NOVA

University of Newcastle Research Online

nova.newcastle.edu.au

Hollis, Jenna L.; Williams, Amanda J.; Sutherland, Rachel; Campbell, Elizabeth; Nathan, Nicole;
Wolfenden, Luke; Morgan, Philip J.; Lubans, David R.; Wiggers, John; "A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in elementary school physical education lessons". Published in Preventive Medicine Vol. 86, p. 34-54 (2016)

Available from: http://dx.doi.org/10.1016/i.ypmed.2015.11.018

[^0]A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in elementary school physical education lessons.

\author{
Jenna L Hollis ${ }^{\text {a,b }}$, Amanda J Williams ${ }^{\text {a,b,c }}$, Rachel Sutherland ${ }^{\text {a,b,c }}$, Elizabeth Campbell ${ }^{\text {a,b,c }}$, Nicole Nathan ${ }^{\text {a,b,c }}$, Luke Wolfenden ${ }^{\text {a,b,c }}$, Philip J Morgan ${ }^{\text {d }}$, David R Lubans ${ }^{\text {d }}$ and John Wiggers ${ }^{\text {a,b,c }}$
 [^1]}

Corresponding author

Jenna L Hollis

Research Fellow in Public Health Nutrition
Rowett Institute of Nutrition and Health

Public Health Nutrition Research Group
Room 1:071 Polwarth Building, Foresterhill Campus
University of Aberdeen
Aberdeen Scotland AB25 2ZD

Tel: +44 1224438036

Email: jenna.hollis@abdn.ac.uk

Email addresses:

Amanda J Williams: Amanda.J.Williams@hnehealth.nsw.gov.au
Rachel Sutherland: Rachel.Sutherland@hnehealth.nsw.gov.au
Elizabeth Campbell: Libby.Campbell@hnehealth.nsw.gov.au
Nicole Nathan: Nicole.Nathan@hnehealth.nsw.gov.au Luke Wolfenden: Luke.Wolfenden@hnehealth.nsw.gov.au Philip J Morgan: philip.morgan@newcastle.edu.au David R Lubans: david.lubans@newcastle.edu.au John Wiggers: John.Wiggers@hnehealth.nsw.gov.au Word count: abstract = 250, main text $=4500$

Abstract

Objective: To examine elementary school students' moderate-to-vigorous physical activity (MVPA) levels during physical education (PE) lessons.

Methods: A systematic search of nine electronic databases was conducted (PROSPERO2014:CRD42014009649). Studies were eligible if they were in English; published between 2005-April 2014; assessed MVPA levels in PE lessons of elementary school children (aged four-12 years); and used an objective MVPA measure. Two reviewers retrieved articles, assessed risk of bias, and performed data extraction. The findings were synthesised using a meta-analysis.

Results: The search yielded 5132 articles. Thirteen studies from nine countries met the inclusion criteria. Eight studies measured MVPA through observational measures, five used accelerometry and one used heart rate monitoring. The percentage of PE lesson time spent in MVPA ranged between 11.4-88.5\%. Meta-analysis of seven studies (4 direct observation; 4 accelerometers) found that children spent a mean ($95 \% \mathrm{CI}$) 44.8 (28.2-61.4)\% of PE lesson time in MVPA. When measured using direct observation and accelerometers, children spent 57.6 (47.3-68.2) and 32.6 (5.9-59.3)\% of PE lesson time in MVPA, respectively. The review has limitations; the search strategy was restricted to studies in English; theses, dissertations and conference abstracts were excluded; and six studies that provided insufficient data were excluded from the meta-analysis.

Conclusion: MVPA levels during elementary school PE lessons do not meet the United States Centre for Disease Control and Prevention and the United Kingdom's Association of Physical Education recommendation (50% of lesson time), but is higher than estimated in the previous review (34.2\%). Interventions to increase MVPA in PE lessons are needed.

Key words: Schools, Physical education and training, Motor activity, Child.

Abbreviations

62 Accel-Accelerometer
63 afPE - Association of Physical Education
64 ASD - Autistic Spectrum Disorders
65 BEACHES - Behaviour of Eating and Activity for Children's Health: Evaluation System
66 BMI - Body Mass Index
67 CDC - Centre for Disease Control
68 CDOM - Continuous Direct Observation Method
69 FI - Fitness Infusion
70 FMS - Fundamental Movement Skills
71 HR - Heart Rate
72 Mins - Minutes
73 MVPA - Moderate-to-Vigorous Physical Activity
74 NR - Not Reported
75 NSW - New South Wales
76 PE - Physical Education
77 PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses
78 RCT's - Randomised Controlled Trials
79 SAM - Simple Activity Measurement
80 SD - Standard Deviation
81 SE - Standard Error
82 SES - Socioeconomic Status
83 UK - United Kingdom
84 US - United States
85 WHO - World Health Organisation
86 SOFIT - System for Observing Fitness Instruction Time
87 95\% CI - 95\% Confidence Intervals

Introduction

Engaging children in physical activity during childhood is important as physical inactivity has been associated with cardiovascular risk factors and obesity in children. ${ }^{1-3}$ International guidelines by the World Health Organisation (WHO) recommend that 5-17 year old children engage in 60 minutes of moderate-to-vigorous physical activity (MVPA) each day. ${ }^{4}$ However national data from the United States (US) ${ }^{5}$ collected using accelerometers, and self-report survey data from Australia ${ }^{6}$, have reported that less than half of children meet this recommendation.

Schools are a valuable setting to promote and engage children in physical activity. ${ }^{7}$ In particular, physical education (PE) lessons provide an opportunity for children to engage in MVPA and develop the fundamental movement skills (FMS), knowledge and attitudes required for a lifetime of physical activity. ${ }^{8}$ The US Centre for Disease Control (CDC) and Prevention ${ }^{9}$ and the United Kingdoms (UK) Association of Physical Education (afPE) ${ }^{10}$ have recommended that both elementary and secondary school children engage in MVPA for at least 50\% of PE lesson time.

Despite the potential for PE lessons to play a role in promoting physical activity in children from a young age, only one review has examined MVPA during elementary school PE lessons. ${ }^{11}$ The narrative review was based on 44 studies published until 2005, and included cross sectional, longitudinal and intervention studies (baseline and follow-up data of all control and intervention groups). ${ }^{11}$ The majority of studies used observational methods to measure MVPA ($n=26$), while 15 studies used heart rate monitoring and nine used monitor sensors (accelerometers and pedometers). ${ }^{11}$ Six studies used a combination of physical activity measurements methods. ${ }^{11}$ The mean lesson length was 33.7 minutes. ${ }^{11}$ The review found that when data from PE lessons under both intervention and non-intervention conditions were combined ($n=44$), students participated in MVPA for 37.4% of PE lesson time, with a mean of 34.2% based on non-intervention condition studies only ($n=15$). ${ }^{11}$ Subgroup analyses showed that activity tended to increase with school grade, particularly between grades three and five. MVPA differed according to measurement type, with heart rate monitors reporting the highest percentage MVPA (40.4\%), followed by motion sensors such as accelerometers and pedometers (36.8\%), and observation methods (32.5\%). ${ }^{11}$ The review did not undertake an assessment of risk of bias to aid the interpretation of findings.

Given the absence of a subsequent updated review, the primary aim of this systematic review was to examine elementary school students' MVPA levels during PE lessons in studies published between 2005 and 2014. The secondary aims were to evaluate student participation in MVPA during PE lessons by: i) measurement type (accelerometer, heart rate
monitoring, pedometry or observational measure); ii) PE activities; and iii) student (e.g. sex, socioeconomic status (SES)), teacher (e.g. training) and environmental factors (e.g. country).

Methods

For the purpose of this review, the term 'elementary school' (i.e. catering for children aged 412 years) will be used throughout. The systematic review protocol was registered with Prospero on the 7/5/2014 (PROSPERO2014:CRD42014009649): http://www.crd.york.ac.uk/PROSPERO/display record.asp?ID=CRD42014009649. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. ${ }^{12}$

A two-step search strategy was used. First, a systematic search of nine electronic scientific databases was performed in May 2014: Medline, Sport Discus, CINAHL, The Central Cochrane database, ERIC, Proquest, EMBASE, Scopus, and PsycINFO. Key search terms and their synonyms were searched using four filters identifying the i) setting (e.g. physical education), ii) target population (e.g. child), iii) measurement (e.g. MVPA), and iv) study design (e.g. prospective studies). Search terms within each filter were combined using the Boolean operator 'or', and all four filters were combined to form one search using the Boolean operator 'and'. See Appendix A for the full list of search terms and a record of the search strategy. Secondly, the reference lists of all included studies were manually searched for additional papers not already identified.

Inclusion and exclusion criteria

The title and abstracts of the studies identified during the search were retrieved and examined by two reviewers (J.H., A.W.) to determine if the study met the inclusion criteria. The full texts of potentially eligible studies were retrieved and independently assessed by the two reviewers to determine eligibility. If there was disagreement on whether a study should be included in the review and a consensus could not be reached through discussion, a third independent reviewer was consulted (R.S.).

This review examined studies that: i) assessed the MVPA levels of elementary school children (aged four-12 years) during PE lessons; ii) used a quantitative measure of physical activity such as accelerometers, heart rate monitors, pedometers or systematic observational measures (e.g. the System for Observing Fitness Instruction time (SOFIT)); iii) studies published in English between January 2005 and April 2014; and iv) used crosssectional and prospective longitudinal quantitative study designs. For intervention studies (e.g. Randomised Controlled Trials (RCT's), non-RCT's and pre-post studies), baseline data from both intervention and control groups were included. If baseline data were not provided,
the control group follow-up data were used if no intervention was delivered to that group. Follow-up data from intervention studies were excluded as the aim was to assess MVPA in usual PE lessons rather than under intervention conditions. Studies that reported findings in abstracts, theses, dissertations, and unpublished literature were excluded from the review. The 'cut-off' date for this review was 2005 as the searches for the previous review ${ }^{11}$ took place in January 2005, and this current systematic review aimed to include all relevant studies published since the prior review.

Risk of bias assessment

An 11-item tool to assess the methodological quality of the studies was developed (Appendix B). A new tool was created as no other risk of bias tool that assessed bias relevant to this systematic review context was identified. Existing tools ${ }^{13-15}$ assessed criteria such as participant recall bias, interviewer bias (e.g. assessor blinding), the randomisation procedure, and attrition. The existing tools also lacked detailed criteria on selection and instrument bias relevant to the school context, PE lessons and MVPA measures, which were more likely to influence the findings of this review. The tool comprised seven domains (Table 1) covering selection bias across the school, class and student level, plus selection and instrument bias related to the PE lessons and MVPA measures.

Two independent reviewers (J.H., A.W.) used the tool to examine the risk of bias of all studies that were considered eligible. Any difference in ratings was resolved through discussion between the two reviewers. If a consensus could not be reached, a third reviewer was consulted (R.S.). Each criteria was coded as 'clearly described and present' (yes), 'absent' (no), or 'unclear or inadequately described' (unclear) rating for each of the 11 items. Each domain was considered independently as recommended by PRISMA. ${ }^{12}$

Data collection

A pre-piloted standardised data extraction table was used by one independent reviewer (A.W.) to extract study data from the included studies. A second independent reviewer (J.H.) examined the completed data extraction table and added any missing data, corrected any errors and highlighted information that was unclear. The two reviewers discussed all discrepancies and consulted a third reviewer (R.S.) where a consensus could not be reached. Missing data were requested from study authors if it would determine study eligibility and/or if insufficient data was provided for inclusion in a meta-analysis. The extracted information provided details regarding: study design, setting (region/country, school year), participants (school and student sample size, student age, sex, SES, ethnicity), teacher training, aim, recruitment, response rate, measurement type, lesson delivery, number of lessons, lesson duration, activities engaged in during the lesson, and MVPA in PE
lessons. MVPA in PE lesson time was included if it was provided as either: i) mean percentage of lesson time spent in MVPA, or ii) minutes of MVPA per lesson and length of the PE lesson so that percentage MVPA per lesson could be manually calculated.

Data synthesis

The characteristics and findings of all included studies were synthesised narratively. Summaries of the MVPA levels in each study were presented as mean (SD/SE/95\%CI) percentage of lesson time and actual minutes, where available. The findings for percentage time spent in MVPA were pooled into a meta-analysis using Comprehensive Meta-analysis Software (version 2.2.064, July 2011) for studies that provided mean percentage of time in MVPA, a standard deviation, and number of PE lessons observed. Moderator analyses, according to the pre-specified subgroups, were planned to address the secondary aims of the review including; type of measurement instrument (accelerometry, heart rate monitoring, observation), type of physical activity, student sex, student SES, teacher training, and study country. Statistical heterogeneity was assessed through Cochran's Q and the I^{2} Index tests. As a guide to interpreting the I^{2} Index; 0-40\% may represent low heterogeneity; 30-60\% moderate heterogeneity; 50-90\% substantial heterogeneity; and $75 \%-100 \%$ considerable heterogeneity. ${ }^{16}$ Methodological heterogeneity was also examined through the subgroup meta-analysis that examined the method of assessing MVPA.

Results

Study selection

The initial database search yielded 5132 articles once duplicates were removed (Figure 1). Following title and abstract review, 74 full-text papers were retrieved and reviewed for eligibility. Fourteen papers representing 13 studies met the inclusion criteria. ${ }^{17-30}$ Seven studies ${ }^{17,18,20,21,23,29,30}$ provided sufficient data to be pooled into a meta-analysis. All study selection discrepancies between the two reviewers were resolved through discussion, and the third reviewer was not consulted. The two reviewers initially disagreed on 6.6% of the risk of bias criteria; however a consensus was reached on all criteria through discussion. There were 10 discrepancies in data collection between the two reviewers, which were all resolved by discussion.

Study characteristics

The characteristics and outcomes of the studies are shown in Tables 2 and 3. Publication dates ranged from 2005^{22} to $2014 .{ }^{21}$ The studies were conducted in the US $(n=2)^{21,23}$, UK $(n=2)^{24,}{ }^{30}$, Belgium ($\left.n=1\right)^{29}$, Switzerland $(n=1)^{19}$, Mexico $(n=1)^{26}$, Canada $(n=1)^{20}$, Brazil $(n=1)^{18}$, Australia ($\left.n=1\right)^{27,28}$ and Hong Kong ($n=1$). ${ }^{17}$ Two studies did not report the study location. ${ }^{22,25}$ The majority of studies were of cross-sectional design $(n=8)^{17-24}$ and the
remaining five studies were RCT's. ${ }^{25-30}$ Baseline intervention and control group data were included in the review for two of the five RCT studies ${ }^{26,29}$, whereas only control group data could be obtained for the remaining three studies. ${ }^{25,} 27,28,30$ The number of student participants in the individual studies ranged from 13^{22} to 830^{26}, and the number of schools included in studies ranged from one ${ }^{25}$ to 42^{17}. All 13 studies monitored both male and female students, and only one study reported results by sex. ${ }^{20}$

Eight studies ${ }^{17,} 21-24,26-29$ measured MVPA through direct observational measures, five used accelerometry ${ }^{18-20,29,30}$ and one used heart rate monitoring. ${ }^{25}$ One study used both accelerometry and direct observation. ${ }^{29}$ The number of PE lessons observed in each study ranged from two ${ }^{23}$ to $374 .{ }^{24} \mathrm{PE}$ lesson length varied between 24^{21} and 50 minutes. ${ }^{23,26,29}$ Seven studies employed specialist PE teachers to deliver the PE lesson ${ }^{17,19, ~ 20, ~ 23, ~ 25, ~ 26, ~} 29$, one study used classroom teachers with little or no PE training ${ }^{27,}{ }^{28}$, and two studies employed both specialist PE teachers and classroom teachers. ${ }^{21,30}$ Three studies did not specify the teacher delivering the lessons. ${ }^{18,22,24}$ Only five ${ }^{17,19,23-25}$ of the 13 studies specified the types of activities the children were engaged in during the lesson. The activities within each study varied and included ball games, fitness activities and movement activities (e.g. dance and gymnastics). The random effects models were used for all analyses as there was considerable heterogeneity among the studies ($G=1043$, df = 6 ($p \leq 0.01$); $I^{2}=99 \%$). The subgroup analysis consisting of four studies that measured MVPA by accelerometry was also found to be highly heterogeneous ($G=704$, $\mathrm{df}=3$ ($p \leq 0.01$); $I^{2}=100 \%$), as was the analysis for the four studies that measured MVPA through observational methods (G = 71 , df = 3 ($\mathrm{p}=<0.01$); $\mathrm{I}^{2}=96 \%$).

Risk of bias

Table 4 shows the risk of bias assessment for all included studies. For many studies, it was unclear if the school sample was representative ($n=8$) and whether the classes selected to be measured were representative of all classes ($\mathrm{n}=8$). The nature of the physical activities observed was not reported in eight studies and the number of PE lessons observed was not described in seven studies. All studies adequately described the student eligibility criteria and the demographic characteristics of the class sample. The majority of studies used an objective measure of physical activity or cited validation studies ($n=10 / 13$) and stated reliability data ($n=11 / 13$), reducing the risk of instrument bias.

MVPA in elementary school PE lessons

Of the 13 studies included in the systematic review, the percentage of PE lesson time spent in MVPA ranged between 11.4% and 88.5%. The mean percentage of PE lesson spent in MVPA was greater than 50% in five of the 13 studies. In one study ${ }^{29}$, children met the CDC
and afPE recommendation when accelerometers were used to measure MVPA, but not when SOFIT observations were used. Seven studies provided sufficient data for inclusion in meta-analysis. The pooled analysis of these seven studies found that children spent a mean ($95 \% \mathrm{CI}$) of 44.8 (28.2-61.4)\% of PE lesson time in MVPA (Figure 2).

Moderator analyses

i) Measurement type: accelerometer or observational measure

Of the seven studies that were included in the meta-analysis, four studies measured MVPA with accelerometers ${ }^{18,20,29,30}$ and four using observational measures (three used SOFIT, and one used Simple Activity Measurement (SAM)). ${ }^{17,21,23,29}$ One study measured MVPA using both accelerometers and SOFIT. ${ }^{29}$ When measured using accelerometers and observational measures, children spent a mean (95\%CI) 32.6 (5.9-59.3)\% (Figure 3) and 57.6 (47.3-68.2)\% (Figure 4) of PE lesson time in MVPA, respectively.

ii) PE activities

Moderator analyses to assess the percentage of PE lesson time spent in MVPA according to different activities could not be conducted due to the lack of information on the PE activities performed. Only two studies ${ }^{17,23}$ in the meta-analysis provided information on the physical activities performed, and the activities performed varied greatly (i.e. ball games, fitness activities, and movement activities e.g. dance and gymnastics).

iii) Student, teacher and environmental factors

Moderator analyses to examine the percentage of PE lesson time spent in MVPA according to student, teacher and environmental factors were not conducted due to the lack of information provided on these factors. Few studies in the meta-analysis provided information on the SES of school communities ($n=3 / 7$), and only one study reported results separately by student sex. In terms of teacher PE training, four studies employed specialist PE teachers ${ }^{17,20,23,29}$, two studies employed both specialist PE teachers and classroom teachers ${ }^{21,30}$, and one study did not specify the teacher delivering the lessons. ${ }^{18}$ The seven studies in the meta-analysis were conducted across seven different countries.

Discussion

Summary of the evidence

This study sought to examine elementary school students' MVPA levels during PE lessons in studies published between 2005 and 2014. Of the 13 studies included in the systematic review, percentage time spent in MVPA varied, ranging from 11.4% to 88.5% of PE time. The meta-analysis of seven studies found that children spent 44.8% of lesson time in MVPA. Promisingly, the estimated percentage of MVPA in PE lessons was higher than estimated in
the previous review ${ }^{11}$, which found that elementary school students participated in MVPA for 34.2% of PE time in non-intervention studies. However, the mean percentage of time spent in MVPA still falls short of the US CDC and UK's afPE recommendation of 50% of PE class time. ${ }^{9,10}$

A plausible explanation for the increase in the proportion of lesson time spent in MVPA since the previous review is that six of the seven studies pooled into the meta-analysis either solely or partially employed specialist PE teachers to deliver the lessons. ${ }^{17,20,21,23,29,30}$ Specialist PE teachers produce higher levels of MVPA than usual classroom teachers. ${ }^{11,32}$ The previous review ${ }^{11}$ did not outline teacher training for classes taught under nonintervention conditions, therefore a comparison between the two reviews cannot be made. Different accelerometer cut-points used in the studies may also have contributed to the variation in findings. While different MVPA accelerometer cut-points were used in the studies (e.g. $>2000^{18-20,29,30}$ and $>3500^{18,19}$ counts/minute) in the current review, accelerometer cutpoints were not reported in the previous review ${ }^{11}$ therefore this hypothesise cannot be confirmed. Only one study used accelerometry to assess MVPA in the previous review ${ }^{11}$ which is likely the reason that accelerometer cut-points were not reported.

Summary of the moderator analyses

The review found a 25% difference in the percentage of PE time spent in MVPA between studies that reported MVPA using accelerometers (33\%) and observational measures (58\%). Conversely, the previous review ${ }^{11}$ found that heart rate monitors reported the highest percentage MVPA (40.4\%), followed by motion sensors (i.e. accelerometers and pedometers) (36.8\%), and observation methods (32.5\%). Although estimates were similar for accelerometers, there was a large increase in the proportion of MVPA time as measured by observational methods between the previous and current review. As the previous review did not assess risk of bias, it is difficult to comment on the relative merits and limitations of the component studies. Due to insufficient study detail on PE activities, and student, teacher, and environmental factors, other moderator analyses were not undertaken.

There are methodological issues which could explain the discrepancy in MVPA through different measurement methods. While observational measures such as SOFIT have been found to be reliable and valid ${ }^{31}$, they do have limitations and may over-estimate the time students spend in MVPA. ${ }^{32}$ Since different measurement methods measure different elements of physical activity (e.g. observation methods measure MVPA through movement categories, and accelerometers through the number of counts above certain cut-points), the calculation of MVPA differs accordingly. ${ }^{11}$ For example SOFIT considers walking as a moderate activity, whereas non-brisk walking is unlikely to be categorised as MVPA by
accelerometers. Another reason for the difference could be the between-study discrepancy in the definition of 'monitored PE lesson length', which is discussed in more detail below.

Risk of bias of included studies

Limited information provided on the school and class sample mean that it is unclear whether the findings are representative of usual PE lessons. Given the limited information reported on the physical activities observed, the small number of studies pooled in to the metaanalysis and the considerable heterogeneity between studies, the findings may not be generalizable to usual elementary school PE lessons and caution should be taken in interpreting the meta-analysis results.

While secondary schools typically employ qualified PE teachers to instruct PE lessons, elementary school PE lessons are often led by classroom teachers with little or no training in physical activity. ${ }^{33}$ In eight ${ }^{17,19, ~ 20, ~ 23, ~ 25, ~ 26, ~ 29, ~} 30$ of the 13 studies in the review, a PE specialist or qualified PE teacher led the lesson, while just two studies stated that lessons were led by classroom teachers with either minimal ${ }^{27,28}$ or some training. ${ }^{21}$ Evidence indicates that employing PE specialist teachers or intensively training elementary school teachers may be one approach to improve FMS outcomes ${ }^{34}$ and increase MVPA in PE lessons. ${ }^{11,35}$ As most studies ($n=8$) employed PE specialists, the findings may not be representative of the MVPA levels achieved in PE lessons led by elementary classroom teachers.

Another major methodological inconsistency between the studies was the definition for the length of the monitored PE lesson. While three studies measured the lesson for the entire scheduled PE lesson (such as a 50 minute lesson) ${ }^{19,} 20,23$, six studies measured the lesson from the time that physical activity commenced or for the time that 51% of the class were in attendance. ${ }^{17,18, ~ 21, ~ 26-29 ~ F i v e ~ s t u d i e s ~}{ }^{22,} 24,25,29,30$ did not state whether the scheduled lesson length was measured or another criteria for the recording period was used. This betweenstudy discrepancy in lesson length may have distorted the results reported by the studies resulting in information bias. For example, the mean scheduled lesson length in one study ${ }^{17}$ was 43.4 minutes; however the study reported only measuring physical activity when 51% of the class were in attendance resulting in a mean PE lesson monitoring time of 31.7 minutes and 27% of the scheduled PE lesson time unmonitored. As a result, the reported lesson time spent in MVPA was 15.8 minutes or 50.7% of the lesson, implying that the children's physical activity levels met the CDC and afPE physical activity recommendation. If the scheduled PE lesson length had been applied in the calculation, 36.4% of time spent in MVPA would have been reported. The lack of consistency in these calculations across the studies made it difficult to compare findings between the studies.

Strengths and limitations

The review has a number of strengths. It updates an important body of evidence that has not been reviewed since 2005. The review employed a comprehensive search strategy across numerous databases. A detailed data extraction instrument and collection technique enabled a comprehensive comparison across all included studies. The review provides insight on how to improve the quality of future PE lesson research, particularly in regards to measurement methods, reporting results and sub-analyses of interest.

This review has limitations which need to be acknowledged. In addition to those mentioned previously, the review limited the search of studies to those published in English and found within a prominent database. Theses, dissertations and conference abstracts were not included in this systematic review. Despite making numerous efforts to contact the authors of studies, three studies were excluded from the systematic review as sufficient data to determine eligibility were not provided. Six studies were excluded from the meta-analysis as the authors could not be contacted or were unable to provide additional data to enable the results to be pooled. Studies that identified the physical activity lesson as 'school sport', 'fitness' or 'gym/dance' were excluded as it was unclear if the session was PE or another aspect of the curriculum/school activity, and were considered outside the scope of the review.

Recommendations for future research

There is a need to standardise the definition of 'PE lesson time' to ensure that a consistent comparison between studies can be made. The US CDC 'recommends that students engage in MVPA for at least 50\% of the time they spend in PE class' while the UK afPE health position paper states that 'pupils be actively moving for at least 50% of the available learning time', but neither clarifies whether the monitoring time occurs for the length of the scheduled PE class, or whether another criteria for the monitoring period can be used (e.g. when 51% of the class are in attendance). One solution could be reporting MVPA for lessons that monitor within a pre-specified proportion of lesson time (such as $\geq 90 \%$), separately from lessons that monitor for a smaller proportion of the scheduled lesson (<90\%). Consistency in lesson monitoring protocols will reduce between-study discrepancy in lesson length, making it easier to compare and summarise findings between the studies.

It is important to measure as many lessons as feasible from a representative spread of classes to increase the likelihood that the monitored lessons are representative of MVPA during usual PE lessons. Efforts can be made to ensure that teachers and students are blinded to the monitoring schedule since teachers may plan the lesson to ensure a higher level of activity, however in reality this may be difficult to achieve. Ideally, all consenting children and classes would be measured however, if this is not feasible, then children and
classes could be randomly selected for monitoring. In the previous review ${ }^{11}$, the authors recommended transparent reporting on the structure, delivery, content and environment of the lessons to facilitate in-depth analysis. Only five ${ }^{17,19,23-25}$ of the 13 studies in this review provided detail on the types of physical activities performed. The authors of this review support the former review recommendation ${ }^{11}$ on the importance of transparent reporting on the types of activities performed.

Many intervention study results were excluded from the review as they measured the PE lesson post intervention and did not measure MVPA during usual (or pre-intervention) PE lessons. Future intervention studies should aim to report PE lesson MVPA prior to intervention delivery and, at minimum, state the mean MVPA percentage of the lesson, a measure of variation (e.g. standard deviation), and the number of lessons examined so that data can be pooled into a meta-analysis.

Future systematic reviews on this topic should aim to investigate PE lesson MVPA in elementary school students by: i) measurement tool, as there are inconsistencies in MVPA between measurement methods ${ }^{11,32}$, ii) sex, since studies indicate that girls may be less active than boys ${ }^{36}$, and iii) the physical activities performed as evidence suggests that certain activities promote more vigorous activity. ${ }^{37}$ Other sub-analyses of interest include: iv) teacher training, since evidence indicates that specialist PE teachers lead more active lessons than generalist elementary school teachers ${ }^{27}$, and v) the study country, as it may impact on MVPA ${ }^{18,19}$ and reduce the generalisability of the findings. Assessing variability between countries will be of particular importance if the aggregate MVPA level meets the US CDC and UK afPE recommendation in the future.

Recommendations for practice in elementary school PE lessons

Since strong evidence has demonstrated that physical activity levels decline with age through childhood and adolescence ${ }^{38,39}$, maximising physical activity and refining FMS during elementary school PE is crucial. ${ }^{34}$ Schools report numerous challenges in incorporating high activity levels in elementary school PE classes. Policy and infrastructure barriers may impact on physical activity in PE lessons. ${ }^{40}$ Low teacher confidence in their PE teaching ability, a lack of content knowledge, and limited expertise in teaching active lessons may lead to poorer quality lessons with less MVPA. ${ }^{41}$ Given that traditional PE lessons often require students to cease activity to observe demonstrations, listen to instructions and organise equipment, it is unsurprising that maintaining high MVPA levels is challenging for teachers. ${ }^{11}$ Curriculum integration is another issue that elementary school teachers face when trying to maximise MVPA in PE whilst also meeting other curriculum outcomes, which may not be synonymous with MVPA.

The competing demands for lesson time allocation in elementary schools across a broad curriculum ${ }^{42}$ means that it is unlikely that PE lesson time will increase, so maximising the existing allocated time should be a priority. A recent systematic review on interventions to increase physical activity in PE lessons found that strategies such as i) supplementing usual PE lessons with high-intensity activity (e.g. fitness infusion), and ii) teacher professional learning focusing on organisation, management and instruction, were effective in increasing MVPA in PE by approximately $10 \% .{ }^{35}$ While PE teachers could achieve high levels of MVPA by instructing students to 'run laps of an oval for the duration of the lesson', this approach is unlikely to engage students in meaningful learning experiences and assist them to develop the FMS and attitudes required for a lifetime of physical activity. ${ }^{35}$ This approach may also negatively impact on student's motivation and enjoyment of physical activity which may influence long term physical activity engagement. ${ }^{43}$

Conclusion

The proportion of time spent in MVPA during elementary school PE lessons does not meet the US CDC or UK afPE recommendation. Despite methodological differences between the reviews, the findings suggest a possible increase in the percentage of PE lesson time in which students are engaged in MVPA. Interventions to increase MVPA time in PE lessons are needed. Future PE lesson intervention and observational studies should ensure that the recommendations made in this review, particularly regarding measurement method, reporting results and sub-analyses of interest, are considered in the study design. This will enable researchers, health professionals and policy makers to accurately monitor the progress of elementary school PE lessons towards the MVPA target in the future.

Acknowledgements

Infrastructure support was received from the Hunter Medical Research Institute (HMRI) and Hunter New England Population Health. DRL is supported by an Australian Research Council Future Fellowship. The authors would like to acknowledge Debbie Booth a Research Librarian at the University of Newcastle who assisted in refining the search strategy and conducted the database searches.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Author Contributions

All authors were responsible for the design of the study and the development of the search strategy. JLH and AJW acted as first and second reviewer, respectively, and screened the
studies, performed the risk of bias assessments and extracted study data. RS acted as third reviewer, resolved any disagreements and conducted the meta-analysis. NN developed the data extraction tool. JLH drafted the initial paper. All authors contributed to the interpretation of the results and all drafts of the manuscript.

Appendices

Appendix A.

Search filter one identified the setting such as 'physical education', 'lesson*', 'class*’. Search filter two referred to the target population including 'child', 'adolesc*' and 'student'. Measurement terms were identified using search filter three such as 'motor activity', 'exercise' and 'MVPA'. Search filter four identified the study design including 'prospective studies', 'longitudinal studies', 'non-randomized'.

Database:

Name of Host:
Number of results:
Date searched:

MEDLINE

OVID

1128 (1058 after de-duplication)
$20^{\text {th }}$ May 2014

15 Motor Activity/	77414
16 physical activity.mp.	50654
17 Exercise/	66233
18 fitness.mp. or Physical Fitness/ ((Moderate or vigorous) adj5 (physical activity or exercise)).mp. [mp=title, abstract, original title, name of	49372
19 substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]	9696
20 MVPA.mp.	994
21 Movement/	59073
2215 or 16 or 17 or 18 or 19 or 20 or 21	262721
23 randomized controlled trial.pt.	373289
24 controlled clinical trial.pt.	88322
25 randomized.ab.	271822
26 randomised.ab.	54401
27 randomly.ab.	193034
28 trial.ab.	281901
29 groups.ab.	1241003
30 Cross-Sectional Studies/	174920
31 prospective longitudinal quantitative studies.mp.	0
32 Prospective Studies/	365188
33 Longitudinal Studies/	85628
34 non randomized.ab.	3820
35 non randomised.ab.	1748
36 pre-post.mp.	3932
3723 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36	2238313
387 and 14 and 22 and 37	1466
39 limit 38 to yr="2005-Current"	1183
40 limit 39 to english language	1128

Database:

EMBASE

Name of Host:
OVID
Number of results:
2595 (1806 after de-duplication)
Date searched:
$20^{\text {th }}$ May 2014

31 prospective longitudinal quantitative studies.mp.	0
32 prospective study/	249489
33 longitudinal study/	66210
34 non randomized.ab.	6672
35 non randomised.ab.	2444
36 pre-post.mp.	7135
3723 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36	2761230
387 and 14 and 22 and 37	3116
39 limit 38 to yr="2005 -Current"	2693
40 limit 39 to english language	2595

Database:

Name of Host:
Number of results:
Date searched:

PsycINFO

OVID

322 (120 after de-duplication)
$20^{\text {th }}$ May 2014

148 or 9 or 10 or 11 or 12 or 13	550695
15 Motor Activity.mp.	5483
16 exp Physical Activity/	23610
17 exp Exercise/	16598
18 exp Physical Fitness/ or fitness.mp.	11650
19 ((Moderate or vigorous) adj5 (physical activity or exercise)).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests \& measures]	2247
20 MVPA.mp.	506
21 Movement.mp.	77278
2215 or 16 or 17 or 18 or 19 or 20 or 21	114143
23 randomized controlled trial*.mp.	12477
$24 \exp$ Clinical Trials/	7555
25 randomized.ab.	38271
26 randomised.ab.	4619
27 randomly.ab.	50644
28 trial.ab.	61644
29 groups.ab.	359321
30 Cross-Sectional Stud*.mp.	12396
31 prospective longitudinal quantitative studies.mp.	0
32 exp Prospective Studies/	421
33 exp Longitudinal Studies/	15241
34 non randomized.ab.	453
35 non randomised.ab.	147
36 pre-post.mp.	3703
3723 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36	485402
387 and 14 and 22 and 37	394
39 limit 38 to yr="2005-Current"	326
40 limit 39 to english language	322

Database:

Name of Host:
Number of results:
Date searched:

CINAHL

EBSCO

632 (246 after de-duplication)
$20^{\text {th }}$ May 2014

\#	Query	Results
S38	S7 AND S14 AND S22 AND S37 (English and 2005+)	632
S37	S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36	579,673
S36	pre-post	1,989
S35	AB non randomised	684
S34	$A B$ non randomized	880
S33	"Longitudinal Studies"	2,000
S32	(MH "Prospective Studies")	232,563
S31	"prospective longitudinal quantitative stud*"	0
S30	(MH "Cross Sectional Studies")	88,432
S29	AB groups	152,441
S28	AB trial	52,874
S27	$A B$ randomly	32,891
S26	$A B$ randomised	14,040
S25	AB randomized	53,314
S24	(MH "Clinical Trials")	113,492
S23	(MH "Randomized Controlled Trials")	31,119
S22	S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21	74,744
S21	(MH "Movement")	8,319
S20	MVPA	368
S19	((Moderate or vigorous) n 5 (physical activity or exercise))	3,013
S18	(MH "Physical Fitness") OR "fitness"	17,646
S17	(MH "Exercise")	28,327
S16	(MH "Physical Activity")	20,008
S15	(MH "Motor Activity")	7,141

S14	S8 OR S9 OR S10 OR S11 OR S12 OR S13	471,711
S13	((primary or secondary or high or middle or elementary) n5 (school* or student*))	27,256
S12	(MH "Child")	276,395
S11	"teenager*"	3,398
S10	adolesc *	310,214
S9	"youth"	17,555
S8	(MH "Adolescence")	300,000
S7	S1 OR S2 OR S6	4,438
S6	(S3 or S4) and S5	551
S5	(MH "Schools") OR (MH "Schools, Elementary") OR (MH "Schools, Middle") OR (MH	
S4	(Mchools, Secondary") OR (MH "Schools, Nursery")	13,762
S3	(MH "Physical Education and Training")	28,327
S2	school n3 sport*	1,769

Database:

SPORTDISCUS

Number of results:

EBSCO

1547 (1315 after de-duplication)
Date searched: $\quad 20^{\text {th }}$ May 2014
510

$\#$	Query	Results
S38	S7 AND S14 AND S22 AND S37 and English and 2005+	1,547
S37	S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR	
	S34 OR S35 OR S36	143,126
S36	pre-post	619
S35	AB non randomised	93

S34	$A B$ non randomized	203
S33	Longitudinal Stud*	4,217
S32	Prospective Stud*	8,093
S31	prospective longitudinal quantitative studies	0
S30	Cross-Sectional Stud*	4,814
S29	$A B$ groups	101,653
S28	$A B$ trial	29,438
S27	$A B$ randomly	10,704
S26	$A B$ randomised	2,571
S25	$A B$ randomized	11,587
S24	Clinical Trial*	10,209
S23	randomized controlled trial*	7,029
S22	S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21	328,852
S21	Movement	49,594
S20	MVPA	519
S19	((Moderate or vigorous) n5 (physical activity or exercise))	4,479
S18	fitness	148,806
S17	Exercise	190,080
S16	Physical Activity	44,363
S15	Motor Activity	1,988
S14	S8 OR S9 OR S10 OR S11 OR S12 OR S13	158,680
S13	((primary or secondary or high or middle or elementary) n 5 (school* or student*))	36,787
S12	Child	90,756
S11	teenager*	34,903
S10	adolesc*	27,005
S9	youth	23,120

S8	Adolescence	8,127
S7	S1 OR S2 OR S6	41,453
S6	(S3 or S4) and S5	33,194
S5	Schools	148,418
S4	Exercise	190,080
S3	Physical Education and Training	55,166
S2	school n3 sport*	14,522
S1	$($ (physical education or PE or physical activity or PA) n5 (lesson* or class* or program* or curricul* or school* or instruct*))	1

Database:

Name of Host:
Number of results:
Date searched:

Cochrane Database of Systematic Reviews

Wiley
6 (3 after de-duplication)
$20^{\text {th }}$ May 2014
'(("physical education" OR PE OR "physical activity" OR PA) NEAR/5 (lesson* OR class* OR program* OR curricul* OR school* OR instruct*)) OR (school NEAR/3 sport*) OR (exercise NEAR/5 school*) in Title, Abstract, Keywords and Adolesce* OR teenager* OR youth OR child OR ((primary OR secondary OR high OR middle OR elementary) NEAR/5 (school* OR student*)) in Title, Abstract, Keywords and "Motor Activity" OR "physical activity" OR exercise OR fitness OR ((Moderate OR vigorous) NEAR/5 ("physical activity" OR exercise)) in Title, Abstract, Keywords in Cochrane Reviews'

Database: CENTRAL (Cochrane Central register of Controlled Trials)

Name of Host:
Number of results:
Date searched:

Wiley
410 (62 after de-duplication)
$20^{\text {th }}$ May 2014

Cochrane Central Register of Controlled Trials : Issue 4 of 12, April 2014

There are 410 results from 789657 records for your search on '(("physical education" OR PE OR "physical activity" OR PA) NEAR/5 (lesson* OR class* OR program* OR curricul* OR school* OR instruct*)) OR (school NEAR/3 sport*) OR (exercise NEAR/5 school*) in Title, Abstract, Keywords and Adolesce* OR teenager* OR youth OR child OR ((primary OR secondary OR high OR middle OR elementary) NEAR/5 (school* OR student*)) in Title, Abstract, Keywords and "Motor Activity" OR "physical activity" OR exercise OR fitness OR ((Moderate OR vigorous) NEAR/5 ("physical activity" OR exercise)) in Title, Abstract, Keywords in Trials'

Database:

Name of Host:

Number of results:
Date searched:

ERIC

Proquest

192 (81 after de-duplication)
20 th May 2014

```
(("physical education" OR PE OR "physical activity" OR PA) NEAR/5 (lesson* OR class* OR program* OR curricul* OR
school* OR instruct*)) OR (school NEAR/3 sport*) OR (exercise NEAR/5 school*)
AND
Adolesce* OR teenager* OR youth OR child OR ((primary OR secondary OR high OR middle OR elementary) NEAR/5
(school* OR student*))
And
"Motor Activity" OR "physical activity" OR exercise OR fitness OR ((Moderate OR vigorous) NEAR/5 ("physical activity" OR
exercise))
AND
("randomized controlled trial*" OR "clinical trial*" OR randomized OR randomised OR randomly OR trial OR groups OR
"Cross-Sectional Stud*" OR "prospective longitudinal quantitative stud*" OR "Prospective Stud*" OR "Longitudinal Stud*" OR
"non randomized" OR "non randomised")
```


Database:

Name of Host:
Number of results:
Date searched:

SCOPUS

SCOPUS
1468 (517 after de-duplication)

```
(("physical education" OR PE OR "physical activity" OR PA) W/5 (lesson* OR class* OR program* OR curricul* OR school*
OR instruct*)) OR (school sport*)
AND
Adolesce* OR teenager* OR youth OR child OR ((primary OR secondary OR high OR middle OR elementary) W/5 (school*
OR student*))
And
"Motor Activity" OR "physical activity" OR exercise OR fitness OR ((Moderate OR vigorous) W/5 ("physical activity" OR
exercise))
AND
("randomized controlled trial*" OR "clinical trial*" OR randomized OR randomised OR randomly OR trial OR groups OR
"Cross-Sectional Stud*" OR "prospective longitudinal quantitative stud*" OR "Prospective Stud*" OR "Longitudinal Stud*" OR
"non randomized" OR "non randomised")
```


Appendix B. Assessment of methodological quality for PE lesson MVPA systematic review

Study number:
Review type:

Authors:
Year of publication:

Assessment of methodological quality criteria	Answer
School level	
1. Did the study adequately describe the key demographic characteristics of the school sample? i.e. SES and/or geographical location. $\mathrm{Y}=$ yes, the study adequately described the school characteristics including SES and/or geographical location; $\mathrm{N}=$ no, the study did not adequately describe the school characteristics; $\mathrm{U}=$ unclear.	
2. Was the school sample representative of the population? i.e. schools randomly selected from region. $\mathrm{Y}=$ yes, the school/s were randomly selected from the population or all schools from a region were invited to participate; $\mathrm{N}=$ no, the school/s were not randomly selected e.g. convenience sampling or if stated they were not representative; $\mathrm{U}=$ unclear.	
Class level	
3. Was the class chosen representative of all school classes? i.e. class of students randomly selected or an entire grade/s invited to participate. $\mathrm{Y}=$ yes, the class/es were randomly selected or all classes from a grade/s were invited to participate; $\mathrm{N}=$ no, the class/es were not randomly selected e.g. convenience sampling; $\mathrm{U}=$ unclear.	
4. Did the study adequately describe the key demographic characteristics of the class sample? i.e. grade, sex breakdown. $\mathrm{Y}=$ yes, the study adequately described the class characteristics (i.e. grade, sex breakdown); $\mathrm{N}=$ no, the study did not adequately describe the class characteristics; $\mathrm{U}=$ unclear.	
Student level	
5. Did the study adequately describe the participant eligibility criteria? i.e. grade, age. $\mathrm{Y}=$ yes, the study adequately described the participant eligibility; $\mathrm{N}=$ no, the study did not adequately describe the participant eligibility criteria; $\mathrm{U}=$ unclear.	
6. Did the study adequately describe the key demographic characteristics of the student sample? i.e. number of participants and their mean age (or age range) and sex breakdown. $\mathrm{Y}=$ yes, the study adequately described the number of students who participated, mean age (or age range) and sex; $\mathrm{N}=$ no, the study did not adequately describe the number of participants, mean age (or age range) and/or sex; $\mathrm{U}=$ unclear.	
7. Was the student sample representative of the population? i.e. students measured were randomly selected or an entire grade/s invited to participate/measured. $\mathrm{Y}=$ yes, the students were randomly selected from the population or all participants from a grade/s invited to participate/measured; $\mathrm{N}=$ no, the students were not randomly selected e.g. convenience	

sampling; U = unclear.	
PE lesson observation	
8. Did the study adequately describe the number of PE lessons observed? $\mathrm{Y}=$ yes, the study adequately described the number of PE lessons observed; $\mathrm{N}=$ no, the study did not adequately describe the number of PE lessons observed; $\mathrm{U}=$ unclear.	
9. Did the study use an objective measure of physical activity (i.e. accelerometers, heart rate monitors, pedometers) or did the study cite validation studies or state validity data for observational measures in the study population (e.g. elementary and secondary school children). $\mathrm{Y}=$ yes, the study used an objective measure of physical activity, or used an objective measure in a sub-sample of students, or used observational measures and cited validation studies/stated validity data in the study population being examined; $\mathrm{N}=\mathrm{no}$, the study did not used objective measures, or did not cite a validation study/validation data in the population being studied; $\mathrm{U}=$ unclear.	
10. Did the study use an objective measure of physical activity (i.e. accelerometers, heart rate monitors, pedometers) or did the study state reliability data or cite reliability studies for observational measures in the study population (e.g. elementary and secondary school children). $Y=$ yes, the study used an objective measure of physical activity, or used an objective measure in a sub-sample of students, or used observational measures and cited reliability studies/stated reliability data in the study population being examined (inter-rater reliability: ICC > . 70 is considered acceptable); $\mathrm{N}=$ no, the study did not used objective measures, or did not cite reliability study/data in the population being studied; $\mathrm{U}=$ unclear.	
11. Did the study report the nature of the physical activities observed? $\mathrm{Y}=$ yes, the study reported the type of activities observed (e.g. type of sport or game); $\mathrm{N}=\mathrm{no}$, the study did not reported the type of activities observed; $\mathrm{U}=$ unclear.	

References

1. Andersen LB, Harro M, Sardinha LB et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). The Lancet 2006;368:299-304.
2. Froberg K, Andersen LB. Mini Review: Physical activity and fitness and its relations to cardiovascular disease risk factors in children. Int J Obes 2005;29:S34-S9.
3. Ekelund U, Luan Ja, Sherar LB et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. J of the American Med Association 2012;307:704-12.
4. World Health Organisation. Global Strategy on Diet, Physical Activty and Health: Physical Activity and Young People 2014 (Available from:
http://www.who.int/dietphysicalactivity/factsheet young people/en/index.html; accessed 19 February 2015).
5. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med and Science in Sports and Exercise 2008;40:181-8.
6. Australian Bureau of Statistics. Australian Health Survey: Physical Activity, 2011-12 2013 (Available from:
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/4364.0.55.0042011-
12?OpenDocument; accessed 12 January 2015).
7. Pate RR, Davis MG, Robinson TN, Stone EJ, McKenzie TL, Young JC. Promoting Physical Activity in Children and Youth: A Leadership Role for Schools: A Scientific
Statement From the American Heart Association Council on Nutrition, Physical Activity, and
Metabolism (Physical Activity Committee) in Collaboration With the Councils on
Cardiovascular Disease in the Young and Cardiovascular Nursing. Circulation
2006;114:1214-24.
8. Hills AP, Dengel DR, Lubans DR. Supporting Public Health Priorities:

Recommendations for Physical Education and Physical Activity Promotion in Schools. Prog in Cardiovascular Dis 2015;57:368-74.
9. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Adolescent and School Health. Strategies to improve the quality of physical education. Washington, DC: United States Government, 2010.
10. Association for Physical Education. Health Position Paper. Physical Education Matters 2008;3:8-12.
11. Fairclough S, Stratton G. A review of physical activity levels during elementary school physical education. J of Teach in Physical Education 2006;25:240-58.
12. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Intern Medicine 2009;151:264-9.
13. United States Department of Health and Human Services. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies 2014 (Available from:
https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-riskreduction/tools/cohort; accessed 27 July 2014).
14. Higgins JP, Altman DG, Gøtzsche PC et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Bmj 2011;343:d5928.
15. Van Sluijs EM, McMinn AM, Griffin SJ. Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials. BMJ 2007;335:703-7.
16. Cochrane Statistical Methods Group. Analysing Data and Undertaking Metaanalyses. Oxford: Cochrane Statistical Methods Group; 2008.
17. Chow BC, McKenzie TL, Louie L. Children's Physical Activity and Environmental Influences During Elementary School Physical Education. J of Teach in Physical Education 2008;27:38-50.
18. Kremer MM, Reichert FF, Hallal PC. Intensity and duration of physical efforts in Physical Education classes. Rev Saude Publica 2012 Apr;46:320-6.
19. Meyer U, Roth R, Zahner L et al. Contribution of physical education to overall physical activity. Scandinavian J of Medicine and Science in Sports 2013;23:600-6.
20. Nettlefold L, McKay HA, Warburton DER, McGuire KA, Bredin SSD, Naylor PJ. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J of Sports Med 2011;45:813-9.
21. Robinson LE, Wadsworth DD, Kipling Webster E, Bassett Jr DR. School reform: The role of physical education policy in physical activity of elementary school children in alabama's black belt region. American J of Health Promotion 2014;28:S72-S6.
22. Sandt DDR, Frey GC. Comparison of physical activity levels between children with and without autistic spectrum disorders. Adapted Physical Activity Quarterly 2005;22:146-59.
23. Surapiboonchai K, Furney SR, Reardon RF, Eldridge J, Murray TD. SAM: A Tool for Measurement of Moderate to Vigorous Physical Activity (MVPA) in School Physical Education. International J of Exercise Science 2012;5:127-35.
24. Waring M, Warburton P, Coy M. Observation of children's physical activity levels in primary school: Is the school an ideal setting for meeting government activity targets? European Physical Education Rev 2007;13:25-40.
25. Ignico A, Corson A. The Effects of Heart Rate Monitor Training on Children's MileRun Performance. J of ICHPER - SD 2006;42:5-8.
26. Safdie M, Jennings-Aburto N, Lévesque L et al. Impact of a school-based intervention program on obesity risk factors in Mexican children. Salud Publica de Mexico 2013;55:S374-S87.
27. Telford R, Cunningham R, Telford R, Daly R, Olive L, Abhayaratna W. Physical Education Can Improve Insulin Resistance: The LOOK Randomized Cluster Trial. Medicine and science in sports and exercise 2013;45:1956-64.
28. Telford RD, Cunningham RB, Waring P, Telford RM, Olive LS, Abhayaratna WP. Physical Education and Blood Lipid Concentrations in Children: The LOOK Randomized Cluster Trial. PLoS ONE 2013;e76124.
29. Verstraete SJ, Cardon GM, De Clercq DL, De Bourdeaudhuij IM. Effectiveness of a Two-Year Health-Related Physical Education Intervention in Elementary Schools. J of Teach in Physical Education 2007;26:20-34.
30. Fisher A, Boyle JME, Paton JY et al. Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study. BMC Pediatr 2011;11:97.
31. McKenzie TL SJ, Nader PR. SOFIT: System for Observing Fitness Instruction Time. J Teach Physical Education 1991;11:195-205.
32. McClain JJ, Abraham TL, Brusseau Jr TA, Tudor-Locke C. Epoch length and accelerometer outputs in children: comparison to direct observation. Med and Science in Sports and Exercise 2008;40:2080-7.
33. Morgan P, Bourke S. Non-specialist teachers' confidence to teach PE: the nature and influence of personal school experiences in PE. Physical Education and Sport Pedagogy 2008;13:1-29.
34. Morgan PJ, Barnett LM, Cliff DP et al. Fundamental movement skill interventions in youth: A systematic review and meta-analysis. Pediatrics 2013;132:2013-1167.
35. Lonsdale C, Rosenkranz RR, Peralta LR, Bennie A, Fahey P, Lubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-tovigorous physical activity in school physical education lessons. Preventive Medicine 2013;56:152-61.
36. Riddoch CJ, Bo Andersen L, Wedderkopp N et al. Physical activity levels and patterns of 9- and 15-yr-old European children. Med and Science in Sports and Exercise 2004;36:86-92.
37. Fairclough S, Stratton G. Physical activity levels in middle and high school physical education: a review. Pediatric Exercise Science 2005;17:217.
38. Nader PR, Bradley RH, Houts RM, McRitchie SL, O'Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. J of the American Med Association 2008;300:295305.
39. Dumith SC, Gigante DP, Domingues MR, Kohl HW. Physical activity change during adolescence: a systematic review and a pooled analysis. International J of Epidemiology 2011;40:685-98.
40. Barroso CS, McCullum-Gomez C, Hoelscher DM, Kelder SH, Murray NG. SelfReported Barriers to Quality Physical Education by Physical Education Specialists in Texas. J Sch Health 2005;75:313-9.
41. Tsangaridou N. Educating primary teachers to teach physical education. European Physical Education Rev 2012;18:275-86.
42. Morgan PJ, Hansen V. Classroom teachers' perceptions of the impact of barriers to teaching physical education on the quality of physical education programs. Res Q for Exercise and Sport 2008;79:506-16.
43. Owen KB, Smith J, Lubans DR, Ng JY, Lonsdale C. Self-determined motivation and physical activity in children and adolescents: A systematic review and meta-analysis.
Preventive Medicine 2014;67:270-9.

[^0]: © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

[^1]: ${ }^{a}$ Hunter New England Population Health, Locked Bag 10, Wallsend, NSW, 2287, Australia.
 ${ }^{\text {b }}$ School of Medicine and Public Health, University of Newcastle, Callaghan, 2308, Australia.
 ${ }^{c}$ Hunter Medical Research Institute, Lambton, NSW, 2305, Australia.
 ${ }^{\text {d }}$ Priority Research Centre in Physical Activity and Nutrition, School of Education, University of Newcastle, Callaghan, 2308, Australia.

