The Modelling of Integrated Urban Water Management Schemes from the Allotment to the Town Scale

Andrew R. Graddon
BE (Hons-1)

A thesis submitted for the degree of Doctor of Philosophy

January 2015
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Andrew R. Graddon
2013

Note to examiner: This thesis is written in Times Roman size 14 to facilitate my own reading of the printed thesis. My eyes struggle with smaller print.
I hereby certify that the work embodied in this thesis contains works from published papers and other scholarly work of which I am a joint author. I hereby included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution in said papers or scholarly works.

Prof. George Kuczera
Supervisor
Acknowledgments

This thesis has only been made possible with support and advice from my family, friends and University of Newcastle colleagues.

To my supervisors, George Kuczera and Matt Hardy, thanks for your support and guidance and for assistance with the dreaded coding of the software. Especially, many thanks to George for his continued patience. Sorry if I stressed your bounds of sanity at times.

Many thanks to my parents for their continued encouragement as well as the psychological and financial support, without which I would not even have attempted this work.

To my older brother, Tony, and to David Whittaker, thanks for the proof reading of earlier chapters, the input was invaluable.

Also many thanks to my fellow PhD students, especially Mohammad, for keeping me semi-grounded in the realm of reality. Good friends, all.
Acknowledgment of Collaboration

While the ideas and methods of this thesis are my work, acknowledgement must be given to the contributions of my two supervisors, Professor George Kuczera and Dr Matt Hardy.

George Kuczera is the primary author of WathNet5 and has been of invaluable help to me in the understanding and modification of the WathNet5 code and to the implementation of the eMoga optimisation used in the Chapter 6 of this thesis.

Matt Hardy is the author of the urbanCycle modelling environment. His contribution is acknowledged in the following:

• allowing me to use the code
• for assisting in my understanding of how the code works
• for assistance in making modifications to free up inflexibilities in the urbanCycle code
• for coding the linkage systems to WathNet5
• and for time spent in discussions of possible ways of implementing the integration of the two parts of UrbanNet
Table of Contents

Abstract \(\text{xv} \)

Chapter 1 - Introduction, Statement of Objective, and Chapter Synopsis

 Introduction \(\text{2} \)
 1.1 - What is Integrated Urban Water Management? \(\text{3} \)
 1.2 - Statement of Objectives \(\text{3} \)
 1.3 - Chapter Synopsis \(\text{4} \)

Chapter 2 - Solutions to urban water supply problems in Australia

 Introduction \(\text{7} \)
 2.1 - Droughts in Australia \(\text{7} \)
 2.2 - Water in Crisis \(\text{9} \)
 2.2.1 - Melbourne \(\text{9} \)
 2.2.2 - Sydney \(\text{11} \)
 2.2.3 - Brisbane \(\text{11} \)
 2.2.4 - Adelaide \(\text{12} \)
 2.2.5 - Perth \(\text{13} \)
 2.2.6 - Other regional towns and cities \(\text{14} \)
 2.2.7 - Water Supply problems around the world \(\text{14} \)
 2.3 - Responses to the Water Crisis \(\text{15} \)
 2.4 - Alternative Strategies \(\text{17} \)
 2.4.1 - Non-Domestic and Industrial Waste Water Re-Use \(\text{18} \)
 2.4.2 - Dual Reticulation Systems \(\text{22} \)
 2.4.3 - Rainwater Tanks and Stormwater Harvesting \(\text{22} \)
 2.4.4 - Urban Planning for Water Harvesting and Reuse \(\text{24} \)
 2.5 - Water Quality \(\text{25} \)
 2.5.1 - Roof Rainwater \(\text{27} \)
 2.5.2 - Stormwater \(\text{28} \)
 2.5.3 - Greywater \(\text{29} \)
 2.5.4 - Blackwater \(\text{29} \)
Chapter 3 - Modelling the Integrated Urban Water Cycle

Introduction .. 43
3.1 - Complex IUWM Schemes 45
3.2 - Modelling Requirements for Complex IUWM Schemes 51
 3.2.1 - Time scales in modelling IUWM schemes 52
 3.2.2 - Rainfall and evaporation 55
 3.2.3 - Allotment level modelling and simulations 57
 3.2.4 - Tracking flows, storages and meeting demands 62
 3.2.5 - Flexibility 69
 3.2.6 - Decision making and network flow paths 70
 3.2.7 - Summary of IUWM modelling requirements 71
3.3 - A Review of Current IUWM Modelling 73
 3.3.1 - Generalised and allotment scale models 74
 3.3.2 - Models incorporating Network Intelligence 86
3.4 - The Combined IUWM Modelling Environment ... 92
3.5 - Conclusion ... 94
References .. 95
Appendix 3.1 - Software scoring 103
Appendix 3.2 - Linear network Programs 107
Chapter 4 - UrbanNet: A Combined Modelling Environment for Integrated Urban Water Management

Introduction 115
4.1 - Constructing an IUWM model in UrbanNet 115
4.2 - A Formal Description of UrbanNet 126
4.3 - Defining the structure of UrbanNet 128
4.3.1 - The Structure of the WathNet5 File System 129
4.3.2 - Code Implementation 131
4.3.3 - UrbanNet Set-Up 132
4.3.4 - Data linkages within WathNet5 134
4.3.5 - Running the UrbanNet Simulation 136
4.3.6 - Viewing results in UrbanNet 138
4.4 - Conclusion 138

Chapter 5 - UrbanNet Case Studies

Introduction 141
5.1 - Town-Scale Scenarios: From Centralised to Decentralised 141
5.1.1 - Summary of Scenarios 142
5.1.2 - Detailed Descriptions of Scenarios 143
5.1.3 - Inflow and demand data 153
5.1.4 - Results 153
5.1.5 - Case Study Conclusion 154
5.2 - A multi-cluster residential development simulation 156
5.2.1 - The Cluster Concept 158
5.2.2 - Allotment Data 160
5.2.3 - Cluster Connections 163
5.3 - WathNet5 Town-Scale Supply and Storage Model 166
5.4 - Simulation Results 168
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1 - Behaviour of the roofwater reservoir</td>
<td>169</td>
</tr>
<tr>
<td>5.4.2 - Behaviour of the stormwater reservoir</td>
<td>170</td>
</tr>
<tr>
<td>5.4.3 - Environmental Flows</td>
<td>171</td>
</tr>
<tr>
<td>5.4.4 - Overflows</td>
<td>173</td>
</tr>
<tr>
<td>5.5 - Searching for more Optimum Network Outcomes</td>
<td>174</td>
</tr>
<tr>
<td>5.6 - Conclusion</td>
<td>174</td>
</tr>
<tr>
<td>5.6.1 - Attributes of UrbanNet</td>
<td>174</td>
</tr>
<tr>
<td>5.6.2 - Limitations</td>
<td>175</td>
</tr>
<tr>
<td>5.6.3 - Final remarks</td>
<td>177</td>
</tr>
<tr>
<td>Appendix 5.1 - Run-off and Demand Synthesis for Scenarios</td>
<td>178</td>
</tr>
<tr>
<td>References for Appendix 5.1</td>
<td>181</td>
</tr>
<tr>
<td>Appendix 5.2 - Allotment data for Case Study 2</td>
<td>182</td>
</tr>
</tbody>
</table>

Chapter 6 - Multi-Objective Optimisation in an Integrated Urban Water Management Context.

- Introduction 187
- 6.1 - Trial and error optimisation of the town-scale system 187
- 6.2 - Multi-Objective Optimisation 191
- 6.3 - Overview of eMoga Multi-Objective Optimisation 193
 - 6.3.1 - ε-Dominance 194
 - 6.3.2 - The Genetic Algorithm 195
 - 6.3.3 - eMoga and WathNet5 connectivity 197
- 6.4 - Optimisation of the Town-Scale IUWM scheme 199
 - 6.4.1 - Objectives 200
 - 6.4.2 - Decisions variables and related costs 200
 - 6.4.3 - Constraints 204
 - 6.4.4 - Setting the Criteria and Decision Variables 204
 - 6.4.5 - Cost and imported water calculations 204
6.5 - Results and discussion

6.5.1 - Cost versus imported water relationship 205

6.5.2 - Reducing the period of simulation 207

6.5.3 - Optimisation run-time reductions 207

6.5.4 - To build or not build the roofwater reservoir 209

6.5.5 - Sensitivity to a drier climate 211

6.5.6 - Sensitivity to demand changes 214

6.5.7 - Limitations 216

6.6 - Conclusions 218

References 220

Chapter 7 - Conclusion and Future Directions

Introduction 222

7.1 - A review of current modelling environments 223

7.2 - Creating the combined modelling environment 224

7.2.1 - Identifying and filling the gap 224

7.2.2 - Implementing the linkage 226

7.3 - A complex hypothetical case study 227

7.4 - A step further - IUWM optimisation 228

7.5 - Further research and validation 229

7.5.1 - Validation 229

7.5.2 - Water Quality 230

7.5.3 - Integration into a regional modelling environment 230

7.6 - Conclusion 232

References 233
List of Figures

Chapter 2

Figure 2.1	Storage level and rainfall for Thomson Reservoir	10
Figure 2.2	Sydney Water combined storage levels, 1998 – 2008	11
Figure 2.3	Combined storage levels for Wivenhoe, Somerset, North Pine Reservoirs	12
Figure 2.4	Australian water recycling by state 2009/2010	18
Figure 2.5	Uptake of rainwater tanks in urban and rural areas	23
Figure 2.6	Diagram of Homebush Bay IUWM scheme	32
Figure 2.7	Manly Ecological Village	33

Chapter 3

Figure 3.1	Conceptual model of a small town IUWM scheme	46
Figure 3.2	Icons used in Figures 3.3 and 3.4	47
Figure 3.3	Urban Cluster with six flow connections.	48
Figure 3.4	Two different layouts of an urban allotment	49
Figure 3.5	Two allotment scale alternatives	57
Figure 3.6	The structure of the Aquacycle computer program.	77
Figure 3.7	Representation of a development by UWOT	79
Figure 3.8	Example WaterCress Allocation	82
Fig A3.2.1	A simple two supply network	107
Fig A3.2.2	The underlying NetLP network	108
Fig A3.2.3	Day 1 Flows	109
Fig A3.2.4	Day 2 Flows	110
Fig A3.2.5	Day 3 Flows	110
Fig A3.2.6	A simple multi-arc network	111
Fig A3.2.7	Carryover arcs created by NetLP for example 2	112
Chapter 4

Figure 4.1 Visualisation of 20 allotment cluster 116
Figure 4.2 Schematic of the urbanCycle allotment 118
Figure 4.3 Routing and Soil type definition for pervious area 119
Figure 4.4 Part of the urbanCycle demand model dialog box 120
Figure 4.5 urbanCycle end-use and wastewater dialog 121
Figure 4.6 urbanCycle cluster connections 123
Figure 4.7 Cluster and town scale models, showing links 124
Figure 4.8 The structure of WathNet5 130
Figure 4.9 UrbanNet set-up and simulation modes 132
Figure 4.10 Nodal output options within urbanCycle 133
Figure 4.11 Link file creation 133
Figure 4.12 ".unl" file listing 134
Figure 4.13 WathNet5 call-up dialog in urbanCycle 134
Figure 4.14 Assigning urbanCycle links 135
Figure 4.15 Links list in nodal properties. 136
Figure 4.16 UrbanNet simulation flowchart 137

Chapter 5

Figure 5.1a Scenario 1 cluster representation 143
Figure 5.1b Scenario 1 WathNet5 schematic 143
Figure 5.2a Scenario 2 cluster representation 144
Figure 5.2b Scenario 2 WathNet5 schematic 144
Figure 5.3a Scenario 3 cluster representation 145
Figure 5.3b Scenario 3 WathNet5 schematic 146
Figure 5.4a Scenario 4 cluster representation 146
Figure 5.4b Scenario 4 WathNet5 schematic 147
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5a</td>
<td>Scenario 5 cluster representation</td>
<td>147</td>
</tr>
<tr>
<td>5.5b</td>
<td>Scenario 5 WathNet5 schematic</td>
<td>148</td>
</tr>
<tr>
<td>5.6a</td>
<td>Scenario 6 cluster representation</td>
<td>149</td>
</tr>
<tr>
<td>5.6b</td>
<td>Scenario 6 WathNet5 schematic</td>
<td>150</td>
</tr>
<tr>
<td>5.7a</td>
<td>Scenario 7 and 8 cluster representation</td>
<td>151</td>
</tr>
<tr>
<td>5.7b</td>
<td>Scenario 7 and 8 WathNet5 schematic</td>
<td>152</td>
</tr>
<tr>
<td>5.8</td>
<td>Results from multi-scenario case study</td>
<td>155</td>
</tr>
<tr>
<td>5.9</td>
<td>Conceptual layout of the town's IUWM scheme</td>
<td>157</td>
</tr>
<tr>
<td>5.10</td>
<td>Common allotment layout</td>
<td>158</td>
</tr>
<tr>
<td>5.11</td>
<td>Common water connections</td>
<td>160</td>
</tr>
<tr>
<td>5.12</td>
<td>Example end-use disaggregation dialog.</td>
<td>163</td>
</tr>
<tr>
<td>5.13</td>
<td>Layout of connections within each cluster</td>
<td>164</td>
</tr>
<tr>
<td>5.14</td>
<td>urbanCycle cluster showing just the drainage system</td>
<td>165</td>
</tr>
<tr>
<td>5.15</td>
<td>WathNet5 network for multi-cluster harvesting and re-use scheme</td>
<td>167</td>
</tr>
<tr>
<td>5.16</td>
<td>25 year graph of level in Roofwater Reservoir</td>
<td>169</td>
</tr>
<tr>
<td>5.17</td>
<td>Closer detail of rainfall during empty reservoir period</td>
<td>170</td>
</tr>
<tr>
<td>5.18</td>
<td>25 year graph of Stormwater reservoir levels</td>
<td>171</td>
</tr>
<tr>
<td>5.19</td>
<td>Overflows and Environmental flows.</td>
<td>172</td>
</tr>
<tr>
<td>5.20</td>
<td>Overflows from Roofwater Reservoir</td>
<td>173</td>
</tr>
<tr>
<td>5.21</td>
<td>Level 1 of Case Study 2 urbanCycle model</td>
<td>176</td>
</tr>
<tr>
<td>A5.1.1</td>
<td>Rainfall capture percentage</td>
<td>179</td>
</tr>
<tr>
<td>A5.1.2</td>
<td>Underlying outdoor seasonal water use trend</td>
<td>180</td>
</tr>
<tr>
<td>A5.1.3</td>
<td>Potable and non-potable usage patterns</td>
<td>180</td>
</tr>
</tbody>
</table>
Chapter 6

Figure 6.1	Potable only section of the WathNet5 model	188
Figure 6.2	Initial roofwater reservoir 5ML	189
Figure 6.3	Initial roofwater reservoir 5ML, last 6 years	189
Figure 6.4	Roofwater reservoir increased to 15ML, last 6 years	190
Figure 6.5	Concept of Pareto front and 'inferior' solutions	192
Figure 6.6	Minimise vs Minimise Pareto Frontier	192
Figure 6.7	Concept of \(\varepsilon\)-Dominance	194
Figure 6.8	eMoga flow chart	196
Figure 6.9	eMoga/WathNet5 connectivity	198
Figure 6.10	Correlation of peak daily flow vs daily flows	203
Figure 6.11	Water importation vs Cost for 25 year optimisation	205
Figure 6.12	Comparison of 25yr and 6 year Pareto fronts.	208
Figure 6.13	Comparison of Pareto with and without roofwater reservoir	210
Figure 6.14	Pareto fronts for reducing Inflows	211
Figure 6.15	Cost and reservoir capacity for zero drawdown	212
Figure 6.16	Roofwater reservoir level for 50% rainfall reduction, Point [A]	213
Figure 6.17	Roofwater reservoir level for 70% rainfall reduction, Point [B]	213
Figure 6.18	Spills from reservoir in response to reduced run-off	214
Figure 6.19	Sensitivity to demand variations	215
Figure 6.20	Change in demand versus reservoir volume and cost	216
List of Tables

Table 2.1 Major drought occurrence in Australia 8
Table 2.2 Victorian wastewater re-use guidelines 2003 20
Table 2.3 Compatible uses of different sources of water 26
Table A2.1 Further examples of Integrated Urban Water Management Schemes 41
Table 3.1 Appropriate IUWM modelling time steps 55
Table 3.2 Aquacycle component scores (out of 10) 77
Table 3.3 UWOT component scores (out of 10) 80
Table 3.4 WaterCress component scores (out of 10) 83
Table 3.5 urbanCycle component scores (out of 10) 85
Table A3.1 Scoring tables for IUWM modelling environments 98
Table 5.1 Summary of scenarios 142
Table 5.2 Description of "salt and pepper" cluster allotment types 159
Table 5.3 Daily indoor water use versus occupancy 161
Table 5.4 Allotment outdoor demand usage multipliers and values 162
Table A5.1 Mean and standard deviation of indoor water use 179
Table A5.2 Allotment descriptions 182
Table A5.3 Water use, allotment and occupancy data for Cluster 1 183
Table A5.4 Water use, allotment and occupancy data for Cluster 2 184
Table A5.5 Water use, allotment and occupancy data for Cluster 3 185
Table 6.1 Pipe capacities of commercially available plastic pipe 203
Table 6.2 Data for labelled points on Pareto front in Figure 6.11 206
Table 6.3 Simulation times for single run of the multi-cluster model 207
Table 6.4 Sensitivity to demand variations for zero importation solutions 216
Abstract

Population growth in urban areas coupled with a potentially drier future climate is likely to stress existing water resources. One way to address this is to augment existing centralised water supply systems. An alternative is to make better use of urban water resources which, \textit{inter alia}, involves stormwater and rainwater harvesting and wastewater recycling. The basic proposition is that any augmentation of water supply that can reduce the amount of water drawn from existing centralised reservoirs will be of benefit to the whole supply region, especially in terms of drought security.

This thesis describes a versatile modelling framework that can simulate a wide variety of Integrated Urban Water Management (IUWM) schemes from the allotment to the town scale.

The framework combines two modelling approaches. The first, named urbanCycle, simulates water supply and demand, stormwater and wastewater using allotments as the basic building block. Although urbanCycle can simulate allotment processes in great detail, it assumes that the network forms a directed acyclic graph. This simplifies the connectivity logic but precludes investigation of systems with multiple storages and multiple supply paths. To overcome this, a second model, a network linear programming based modelling environment, WathNet5, is embedded in the urbanCycle framework to enable the modelling of cluster and town scale recycling and harvesting options, as well as supply and demand decision making, based on objectives rather than pre-set operating rules. This combined modelling environment has been named UrbanNet.

The UrbanNet framework is demonstrated with the aid of hypothetical case studies. These case studies focus on three different aspects of the modelling framework:
1. A series of cluster scale scenarios demonstrates the flexibility in modelling cluster scale topologies
2. A large multi-cluster case study demonstrates the design detail and flexibility from the allotment scale up to the town scale
3. A multi-objective optimisation case study demonstrates how key variables within a particular IUWM topology can be optimized.

These case studies show UrbanNet to be capable of a high degree of detail and flexibility in the design, simulation and analysis of complex Integrated Urban Water Management Schemes.