Role of Lycopene and Long Chain n-3 Polyunsaturated Fatty Acid Supplements in Airway Inflammation

Ahmad SAEDI SOME OLIA, MSc.

A thesis submitted for the degree of Doctor of Philosophy

School of Biomedical Sciences
University of Newcastle
New South Wales
Australia

July, 2008
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

..

Ahmad Saedi
ACKNOWLEDGMENTS

I would like to acknowledge the practical and emotional support of my family. Firstly, to my wife Soheila, my daughter Sarvin and my son Amir, I would like to say thank you for your support and understanding when my study interrupted our family life. To my father Ali and my mother Fahimeh who raised me to believe that higher education is a worthwhile pursuit, I thank you for always helping me with everything and encouraging me to take new challenges.

I would like to acknowledge my supervisors, Professor Manohar Garg, Dr. Lisa Wood, and Professor Peter Gibson, for their ongoing support, enthusiasm and friendship. I do appreciate their valuable advice and accessibility. I also would like to thank Dr. Peter Wark for his involvement and helpful advice on cell culture experiments.

I would like to acknowledge all of my friends in Respiratory Medicine, Hunter Medical Research Institute, and also Nutraceutical Research Group, School of Biomedical Science. In particular, I would like to acknowledge Terry Grissell, Glenda Walker, Robert Blake, Melinda Phang, Jodie Simpson, Rebecca Oldham, Alan Hsu, Deborah Hall, Michelle Gleeson, Kellie Fakes and Katie Baines for their friendly help.

I would like to sincerely thank the people who participated in the studies outlined in this thesis. In particular, I would like to acknowledge the involvement of asthmatic patients and their families.

Finally, I would like to acknowledge my sponsor of PhD program; Tehran University of Medical Sciences for their financial support during my study in the University of Newcastle. I would say that without their help I would not have been able to finish my study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>List of figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of tables</td>
<td>xii</td>
</tr>
<tr>
<td>Publications arising from this thesis</td>
<td>xiii</td>
</tr>
<tr>
<td>Synopsis</td>
<td>xiv</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Antioxidants in general</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Ascorbic acid</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Flavonoids quercetin</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3 Catechin</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Carotenoids</td>
<td></td>
</tr>
<tr>
<td>1.2.1 What are carotenoids?</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Classification of carotenoids</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Biological function of carotenoids</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Bioavailability of carotenoids</td>
<td>12</td>
</tr>
<tr>
<td>1.2.5 Food sources of carotenoids</td>
<td>12</td>
</tr>
<tr>
<td>1.2.6 Carotenoid supplements available in the Australian market</td>
<td>14</td>
</tr>
<tr>
<td>1.2.7 Recommended daily amounts of carotenoids</td>
<td>14</td>
</tr>
<tr>
<td>1.2.8 The mean intake of carotenoids</td>
<td>15</td>
</tr>
<tr>
<td>1.2.9 Toxic effects of carotenoids</td>
<td>15</td>
</tr>
<tr>
<td>1.2.10 Circulating concentration of carotenoids</td>
<td>16</td>
</tr>
<tr>
<td>1.3 Long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA)</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Lipids and fatty acids in general</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2 What are long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA)</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3 Biological functions of LC n-3 PUFA</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4 Body synthesis and dietary sources of LC n-3 PUFA</td>
<td>21</td>
</tr>
<tr>
<td>1.3.5 Recommended daily amounts of LC n-3 PUFA</td>
<td>22</td>
</tr>
<tr>
<td>1.3.6 LC n-3 PUFA and inflammation</td>
<td>22</td>
</tr>
<tr>
<td>1.3.7 LC n-3 PUFA and asthma</td>
<td>25</td>
</tr>
<tr>
<td>1.4 Inflammation</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Human immune system in brief</td>
<td>26</td>
</tr>
<tr>
<td>1.4.2 Inflammation and its physiology</td>
<td>28</td>
</tr>
<tr>
<td>1.4.3 A closer look at the neutrophils</td>
<td>30</td>
</tr>
<tr>
<td>1.4.4 A closer look at the chemotaxis</td>
<td>32</td>
</tr>
<tr>
<td>1.4.5 Inflammation in asthma</td>
<td>32</td>
</tr>
<tr>
<td>1.4.6 Rhinovirus</td>
<td>33</td>
</tr>
<tr>
<td>1.4.7 Inflammatory mediators</td>
<td>34</td>
</tr>
</tbody>
</table>
1.4.8 Nutrition and inflammation ..37

1.5 Asthma

1.5.1 Definition of asthma ...40
1.5.2 Prevalence of asthma ...40
1.5.3 Aetiology of asthma ...41
1.5.4 Eosinophilic and neutrophilic asthma ..41
1.5.5 Asthma demographics ...42
1.5.6 Evaluation of asthma ...42
 1.5.6.1 Clinical evaluation of asthma ..42
 1.5.6.2 Biochemical evaluation of asthma43
1.5.7 Treatment of asthma ...44
 1.5.7.1 Treatment of asthma with drugs ...44
 1.5.7.2 Treatment of asthma with complementary treatments44
 1.5.7.2.1 Non-dietary complementary treatment of asthma44
 1.5.7.2.2 Dietary complementary treatments of asthma44
1.5.8 Oxidative stress in asthma ...45
1.5.9 Carotenoids and oxidative stress in asthma46

1.6 Conclusion ..47

Chapter 2: General Materials and Methods

2.1 Clinical assessments of asthma ..49
 2.1.1 Anthropometry ...49
 2.1.2 Blood collection ...49
 2.1.3 Lung function ...49
 2.1.4 Asthma diagnosis ...49
 2.1.5 Asthma classification ...49

2.2 Biochemical analysis ..50
 2.2.1 Carotenoid analysis ..50
 2.2.2 Fatty acid analysis ...53
 2.2.3 Analysis of inflammation biomarkers53
 2.2.4 Measuring lactate dehydrogenase56

2.3 Cell culture experiments ..56
 2.3.1 In vitro epithelial cell culture ..56
 2.3.2 Preparing virus stock and TCID_{50} assay57
 2.3.3 Preparing medium containing lycopene liposome58
 2.3.4 Preparing medium containing lycopene-THF58
 2.3.5 Preparing medium containing Omega-3 fatty acids59
 2.3.6 Supplementation of Calu-3 cells with lycopene, EPA and DHA ..59

2.4 Relative expression of inflammatory biomarkers gene by real-time quantitative PCR59

2.5 Ethics approval ..60
Chapter 3: The effect of lycopene supplementation on inflammatory biomarkers in asthmatics

3.1 Introduction ... 62
3.2 Materials and methods .. 65
3.3 Results .. 67
3.4 Discussion ... 74

Chapter 4: Lycopene enrichment of cultured epithelial airway cells

4.1 Introduction ... 78
4.2 Materials and methods .. 81
4.3 Results .. 83
4.4 Discussion ... 90

Chapter 5: Anti-inflammatory effects of lycopene enrichment on infected cultured airway epithelial cells

5.1 Introduction ... 94
5.2 Materials and methods .. 99
5.3 Results .. 102
5.4 Discussion ... 114

Chapter 6: Anti-inflammatory effects of long chain n-3 polyunsaturated fatty acids on rhinovirus-infected cultured airway epithelial cells

6.1 Introduction ... 119
6.2 Materials and methods .. 124
6.3 Results .. 127
6.4 Discussion ... 143

Chapter 7: The synergistic anti-inflammatory effect of lycopene and long chain n-3 polyunsaturated fatty acids on rhinovirus infected airway epithelial cells

7.1 Introduction ... 147
7.2 Materials and methods .. 150
7.3 Results .. 154
7.4 Discussion ... 160

Chapter 8: General discussion and future directions ... 164

References .. 170
List of abbreviations:

AA: arachidonic acid
AHR: airway hyper-responsiveness
BAL: bronchoalveolar lavage
BALF: bronco-alveolar-lavage fluid
BCDF: B cell differentiation factor
BHT: butylated hydroxytoluene
BMI: body mass index
COPD: chronic obstructive pulmonary disease
CRP: C-reactive protein
DHA: docosahexaenoic acid
DMSO: dimethylsulfoxide
DRI: dietary reference intake
EIA: exercise induced asthma
ELISA: enzyme linked immunosorbent assay
EPA: eicosapentaenoic
FCS/MEM: foetal calf serum/minimum essential medium
FEV₁: forced expiratory volume in 1 second
FVC: forced vital capacity
GC: gas chromatography
G-CSF: granulocyte colony stimulation factor
GINA: global initiative for asthma guidelines
GM-CSF: granulocyte-monocyte colony stimulation factor
GSHPx: glutathione peroxidise
HDL: high density lipoprotein
HPLC: high performance liquid chromatography
ICAM-1: intercellular adhesion molecule-1
ICS: inhaled corticosteroid (µg beclamethasone equivalent)
ICS: inhaled corticosteroids
IFN-γ: interferon-gamma
IgG: immunoglobulin G
IgM: immunoglobulin M
IL-1: interleukin-1
IL-2: interleukin-2
IL-3: interleukin-3
IL-4: interleukin-4
IL-5: interleukin-5
IL-6: interleukin-6
IL-8: interleukin-8
IL-12: interleukin-12
IL-17: interleukin-17
IP-10: interferon-gamma inducible protein-10
LCn-3PUFA: long chain n-3 polyunsaturated fatty acid
LDH: lactate dehydrogenase
LDL: low density lipoprotein
LPS: lipopolysaccharide
LTB: Leukotriene B
M-CSF: monocytes colony stimulation factor
MDA: malondialdehyde
MOI: multiplicity of infection (plaque forming unit (PFU)/the number of cells)
NF-κB: nuclear factor-κB
NO: nitric oxide
PEF: peak expiratory flow
PFU: plaque forming unit
PG: prostaglandin
PMN: polymorphonuclear
RDA: recommended dietary allowances
RER: relative expression ratio
ROS: reactive oxygen species
RT-PCR: reverse transcription polymerase chain reaction
RV: rhinovirus
SEM: standard error of mean
SOD: superoxide dismutase
TAC: total antioxidant capacity
TCID_{50}: tissue culture infective dose 50%
TDI: toluene diisocyanate
THF: tetrahydrofuran
TLR: toll-like receptor
TNF-α: tumour necrosis factor-α
TXA: thromboxane A
vRNA: viral ribonucleic acid
List of figures:

Figure 1.1.1.1 Schematic figure of ascorbic acid molecule ...3
Figure 1.1.2.1 Schematic molecular structure of quercetin ...5
Figure 1.1.3.1 Schematic molecular structure of catechin ..5
Figure 1.2.1.1 Structure of common carotenoids ..6
Figure 1.2.2.1 Classification of carotenoids ...9
Figure 1.2.3.1 Cleavage of β-carotene into vitamin A ..10
Figure 1.3.2.1 Schematic structure of Eicosapentaenoic acid (EPA)18
Figure 1.3.2.2 Schematic structure of Docosahexaenoic acid (DHA)19
Figure 1.3.3.1 LOX and COX pathways leading eicosanoid production21
Figure 1.3.4.1 Schematic pathway of EPA and DHA production from α-linolenic acid .22
Figure 1.3.6.1 Summary of the anti-inflammatory effect of LCn-3PUFA24
Figure 2.2.3.1 Standard curves of IL-6 ELISA assay using ELISA buffer and media54
Figure 2.2.3.2 Standard curves of IL-8 ELISA assay using ELISA buffer and media54
Figure 2.2.3.3 Standard curves of IP-10 ELISA assay using ELISA buffer and media55
Figure 3.1.1 Pathways of innate and acquired immunity ..63
Figure 3.3.4 Median of different cytokines after placebo, tomato juice and tomato extract .69
Figure 3.3.5 Correlation between plasma CRP versus lycopene levels71
Figure 3.3.6 Correlation between plasma CRP versus FVC predicted%72
Figure 3.3.7 Correlation between changes of IL-6 versus sputum neutrophil count73
Figure 4.3.1 Calu-3 50% confluent in the bottom of flask ...83
Figure 4.3.2 Calu-3 100% confluent in the bottom of flask ...84
Figure 4.3.3 Cells incubated with lycopene liposomes ..84
Figure 4.3.4 Calu-3 cells after 24 hours incubation with no THF85
Figure 4.3.5 Calu-3 cells after incubation with 0.5% THF and/or THF/lycopene85
Figure 4.3.6 Calu-3 cells after incubation with 2% THF and/or THF/lycopene85
Figure 4.3.7 Calu-3 cells after incubation with 5% THF and/or THF/lycopene86
Figure 4.3.8 IL-6 released by cells after incubation with THF/lycopene86
Figure 4.3.9 LDH released by Calu-3 cells incubation with THF/lycopene88
Figure 4.3.10 Lycopene uptake of Calu-3 cells ..89
Figure 5.1.1 Innate immunity pathway leading to hyper-responsiveness and exacerbation .94
Figure 5.1.2 Mechanisms by which lycopene may affect the inflammatory response to viruses .98
Figure 5.3.1 IL-6 released by cells incubated with and without rhinovirus and LPS102
Figure 5.3.2 IL-6 released by cells enriched with and without lycopene before and after infection induced by RV-43, RV-1B and LPS exposure ..103
Figure 5.3.3 IL-8 released by cells enriched with and without lycopene before and after infection induced by RV-43, RV-1B and LPS exposure ..105
Figure 5.3.4 IP-10 released by cells enriched with and without lycopene before and after infection induced by RV-43, RV-1B and LPS exposure ..107
Figure 5.3.5 IL-6 mRNA levels in cells enriched with and without lycopene before and after infection induced by RV-43, RV-1B and LPS exposure ...109
Figure 5.3.6 IL-8 mRNA levels in cells enriched with and without lycopene before and after infection induced by RV-43, RV-1B and LPS exposure ...111
Figure 5.3.7 IP-10 mRNA levels in cells enriched with and without lycopene before and after infection induced by RV-43, RV-1B and LPS exposure ...113
Figure 5.3.8 TCID₅₀ of RV-43 and RV-1B in the Calu-3 cells enriched with and without lycopene …114
Figure 6.1.1 Summary of the anti-inflammatory effect of EPA and DHA ...122
Figure 6.3.1 Incorporation% of different concentrations of EPA, DHA and AA into Calu-3 cells ………128
Figure 6.3.2 Incorporation of AA in control cells compared to the cells supplemented with EPA and DHA..129
Figure 6.3.3 Lactate dehydrogenase released by Calu-3 cells incubated with different concentrations of EPA, DHA and AA ..130
Figure 6.3.4 IL-6 released by Calu-3 cells enriched with and without different concentrations of (a) EPA, (b) DHA and (c) AA following infection induced by Rhinovirus-43 ..132
Figure 6.3.5 IL-6 released by Calu-3 cells enriched with and without different concentrations of (a) EPA, (b) DHA and (c) AA following infection induced by Rhinovirus-1B ..133
Figure 6.3.6 IL-8 released by Calu-3 cells enriched with and without different concentrations of (a) EPA, (b) DHA and (c) AA following infection induced by Rhinovirus-43 ...134
Figure 6.3.7 IL-8 released by Calu-3 cells enriched with and without different concentrations of (a) EPA, (b) DHA and (c) AA following infection induced by Rhinovirus-1B ...135
Figure 6.3.8 IP-10 released by Calu-3 cells enriched with and without different concentrations of (a) EPA, (b) DHA and (c) AA following infection induced by Rhinovirus-43 ..136
Figure 6.3.9 IP-10 released by Calu-3 cells enriched with and without different concentrations of (a) EPA, (b) DHA and (c) AA following infection induced by Rhinovirus-1B ..137
Figure 6.3.10 Comparison of the effect of supplementation of each fatty acid (400µM) on (a) IL-6, (b) IL-8 and (c) IP-10 released by Calu-3 cells infected by RV-43 ..139
Figure 6.3.11 Comparison of the effect of supplementation of each fatty acid (400µM) on (a) IL-6, (b) IL-8 and (c) IP-10 released by Calu-3 cells infected by RV-1B ..140
Figure 6.3.12 Viral replication of RV-43 and RV-1B in Calu-3 cells supplemented with and without the highest concentration (400µM) of EPA, DHA and AA ...141
Figure 6.3.13 Correlations between DHA content of the cells with (a) IL-6 and (b) IP-10 released by cells after RV-1B infection ..142
Figure 7.3.1 Lactate dehydrogenase (LDH) released by Calu-3 cells incubated with EPA (400µM), DHA (400µM), lycopene (2.5µg/mL) and their combinations ..154
Figure 7.3.2 Incorporation% of (a) EPA and (b) DHA into Calu-3 cells supplemented with EPA (400µM), DHA (400µM) and their combination with lycopene (2.5µg/mL) ..155
Figure 7.3.3 Intracellular lycopene concentration of Calu-3 cells supplemented with lycopene (2.5µg/mL) and its combination with DHA (400µM) and EPA (400µM) ..156
Figure 7.3.4 IL-6 released by RV infected Calu-3 cells supplemented with EPA, DHA, lycopene and their combinations…………………………………………………………………………………………………157
Figure 7.3.5 IL-8 released by RV infected Calu-3 cells supplemented with EPA, DHA, lycopene and their combinations…………………………………………………………………………………………………157
Figure 7.3.6 IP-10 released by RV infected Calu-3 cells supplemented with EPA, DHA, lycopene and their combinations…………………………………………………………………………………………………158
Figure 7.3.7 Viral replication of (a) RV-43 and (b) RV-1B in Calu-3 cells supplemented with lycopene-EPA and lycopene-DHA…………………………………………………………………………………………………159
List of tables:
Table 1.2.5.1 Carotenoid contents of some selected fruits and vegetables ………………………………13
Table 1.2.6.1 Carotenoid supplements available in Australian market……………………………………14
Table 1.2.7.1 Recommended dietary allowances (RDA) for vitamin A …………………………………15
Table 1.2.8.1 Mean intake of some carotenoids found by different studies …………………………15
Table 1.4.1.1 Characteristics and determinants of innate and acquired immunity …………..………27
Table 1.4.2.1 Categories of inflammation ……………………………………………………………29
Table 1.4.2.2 Summary of neutrophilic involvement in viral infections ……………………………30
Table 1.4.3.1 Inflammatory mediators produced or stimulated by neutrophils 32
Table 1.4.7.1 Main inflammatory mediators in human body …………………………………………35
Table 2.1.5.1 GINA classification of asthma severity ………………………………………………50
Table 2.2.1.1 Carotenoid content of each standard …………………………………………………52
Table 2.2.1.2 Final concentration of carotenoid in carotenoid standards ………………………52
Table 3.3.1 Demographic and some clinical information of participants ……………………………..67
Table 3.3.2 Comparison between mean of concentration of plasma lycopene, IL-6, IL-8, CRP, and TNF-α after each treatment ………………………………………………………………………………………………………68
Table 3.3.3 Concentration of the plasma IL-6, IL-8, CRP, and TNF-α before and after washout period.69
Table 7.3.1 Comparison of the effect of lycopene, DHA and lycopene-DHA on the inflammation of Calu-3 cells infected with RVs……………………………………………………………………………………………………160
Publications arising from this thesis:

Articles:

3. **Saedisomeolia A**, Wood LG, Garg ML, Gibson PG, Wark PAB. Supplementation of long chain n-3 polyunsaturated fatty acids increases the utilisation of lycopene in cultured airway epithelial cells. *Journal of Food Lipids* (Accepted 04/06/2008).

Abstracts:

Synopsis
In Western society, increased asthma prevalence over recent years has coincided with changes in dietary patterns, leading to the hypothesis that a Western diet increases susceptibility to asthma. Components of the diet that may be important are antioxidants (e.g. lycopene) and fatty acids. Lycopene and long chain n-3 polyunsaturated fatty acids (LCn-3PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory effects. As asthma is a disease linked to oxidative stress and inflammation, it was hypothesised that these nutrients may have a beneficial effect individually, and may have a synergistic anti-inflammatory effect when used in combination. The aim was to examine the ability of lycopene and/or LCn-3PUFAs to protect against virus-induced inflammation, as rhinovirus infection is the primary cause of asthma exacerbation.

The results presented demonstrate that both lycopene and DHA (but not EPA) individually decreased the inflammatory response of airway epithelial cells infected with rhinovirus. The results also showed that DHA supplementation increased the utilization of lycopene by cells. Furthermore, lycopene reduced rhinovirus replication. A combination of lycopene and DHA also reduced the inflammatory response of cells to rhinovirus infection, however, no synergistic anti-inflammatory effect was apparent. It is concluded that consumption of foods containing lycopene and DHA may exhibit a beneficial effect on the inflammatory response to rhinovirus infection. This may have important clinical implications, as increased dietary intake of foods rich in these nutrients may lead to a reduction in the frequency and severity of asthma exacerbations.