ASSESSING AND TRAINING CARDIORESPIRATORY
FITNESS AFTER STROKE

Dianne Marsden

MAppMgmt (Health), BAppSci (Physiotherapy)

Thesis submitted for the degree of

Doctor of Philosophy (Medicine)

School of Medicine and Public Health

Faculty of Health

University of Newcastle

November 2015
SUPERVISORS

Associate Professor Neil Spratt
B Med Sci (Hons), B Med (Hons), PhD, FRACP

- Senior Staff Specialist Neurologist: John Hunter Hospital, Newcastle, NSW, Australia
- Associate Professor: School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Career Development Fellow: National Health and Medical Research Council, Australia

Professor Robin Callister
PhD, MSc, BPharm

- Head of the Discipline of Human Physiology: School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Leader of Exercise Science: Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Newcastle, NSW, Australia

Professor Christopher Levi
B Med Sci, MBBS (Hons), FRACP

- Senior Staff Neurologist: John Hunter Hospital, Newcastle, NSW, Australia
- Director of Clinical Research and Translation: Research, Innovation and Partnerships, Hunter New England Local Health District, NSW, Australia
- Conjoint Professor of Medicine (Neurology): University of Newcastle, Newcastle, NSW, Australia
- Practitioner Fellow: National Health and Medical Research Council, Australia
DECLARATIONS

STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

STATEMENT OF COLLABORATION

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

STATEMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis contains a published paper and scholarly works of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication and scholarly works.

Dianne Marsden

Date 13th November 2015
STATEMENT OF CONTRIBUTION

I, Neil Spratt, attest that Research Higher Degree candidate Dianne Marsden contributed significantly to the study design, data collection, data analysis and writing of the publication/ manuscripts entitled:

Marsden DL, Dunn A, Callister R, McElduff P, Levi CR, Spratt NJ. Applying Interval Training Principles to Task-Specific and Ergometer Workstations Enables Stroke Survivors to Exercise at an Intensity Sufficient to Improve Cardiorespiratory Fitness. Under review: Disability and Rehabilitation (Chapter 6)

Marsden DL, Dunn A, Callister R, McElduff P, Levi CR, Spratt NJ. An individually-tailored program of home- and community-based physical activity can improve the cardiorespiratory fitness and walking endurance of stroke survivors: a pilot study. For resubmission: Disability and Rehabilitation (Chapter 7)

She collaborated with her fellow authors from the University of Newcastle to undertake this work.

Signature of Supervisor:

Associate Professor Neil Spratt

Date: 13th November 2015
ACKNOWLEDGEMENTS AND DEDICATIONS

My doctorate has been a significant undertaking for me and one I could not have completed without enormous contributions by many people. I would like to take this opportunity to acknowledge a number of them.

A huge thank you goes firstly to our HowFITSS? participants and their carers. This project could not have been possible without your generosity in volunteering to be involved. The testing sessions were long and demanding yet you all engaged with enthusiasm, patience and a sense of humour. We have learned so much from you all. I hope you enjoyed the experience and found it beneficial.

To our funders: you have provided me with a wonderful opportunity to develop my research skills and knowledge. Thank you for providing financial assistance. Without my Heart Foundation scholarship I would not have been able to take time out of work to undertake my PhD. HowFITSS? was only possible due to our project grants.

To Neil, Robin and Chris: words cannot express enough my gratitude to you, my Supervisors. Thank you so much for the support you have provided to me, before and during this entire project. The three of you have helped me grow enormously; as a researcher and as a person. Neil: thank you for your unwavering assistance throughout my candidature. You allowed me great scope on the direction of the project and independence to make decisions while making sure I stayed on track. Your knowledge of science and the English language has me in awe (As has your use of red pen and the “Comments” tab). You have had an enormous impact on me (or should that be you have impacted me enormously?) in so many ways. Robin: thank you for embracing the world of stroke so whole-heartedly. Your enthusiasm for research and for improving outcomes for clinical populations is contagious. I have really appreciated the many hours of discussion we have shared over the past few years. Chris: thank you for believing in me all those years ago and for helping to shape my research career. You knew exploring cardiorespiratory fitness was the right direction for me. I look forward to working with the three of you for many years to come.
To Ash: thank you for all of your contributions to our project and for sharing those many hours together in the lab. I wish you only the best for completing your PhD and for your future career.

To Patrick: thank you for your patience with me over the years. I really appreciate all of the time you have spent with me analysing data, creating figures and tables and in discussion. I knew you had changed me forever the day I realised I was enjoying using Stata.

To my Hunter Stroke Service colleagues, in particular Louise Jordan, Kristy Morris, Rhonda Quinn (proof reader extraordinaire), Mark Parsons, Malcolm Evans and Michael Pollack. Thank you for your support, not only over the past few years while undertaking my PhD but throughout my career. You are all such special people to me. I would like to thank all of my HNEH colleagues who helped with referring potential participants. I would also like to thank the many other local, national and international clinicians/researchers, and PhD candidates who have helped me along this voyage.

To Jodie Marquez, Heidi Janssen and Jo Walters: THANK YOU!! I could not have completed my PhD without your support. You understand the highs and the lows of the candidature process and the vital need for debriefing (in particular over a glass of wine or two!). To my many friends and family who have supported me along the way, especially Beth Abbott (data enterer and formatter extraordinaire), Tony and Nickole Marsden, Michelle Smith and the Honner Family; Martin, Megan, Eli, Ingrid and Declan: thank you!

To my faithful companion, my dog Charlie: you have sat next to me for hours on end, day and night while I read, wrote and typed away. You let me know when we had sat for too long and it was time to move, to go for a walk, to head to the beach. As I tell you every day, I am so lucky to have you as my puppy.

And finally to my parents, Kath and John Marsden: you have always been there to support and encourage me in whatever I have chosen to do throughout my life. No more than over the past few years, despite them being turbulent and testing times health-wise for you both. I am so glad you are here to see this part of my life be realised. I love you so much. I dedicate my thesis to you.
OTHER PUBLISHED PAPERS CO-AUTHORED BY THE CANDIDATE

(not included as part of this thesis)

CONFERENCE ABSTRACTS ARISING FROM THIS THESIS

Presented at national and international scientific meetings

Marsden DL, Dunn A, Callister R, Levi CR, Spratt NJ. Exercise training interventions that are aerobic or include an aerobic component can improve cardiorespiratory fitness after stroke: A systematic review with meta-analysis. Cerebrovascular Diseases 2013;35:820.

INVITED NATIONAL PRESENTATIONS RELATED TO THIS THESIS

Florey Institute Exercise Forum- 2013 and 2015

Stroke 2015 Conference- “Fitness training and physical activity after stroke: Putting it into practice” symposium co-presented with Professor Gillian Mead

SCHOLARSHIPS, GRANTS AND AWARDS

Postgraduate Scholarships

Heart Foundation Postgraduate Biomedical Scholarship: PB 10S 5518

University of Newcastle: Top-up Scholarship

Grants

John Hunter Charitable Trust 2011: Marsden D, Spratt N, Levi C, Callister R. How Fit is the Stroke Survivor (HowFITSS)- $18 000

Awards

Table of Contents

Supervisors .. ii
Declarations ... iii
Statement of Contribution .. iv
Acknowledgements and Dedications .. v
Other Published Papers Co-authored by the Candidate .. vii
Conference Abstracts Arising From This Thesis ... viii
Invited National Presentations Related to this Thesis .. vix
Scholarships, Grants and Awards ... ix
Table of Contents ... 1
List of Tables .. 5
List of Figures ... 6
Abstract ... 7

Chapter 1: Stroke and Cardiorespiratory Fitness ... 10
 1.1 Stroke and transient ischaemic attack ... 10
 1.2 Stroke in Australia and in the Hunter Region .. 11
 1.3 Physical activity, exercise and cardiorespiratory fitness 12
 1.4 Assessing cardiorespiratory fitness ... 14
 1.5 Proposed mechanisms by which physical activity improves health 16
 1.6 Lack of physical activity as a stroke risk factor ... 17
 1.7 Cardiorespiratory fitness levels after stroke ... 19
 1.8 Possible factors contributing to reduced cardiorespiratory fitness after stroke ... 21
 1.9 Potential benefits of increasing physical activity and improving cardiorespiratory fitness for recovery post-stroke ... 24
 1.10 Current recommendations for cardiorespiratory fitness, exercise and physical activity after stroke .. 29
 1.11 Increasing the focus on cardiorespiratory fitness after stroke 30
 1.12 Conclusion ... 32
 1.13 References ... 34
Chapter 2: Aims and Hypotheses ... 41
 2.1 Aims and Hypotheses ... 41
 2.2 Structure of the project ... 44

Chapter 3: Methods for the How Fit is the Stroke Survivor? (HowFITSS?)
Project .. 45
 3.1 Setting .. 45
 3.2 Ethics and Clinical Trial Registration .. 46
 3.3 Participants .. 46
 3.4 Outcome measures and cardiorespiratory fitness assessment procedures .. 47
 3.5 Appendix ... 53
 3.6 References .. 55

Chapter 4: Characteristics of Exercise Training Interventions to Improve
Cardiorespiratory Fitness After Stroke: a Systematic Review with Meta-Analysis
... 57
 4.1 Details .. 57
 4.2 Abstract .. 58
 4.3 Introduction .. 60
 4.4 Methods .. 61
 4.5 Results .. 64
 4.6 Discussion .. 82
 4.7 Conclusion .. 88
 4.8 References .. 91

Chapter 5: Evaluation of Three Measures of Cardiorespiratory Fitness in Stroke
Survivors ... 96
 5.1 Details .. 96
 5.2 Abstract .. 98
 5.3 Introduction .. 99
 5.4 Methods .. 100
 5.5 Results .. 104
 5.6 Discussion ... 110
 5.7 Conclusion .. 114
Chapter 6: Applying Interval Training Principles to Task-Specific and Ergometer Workstations Enables Stroke Survivors to Exercise at an Intensity Sufficient to Improve Cardiorespiratory Fitness

6.1 Details
6.2 Abstract
6.3 Introduction
6.4 Methods
6.5 Results
6.6 Discussion
6.7 Conclusion
6.8 Appendix
6.9 References

Chapter 7: An individually-tailored program of home- and community-based physical activity can improve the cardiorespiratory fitness and walking endurance of stroke survivors: a pilot study

7.1 Details
7.2 Abstract
7.3 Introduction
7.4 Methods
7.5 Results
7.6 Discussion
7.7 Conclusion
7.8 Appendices
7.9 References

Chapter 8: Discussion and Conclusion

8.1 Summary of key findings
8.2 Findings from the systematic review with meta-analysis
8.3 Findings from the studies using the How Fit Is The Stroke Survivor (HowFITSS?) cohort of participants
8.4 Fatigue as an issue after stroke
8.5 The challenges of measuring exercise dose
8.6 Implications ...190
8.7 Conclusions ...190
8.8 References ...193

Chapter 9: References cited in this thesis...............................196
LIST OF TABLES

Table 1-1
Classification of physical activity based on exercise intensity.........................13

Table 1-2
$\text{VO}_{2\max}$ values for males and females aged 50-89 years...............................14

Table 4-1
Search strategy used for MEDLINE..62

Table 4-2
Characteristics of the studies grouped by training type, then listed by time since stroke ..67

Table 4-3
Methods quality scores for RCTs...72

Table 4-4
Intervention description, testing mode and results..77

Table 5-1
Participant characteristics...106

Table 5-2
Peak cardiorespiratory and performance responses to the SWT, 6MWT and cycle GXT ..108

Table 6-1
Participant demographics and characteristics; performance and cardiorespiratory measures during the 6MWT, cPXT and circuit of workstations ..132

Table 7-1
Participant demographics and characteristics...162

Table 7-2
Outcome measures: within and between group scores and differences164
LIST OF FIGURES

Figure 3-1
Assessing cardiorespiratory fitness using the Cosmed systems 52

Figure 4-1
PRISMA Flow Diagram ... 65

Figure 4-2
Intervention type ... 81

Figure 4-3
Program length ... 81

Figure 5-1
Mean VO₂ (A), HR (B), VE (C) in each 20% increment of test time for the SWT, 6MWT and cycle GXT ... 109

Figure 6-1
Patterns of oxygen consumption (VO₂) over time (minutes) during workstations and exercise tests .. 134

Figure 6-2
Average intensity achieved during the 6MWT and circuit workstations 135

Figure 6-3
Time spent in HR-based exercise intensity categories during the 6MWT, cycle PXT and circuit .. 136

Figure 6-4
Participants ability to accumulate at least 30 minutes of exercise at an average of ≥55% age-predicted HRₘₐₓ ... 137

Figure 7-1
Changes for individual participants for selected cardiorespiratory fitness, performance and questionnaire measures ... 166
ABSTRACT

Introduction: Cardiorespiratory fitness levels of people after stroke are low compared to non-stroke people of the same age and sex. Improving cardiorespiratory fitness has many potential health benefits for stroke survivors. Despite this, cardiorespiratory fitness is often overlooked in post-stroke management. Access to metropolitan-based services can be difficult for residents of regional and rural communities.

Aims: The aims of the project were to:

1. Identify the characteristics and to determine the effectiveness of interventions to improve cardiorespiratory fitness after stroke.
2. Compare cardiorespiratory responses and performance measures during three clinically-applicable exercise tests.
3. Examine the exercise intensity parameters achieved by stroke survivors during task-specific and ergometer workstation activities.
4. Explore the feasibility and efficacy of an individually-tailored home- and community-based exercise program to improve cardiorespiratory fitness in stroke survivors.

Methods: Characteristics of exercise interventions were investigated by systematic review. Change in cardiorespiratory fitness, measured by peak oxygen consumption (VO_{2peak}), was examined by meta-analysis. Community-dwelling stroke survivors were recruited. The primary outcome, oxygen consumption (VO_{2}) was assessed using a portable metabolic measurement system. Cardiorespiratory responses and performance measures were assessed on three exercise tests [Six-Minute Walk Test (6MWT), distance;
Shuttle Walk Test (SWT), number of shuttles; cycle progressive exercise test (cPXT), final workload]. VO$_2$ was recorded during an individualised circuit exercise session incorporating an interval training approach on 5-minute workstations (task-specific and ergometer activities). A pilot controlled trial of an individually-tailored exercise program was undertaken. Feasibility was measured by retention, participation and adverse events. Control and intervention groups both received usual care, and the intervention group undertook the 12-week program, including once-weekly telephone/email support. Cardiorespiratory fitness was assessed at baseline and 12 weeks.

Results: Aim 1: Twenty eight studies were included in the systematic review with 12 randomised controlled trials able to be included in the meta-analysis. Baseline fitness was low (8-23mL/kg/min). Interventions were typically centre-based, included an aerobic component and used three 30 to 60 minutes sessions per week at a prescribed intensity. Despite the modest dose of interventions, cardiorespiratory fitness improvement favoured intervention [increase in VO$_{2peak}$ of 2.27 mL/kg/min (95% CI: 1.58 to 2.95)]. Aim 2: There was no difference in VO$_{2peak}$ among the three exercise tests (range: 17.1- 18.1 mL/kg/min). Correlations between VO$_{2peak}$ and performance measures were high (r=0.78, 0.73, 0.77). Aim 3: Nine task-specific (e.g. walking, stairs, balance) and three ergometer (upright cycle, rower, treadmill) workstations were used. Participants exercised for at least 11 minutes on the circuit. Moderate or higher intensity was achieved for 78% of task-specific and 83% of ergometer workstations. Aim 4: All intervention participants reported undertaking their prescribed program. No adverse events occurred. VO$_{2peak}$ improved by 16%
more in the intervention group (1.17 ± 0.29 to 1.35 ± 0.33 L/min) than the
control group (1.24 ± 0.23 to 1.24 ± 0.27 L/min) (p=0.044).

Conclusions: I have shown it is feasible to assess and train cardiorespiratory
fitness using strategies applicable to most clinical settings. The 16%
improvement in cardiorespiratory fitness observed in the home- and community-
based program was similar to centre-based, resource-intensive programs.
Performance measures of the 6MWT, SWT and cPXT may be clinically useful
as proxies for cardiorespiratory fitness. An interval training approach using task-
specific and ergometer activities appears a promising way to incorporate both
cardiorespiratory fitness and functional training into post-stroke management.
The studies provide preliminary data to inform the design of a future large,
multicentre randomised controlled trial. This trial would the test effectiveness of
the home- and community-based exercise intervention in improving
cardiorespiratory fitness and functional recovery of stroke survivors living in
metropolitan, regional and rural areas.