Experimental Investigation of Water Penetration and Thermal Insulation Properties of Semi Interlocking Masonry (SIM) Walls

A Thesis Submitted for the Degree of

Master of Philosophy

By

Reza Forghani

B. Eng.

August 2015

THE UNIVERSITY OF NEWCASTLE
AUSTRALIA
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

...
Reza Forghani

...
Yuri Totoev
Related conference

Experimental Investigation of the Water Penetration through Semi Interlocking Masonry (SIM) Walls
R. Forghani, Y. Totoev, S. Kanjanabootra, AIJ annual meeting Sep 2014.

Contribution

<table>
<thead>
<tr>
<th>Author</th>
<th>Primary Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forghani, R.</td>
<td>Conference presenter, experimental operator and analysis of experimental data.</td>
</tr>
<tr>
<td>Totoev, Y.</td>
<td>Supervisor, SIM developer, theoretical and experimental support.</td>
</tr>
<tr>
<td>Kanjanabootra, S.</td>
<td>Co-supervisor, theoretical and experimental support.</td>
</tr>
</tbody>
</table>

Related paper

Experimental Investigation of the Water Penetration through Semi Interlocking Masonry (SIM) Walls
R. Forghani, Y. Totoev, S. Kanjanabootra, A. Davison, Manuscript in preparation for publication.

<table>
<thead>
<tr>
<th>Author</th>
<th>Primary Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forghani, R.</td>
<td>Corresponding author, experimental operator and analysis of experimental data.</td>
</tr>
<tr>
<td>Totoev, Y.</td>
<td>Supervisor, SIM developer, theoretical and experimental support.</td>
</tr>
<tr>
<td>Kanjanabootra, S.</td>
<td>Co-supervisor, theoretical and experimental support.</td>
</tr>
<tr>
<td>Davison, A.</td>
<td>Experimental support.</td>
</tr>
</tbody>
</table>
Related paper

Experimental Investigation of Thermal Insulation Properties of Semi Interlocking Masonry Walls

<table>
<thead>
<tr>
<th>Author</th>
<th>Primary Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totoev, Y.</td>
<td>Corresponding author, SIM developer, theoretical and experimental support.</td>
</tr>
<tr>
<td>Forghani, R.</td>
<td>Co-author, experimental operator and analysis of experimental data.</td>
</tr>
<tr>
<td>Kanjanabootra, S.</td>
<td>Co-supervisor, theoretical and experimental support.</td>
</tr>
<tr>
<td>Alterman, D.</td>
<td>Experimental support.</td>
</tr>
</tbody>
</table>
Acknowledgments

I am thankful to God for giving me the strength, energy and health needed to complete this research.

I am also thankful to my family (my parents and sister) for their devotion and unfailing emotional and financial support.

I would also like to thank my supervisors, Dr Yuri Totoev and Dr Sittimont Kanjanabootra, for their support and guidance during of my research project.

Additionally, I would like to thank Mr Angus Davison, Mr Goran Simundic, Mr Andy Sullivan, Mr Ian Jeans, Peter Johnson and Mr Mick Goodwin for their assistance with the water penetration tests.

I would like to express my gratitude to Prof Adrian Page, Dr Dariusz Alterman, Ms Congcong Zhang and Mr Gerard Nixon for assistance and counselling with thermal properties tests.

Finally, I would like to thank the University of Newcastle for granting me the scholarship that enabled me to finish my studies.
Table of Contents

Table of Contents ... 1
List of Figures .. 3
List of Tables .. 6
Abstract .. 7
Chapter 1 .. 10
 1. Introduction ... 10
 1.2. Problems ... 11
 1.3. Methodology ... 12
 1.4. Significance of this study .. 16
 1.5. Outline .. 16
Chapter 2 .. 18
 2.1. Interlocking units ... 18
 2.2. Semi interlocking masonry bricks ... 20
 2.3. Water penetration ... 21
 2.4. Thermal properties ... 28
 2.5. Conclusion .. 33
Chapter 3 .. 36
 3.1. SIM bricks ... 36
 3.1.1 Details of SIM bricks .. 36
 3.1.2. SIM bricks casting steps .. 41
 3.2. Gap-fillers .. 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.</td>
<td>Water penetration test</td>
<td>46</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Experiment equipment</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Construction of walls</td>
<td>50</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Equipment installation</td>
<td>56</td>
</tr>
<tr>
<td>3.4.</td>
<td>Determination of thermal performance</td>
<td>57</td>
</tr>
<tr>
<td>3.4.1.</td>
<td>Equipment and materials</td>
<td>60</td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Construction of SIM walls</td>
<td>64</td>
</tr>
<tr>
<td>3.4.3.</td>
<td>Attaching sensors</td>
<td>67</td>
</tr>
<tr>
<td>3.4.4.</td>
<td>Insulation of SIM walls</td>
<td>67</td>
</tr>
<tr>
<td>Chapter 4</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>4.1.</td>
<td>Constructability of SIM walls</td>
<td>70</td>
</tr>
<tr>
<td>4.2.</td>
<td>Results of water penetration evaluation</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Water penetration</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Dampness</td>
<td>78</td>
</tr>
<tr>
<td>4.3.</td>
<td>Results of thermal tests</td>
<td>84</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Terminology and nomenclature</td>
<td>84</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Results</td>
<td>87</td>
</tr>
<tr>
<td>Chapter 5</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>5.1.</td>
<td>Limitations of this study</td>
<td>107</td>
</tr>
<tr>
<td>5.2.</td>
<td>Conclusions</td>
<td>107</td>
</tr>
<tr>
<td>5.3.</td>
<td>Suggestion for future research</td>
<td>108</td>
</tr>
<tr>
<td>6.</td>
<td>References</td>
<td>110</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1 Apparatus for ASTM D6904 method (ASTM, 2003 (reapproved 2013)) .. 23
Figure 2 Nozzles are connected to the wall (ASTM, 2010a) ... 24
Figure 3 A water chamber is mounted on the wall (ASTM, 2011a) ... 25
Figure 4 Water chamber and facilities (ASTM, 2011c) .. 26
Figure 5 Guarded hot plate (ASTM, 2010b) .. 30
Figure 6 Heat flow meter apparatus (ASTM, 2010c) ... 31
Figure 7 A common type of hot box apparatus (ASTM, 2011b) ... 32
Figure 8 Mechanical interlocking bricks ... 38
Figure 9 Head joints of mechanical interlocking bricks .. 38
Figure 10 The top face of a mechanical brick .. 39
Figure 11 The bottom face of a mechanical brick ... 39
Figure 12 Stacked topological interlocking bricks ... 40
Figure 13 The head joint of a topological interlocking brick ... 40
Figure 14 Details of the design ... 41
Figure 15 A simple sketch of the curves ... 41
Figure 16 The mould for the mechanical interlocking bricks .. 42
Figure 17 The inside view of a mechanical mould ... 42
Figure 18 Perfect unit (left) and faulty unit (right) ... 43
Figure 19 Faulty unit .. 43
Figure 20 The mould for the topological interlocking bricks ... 44
Figure 21 Sketch of the water chamber ... 48
Figure 22 Volumetric hydraulic bench .. 49
Figure 23 Digital monometer .. 49
Figure 24 Crack measuring microscope .. 50
Figure 25 Building process of mechanical SIM ... 51
Figure 26 Completed mechanical SIM .. 51
Figure 27 Attaching the foam ... 52
Figure 28 Completed mechanical ... 52
Figure 29 Pasting putty on the mechanical SIM wall 53
Figure 30 No visible gap .. 53
Figure 31 Completed topological SIM wall with no gap-filler 54
Figure 32 1.6 mm foam tape for horizontal gaps ... 55
Figure 33 Gaps are filled by foam tape ... 55
Figure 34 Building process for topological SIM wall with putty 55
Figure 35 Completed topological SIM wall with putty 55
Figure 36 Concrete bricks .. 56
Figure 37 Traditional masonry ... 56
Figure 38 Test equipment ... 57
Figure 39 Self-masking hot box apparatus ... 58
Figure 40 Masked hot box apparatus .. 59
Figure 41 Masked hot box or calibrated hot box .. 60
Figure 42 Heater ... 61
Figure 43 The heater’s temperature controller ... 61
Figure 44 Copper pipe .. 62
Figure 45 JULABO temperature controller ... 62
Figure 46 PT100 sensor ... 63
Figure 47 T-type thermocouples for air temperature 63
Figure 48 Sensors outside of the box ... 63
Figure 49 Sensors on the wall .. 63
Figure 50 Data taker DT85 .. 64
Figure 51 Attaching the foam tape ... 65
Figure 52 Secured topological SIM wall ... 65
Figure 53 Pasting putty on topological bricks .. 65
Figure 54 Pasting putty on the mechanical bricks .. 66
Figure 55 Attaching the foam tape on mechanical bricks 67
Figure 56 Glass wool ... 68
Figure 57 Comparison of mechanical SIM walls ... 72
Figure 58 Comparison of topological SIM walls .. 73
Figure 59 Comparison of the SIM walls with foam tape and the traditional concrete wall 75
Figure 60 Comparison of the SIM walls with putty and the traditional concrete wall 75
Figure 61 Closest result of the SIM walls to the traditional masonry 76
Figure 62 Comparison of mechanical SIM walls with different gap-fillers and without gap-filler 79
Figure 63 Comparison of topological SIM walls with different gap-fillers and without gap-filler 79
Figure 64 Comparison of the SIM walls with foam and traditional masonry 81
Figure 65 Comparison of the SIM walls with putty and traditional masonry 81
Figure 66 Last condition of mechanical SIM walls with different gap-fillers after 4 hour test 82
Figure 67 Last condition of topological SIM walls with different gap-fillers after 4 hour test 83
Figure 68 Last condition of traditional masonry wall after 4 hour test 83
Figure 69: Temperature profile of the topological SIM wall with foam tape 90
Figure 70: Temperature profile of the topological SIM wall with putty 90
Figure 71: Temperature profile of the mechanical SIM wall with putty 91
Figure 72: Temperature profile of the mechanical SIM wall with foam tape 91
List of Tables

Table 1 Classification of cracks width (mm) in term of water penetration (Harris et al., 1988)12
Table 2 ASTM standards ...22
Table 3 ASTM E514 applications with different air pressure..27
Table 4 Summary of test methods..29
Table 5 Hot box apparatus experiments using different standards ...33
Table 6 Concrete mix design...45
Table 7 Summary of tests detail ...47
Table 8 Times of appearance of first measurable leakages through the wall77
Table 9 Times of appearance of first visible dampness ..84
Table 10 Symbols (ASTM, 2011b) ...86
Table 11 Detail of temperatures...89
Table 12 Values for Equation 2 ..92
Table 13 Values for Equation 3 ...93
Table 14 Values for Equation 4 ..94
Table 15 Values for Equation 5 ..95
Table 16 Data from appendices 8–11 and the results of Equation 6 ...96
Table 17 Data from Appendices 8–11 and the results of Equation 7 ...97
Table 18 Data from Appendices 8–11 and the results of Equation 8 ...98
Table 19 Data from Appendices 8–11 and the results of Equation 9 ...99
Table 20 Data from Appendices 8–11 and the results of Equation 10 ..99
Table 21 Data from Appendices 8–11 and the results of Equation 11 ...100
Table 22 Data from Appendices 8–11 and the results of Equation 12 ...101
Table 23 Data from Appendices 8–11 and the results of Equation 13 ...102
Abstract

The semi interlocking masonry (SIM) was originally designed and developed at the University of Newcastle for use in seismically active zones as an energy dissipation device in buildings. Interlocking SIM bricks are the primary units used in mortar-less walls or panel construction and are available in two types: mechanical (which use dowels) and topological (which use particular shapes). The interlocking prevents the relative out-of-plane movement, but allows for longitudinal relative movement along bed joints. As a mortar-less masonry system, SIM has unavoidable gaps in both its bedding and perpend joints. This reduces the overall performance of SIM walls in terms of thermal efficiency and water penetration.

The main objective of this study was to evaluate water penetration and the thermal performance properties of dry-stacked SIM walls. Additionally, this study aimed to determine whether an alternative construction technique (i.e., the use gap-fillers) led to any improvement in the properties. Two standard test methodologies (i.e., ASTM E514 and C1363) were used to evaluate water and heat transfer through walls. Non-adhesive putty and foam tape were used as gap-fillers to examine the potential improvement in restricting water and heat transfers and their suitability for intended application.

In the water penetration experiment, the performance results of a traditional masonry wall were used as the benchmark against which the results of the SIM wall were compared. The results of the water penetration tests showed a high volume of leaked water through the dry-stacked SIM wall compared to the gap-filled SIM wall. The traditional masonry wall had the least amount of water leakage followed by the topological SIM wall that used putty. However, the area of dampness in the traditional masonry wall was higher than the area of dampness in the gap-filled SIM walls.
In the second part of this study, a hot box apparatus was used to evaluate the thermal properties of the gap-filled SIM walls. The results of thermal tests showed that the thermal resistance of the SIM wall was equal to the traditional concrete masonry wall. It was also found that the type of gap-filler used had a slight effect on the thermal performance of the SIM walls. However, the SIM walls with the putty was more thermally efficient.