<td>2.1.2</td>
</tr>
<tr>
<td>εₑ㎏</td>
<td>Yield strain</td>
<td>Dimensionless</td>
<td>2.1.2</td>
</tr>
<tr>
<td>εₚₑ</td>
<td>Plastic strain</td>
<td>Dimensionless</td>
<td>2.2.1</td>
</tr>
<tr>
<td>εₑₑ</td>
<td>Plastic strain-rate</td>
<td>s⁻¹</td>
<td>2.2.1</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>Degrees C</td>
<td>2.2.1</td>
</tr>
<tr>
<td>σₚₑ</td>
<td>Flow stress</td>
<td>Pa</td>
<td>2.2.2</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
<td>Dimensionless</td>
<td>3.1.1</td>
</tr>
<tr>
<td>cₑₑ</td>
<td>Bulk elastic wave speed</td>
<td>m s⁻¹</td>
<td>3.1.1</td>
</tr>
<tr>
<td>Eₑₑ</td>
<td>Plastic or tangent modulus</td>
<td>Pa</td>
<td>3.1.1</td>
</tr>
<tr>
<td>Vₒᵤ</td>
<td>Output voltage</td>
<td>Volts</td>
<td>3.2.2</td>
</tr>
<tr>
<td>X</td>
<td>Electrical impedance</td>
<td>Ohms</td>
<td>3.2.5</td>
</tr>
<tr>
<td>σᵣₑₑ</td>
<td>Stress in the y direction</td>
<td>Pa</td>
<td>3.2.8</td>
</tr>
<tr>
<td>Bₑₑ</td>
<td>Elastic bulk modulus</td>
<td>Pa</td>
<td>5.2.1</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
<td>Pa</td>
<td>5.2.1</td>
</tr>
<tr>
<td>Cₑₑ</td>
<td>Specific Heat</td>
<td>J/kg K</td>
<td>5.4.1</td>
</tr>
</tbody>
</table>
Published Works

Journal Papers

Conference Papers