The Use of Game-Based Training to Provide a Match-Specific Environment for Cricket Players

William Morris Vickery

BSc (Hons)

Faculty of Science and Information Technology
School of Environmental and Life Sciences
Doctor of Philosophy (Exercise and Sport Science)

January, 2014
Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

___ ________________
William Morris Vickery (BSc Hons) Date Signed
Acknowledgement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of the collaboration, with whom and under what auspices.

_____________________________ _____________________
William Morris Vickery (BSc Hons) Date Signed

We, Ben Dascombe and Rob Duffield attest that the research completed within this thesis by the candidate William Vickery, was completed in collaboration with the following organisations:

- University of Technology, Sydney
- Australian Institute of Sport, Canberra
- Cricket Australia, Albion

_____________________________ _____________________
Supervisor: Ben Dascombe (PhD) Date Signed

_____________________________ _____________________
Supervisor: Rob Duffield (PhD) Date Signed
Acknowledgement of Authorship

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisors, attesting to my contribution to the joint publications.

___ _____________________________
William Morris Vickery (BSc) Date Signed

We, Ben Dascombe and Rob Duffield attest that Research Higher Degree candidate William Vickery was a contributor to the conception, design, writing and revision of the previously mentioned publications.

___ _____________________________
Supervisor: Ben Dascombe (PhD) Date Signed

___ _____________________________
Supervisor: Rob Duffield (PhD) Date Signed
Acknowledgments

First of all, a massive thanks has to go to my lead supervisor Ben Dascombe. You have been instrumental in guiding me through this research and helping me to develop all aspects which relate to it. Further to this, it goes without saying that without your help this whole thesis would have never been completed. Most importantly though, I have enjoyed building both a professional relationship and friendship with you, which I hope will continue on into the future.

Many thanks must also go to my co-supervisor Rob Duffield. Your knowledge of all things research and cricket was instrumental in ensuring this thesis was of a high quality. I thank you for the time you put into helping my development as a researcher and I look forward to continue working with you in the future.

I also need to thank a number of people from Cricket Australia. Firstly, to Marc Portus and Aaron Kellet who helped develop the initial design and objective for this thesis. I am forever appreciative of the advice and intimate knowledge of cricket that you guys were able to provide, in addition to the use of the GPS devices. I also am thankful to the staff at the National Cricket Centre for making me feel like part of the Cricket Australia family despite only staying for a short time. It should also be noted that without the help of Rian Crowther and David Beakley in particular, I would not have been able to gather any data from the players.
Obviously I am thankful to all of the participants that volunteered for my studies. Thank you for giving up your Sunday mornings and late afternoons to run around for a couple of hours. Thanks must also go to my research assistants, particularly my brother Andrew and best mate Mel. I must also acknowledge Stuart Hicks and Andrew Goodridge who prepared the wickets for me for all the studies around my local area.

Additionally, a big thanks must go to Ian Donaldson and his family, as well as Mel Jenkins who were gracious enough to put a roof over my head and give me a bed to sleep on during my time in Queensland.

Importantly, all those whom I worked with in the Ourimbah Post Grad Room thank you for making these last few years pleasurable. Without the constant support, discussions and random talk I don’t think any of this would have been as enjoyable and I wish you all the best for your work in the not too distant future.

Finally, a massive thanks to my whole family who have known that this was something that I have always wanted and supported me throughout my whole time at Uni. Without you guys I would not have been able to anything that even resembles this.
Abstract

Cricket coaches have historically relied on isolated training practices such as net-based sessions and centre-wicket (CW) simulations to develop match-specific skills. However, such training modes may lack skill-specific application or be of insufficient intensity compared to a match. Recently, a small-sided games (SSG) approach has been designed for cricket (termed Battlezone [BZ]); to concurrently develop the conditioning profile and technical abilities of players. This thesis examined the physiological, physical and technical demands of cricket players during various cricket training formats and match-play. The application of game-based training within the sport of cricket, particularly BZ, may provide a unique training environment for improving a player's conditioning and skill profile which can be transferred into match-play.

In recent times, the physical demands of athletes have been quantified using individual global positioning system (GPS) devices. In order to complete the current research, the accuracy of the GPS devices used to quantify physical demands were examined. Two male participants (age: 25.5 ± 0.7 yr; height: 1.75 ± 0.01 m; body mass: 74.0 ± 5.7 kg) completed ten repetitions of drills replicating movements of cricket activities (as well as tennis and field-based sports), whilst wearing two 5, 10 (MinimaxX) and 15 (GPSports) Hz GPS devices. The GPS devices were compared to a 22-camera VICON system. No significant differences were reported ($p > 0.05$) between the GPS devices and VICON system for the majority of distance and speed measures. The results also showed no improvements in accuracy with increases in the sampling rate.
of the GPS devices when compared to VICON ($p > 0.05$). The co-efficient of variation (CV) for the 5 and 15 Hz devices for distance and speed measures ranged between 3-33%, with increasing variability evident in higher speed zones. When examining the reliability of the devices, a low level of inter-unit reliability ($r = -0.35–0.39$) was reported for the majority of measures. Based on these results, the GPS devices demonstrated a low to moderate level of inter-unit reliability for distance and speed measures during high-speed straight line running, multi-direction movement patterns and unstructured movements.

By applying the results demonstrated in the previous study, Study 2 compared the physiological, physical and technical demands of elite cricket players during traditional cricket training (TCT) sessions (net sessions and fielding drills) ($n = 26$), CW simulations ($n = 5$) and One-Day (OD) matches ($n = 5$). During all training and match-play, heart rate (HR), movement patterns and rating of perceived exertion (RPE) were recorded from 42 cricket players (age: 23 ± 4 yr, height: 1.86 ± 0.07 m, body mass: 85.8 ± 8.5 kg). Quantification of technical skill involvements was performed via post hoc video analysis. Medium-fast bowlers demonstrated similar physiological (mean HR [HR$_{\text{mean}}$]: 148 ± 16 b·min$^{-1}$; 148 ± 9 b·min$^{-1}$) and physical (mean speed: 82 ± 13 m·min$^{-1}$; 77 ± 28 m·min$^{-1}$) responses during the TCT and OD matches, respectively. By comparison, CW simulations were characterised by a decreased physiological (HR$_{\text{mean}}$: 129 ± 17 b·min$^{-1}$) and physical (mean speed: 64 ± 13 m·min$^{-1}$) intensity. Batsmen were placed under greater physiological and physical demands from OD matches when compared to either TCT or CW training format. Further, a higher HR$_{\text{mean}}$ (TCT: 137 ± 14 b·min$^{-1}$; CW simulations: 148 ± 12 b·min$^{-1}$; OD match: 152 ± 13
b\text{min}^{-1})\text{ and mean speed (TCT: }25 \pm 6 \text{ m}\text{min}^{-1};\text{ CW simulations: }38 \pm 5 \text{ b}\text{min}^{-1};\text{ OD matches: }54 \pm 45 \text{ m}\text{min}^{-1})\text{ were associated with CW simulation training compared to TCT. Irrespective of playing position, technical demand was greatest during TCT compared to matches or CW simulations. Collectively, this evidence suggests that neither training modality consistently provided players with a training stimulus that replicated a match. Importantly, the use of CW simulations may be limited in the transfer of match-specific skills and tactical strategies due to the lower physical and physiological intensities when compared to match-play.

Given the findings of Study 2, Study 3 examined the movement demands and physiological responses of BZ, and determined its inter-session reproducibility. Unlike CW simulations whereby players trained using the entire space of a cricket field, BZ enclosed players within the inner circle of a typical cricket field using netting. Thirteen male, amateur cricket players (age: 22.8 \pm 3.5 yr, height: 1.78 \pm 0.06 m, body mass: 78.6 \pm 7.1 kg) completed two separate BZ sessions during which HR, movement patterns, blood lactate concentration ([BLa⁻]) and RPE were recorded. During a BZ session, batsmen reported the greatest physical demand (mean speed: 63 \pm 9 \text{ m}\text{min}^{-1}), followed by medium-fast bowlers (60 \pm 10 \text{ m}\text{min}^{-1}). Regardless of playing position, the majority of time (79-90\%) was spent between 51-85\% of maximum heart rate (HR_{max}) and [BLa⁻] between 1.1-2.0 \text{ mmol-L}^{-1}. Ratings of perceived exertion ranged between 4.2-6.0. The movement demands and physiological responses of players, did not differ between sessions (p > 0.05), irrespective of playing position. Mean speed (CV: 7-9\%; Intra-class correlation [ICC]: 0.56-1.00) and peak %HR_{max} achieved
(CV: 6-8%; ICC: -0.80-0.73) demonstrated acceptable reliability across each playing position. Thus, the use of BZ as a training method may be suitable for replicating match demands. Furthermore, the results also suggest that the training stimulus provided through BZ is consistent.

Study 4 compared the physiological, physical and technical demands of cricket players between BZ, TCT and OD matches. Eleven amateur, male cricket players (age: 22.2 ± 3.3 yr, height: 1.82 ± 0.06 m, body mass: 80.4 ± 9.8 kg) completed four BZ and four TCT sessions whilst measures of HR, [BLa], RPE and movement patterns of players were collected. The involvements of technical skill of each player were quantified by post hoc video analysis. Following this, similar measures were collected from 42 amateur, male cricket players (23.5 ± 4.7 yr, 1.81 ± 0.07 m, 81.4 ± 11.4 kg) during ten OD matches. Batsmen performed with the greatest HR_{mean} (164 ± 12 b·min⁻¹) during BZ, likely due to the greater relative distance covered at a high-intensity (HI) (21 ± 7 m·min⁻¹). The greatest technical demand (number of [#] balls faced: 6 ± 1 balls·min⁻¹, # balls hit: 4 ± 1 balls·min⁻¹, % good contact shots: 82 ± 7%) for batsmen was observed during TCT. Similarly within other playing positions, a greater HR_{mean} was reported during BZ in comparison to TCT and OD matches regardless of playing position. Therefore, across each of the different playing positions the physiological, physical and technical demands of BZ and TCT replicate or exceed the relative demands of a OD match in amateur players.

Finally, Study 5 examined the influence of modifying the constraints associated with the BZ training environment. Eleven male, cricket players (22.2 ± 3.6 yr;
performed four modified scenarios of BZ which included a reduction in field size, the removal of a fielder, a combination of these two modifications and the inclusion of new playing rules. As with previous studies, each player’s HR, [BLa], RPE and movement patterns were measured during each BZ scenario. Between the different scenarios, the greatest HR response and [BLa] resulted from the changes in playing rules, which resulted from the increased movement demands (mean speed, HI activity) of this scenario ($p < 0.05$), most notably for batsmen ($HR_{\text{mean}}: 158 \pm 17 \, \text{b.min}^{-1}$, mean speed: $67 \pm 7 \, \text{m.min}^{-1}$) and wicketkeepers ($HR_{\text{mean}}: 145 \pm 9 \, \text{b.min}^{-1}$, mean speed: $37 \pm 10 \, \text{m.min}^{-1}$). By comparison, manipulating the size of the BZ playing field or the number of fielders present did not appear to significantly influence ($p > 0.05$) the physical demands or physiological responses of players. As such, the manipulation of BZ constraints can help to provide a range of match-specific training environments.

Collectively, these findings demonstrate the advantages of using BZ as a cricket training format as opposed to game-based CW simulations. Overall, the physiological, physical and technical demands of BZ appear similar to or exceed that of a OD match as well as the more traditional forms of cricket training. This demonstrates that BZ can provide a sufficient match-appropriate training load (TL). Importantly, BZ demonstrated an acceptable level of reliability between training sessions, suggesting that a consistent TL can be applied. Furthermore, manipulating BZ constraints can vary the training response to provide variation to help develop different aspects of a cricket player’s game, such as technical skill or conditioning status.
Table of Contents

Statement of Originality ... ii
Acknowledgement of Collaboration... iii
Acknowledgement of Authorship... iv
Acknowledgments .. v
Abstract .. vii
Table of Contents .. xii
List of Figures.. xvi
List of Tables .. xvii
List of Abbreviations and Nomenclature xix
List of Publications Arising from this Thesis xxi

Chapter 1; Introduction .. 1
 Background Information ... 2
 Statement of Problem .. 4
 Purpose of the Thesis ... 6
 Significance of the Research .. 7
 Limitations and Assumptions .. 8
 Delimitations .. 9

Chapter 2; Review of the Literature .. 11
 Introduction .. 12
 Description of Cricket ... 12
 Physical Demands of Cricket Players ... 15
 Physiological Responses of Cricket Players 26
 Specificity of Game-Based Training .. 32
 Description of Small-Sided Games .. 34
 Influence on the Technical Demands during Small-Sided Games ... 44
 Variability and Reproducibility of Small-Sided Games 46
 Comparison of Traditional Training and Small-Sided Games 47
 Summary of Small-Sided Games .. 50
 Game-Based Training for Cricket .. 51
 Conclusion .. 52
Chapter 6; Study 4:
Physiological, physical and technical demands of Battlezone, traditional net-based training and One-Day cricket matches: A comparative study of sub-elite cricket players. ...140
Abstract ..141
Introduction ..142
Methods ..144
Results ...150
Discussion ..159
Conclusion ..166
Practical Applications ..167

Chapter 7; Study 5:
The influence of field size, player number and rule changes on the physiological responses and movement demands of small-sided games for cricket training. ...169
Abstract ..170
Introduction ..170
Methods ..173
Results ...179
Discussion ..186
Conclusion ..192
Practical Applications ..193

Chapter 8; Discussion:
Overview of Thesis..196
Accuracy and Reliability of GPS during Cricket-Specific Activities197
Differences between Centre-Wicket Practice, Traditional Cricket Training and Match-Play ...198
Development of a Small-Sided Game for Cricket: The Introduction of Battlezone ...200
Prescription of Battlezone..211
Reliability of BZ ..215
Suggested Training Model for Battlezone..217
Conclusion ..218
Chapter 9; Summary and Conclusion...220
 Summary of the Major Findings..221
 Practical Applications ..227
 Recommendations for Future Research...230

Chapter 10; References...232

Appendix A; Information Statement and Consent Form (Study 1)..............252
Appendix B; Human Research Ethics Approval (Study 1)..........................261
Appendix C; Information Statement and Consent Form (Studies 2-5)........265
Appendix D; Human Research Ethics Approval (Studies 2-5)....................275
Appendix E; Pre Exercise Health Screening Questionnaire.......................279
List of Figures

Figure 2.1: Heart rate before (pre) and after ball 6 (B6) of each over of a 12-over spell of medium-fast bowling (mean ± SD) (Duffield et al., 2009).28

Figure 3.1: Customised harness used to hold GPS devices..................................60

Figure 3.2: Schematic representation of the movements used during the court-based protocols (a) 2 m side-to-side; (b) 4 m side-to-side; (c) run around baseline, singles sideline and service line. ...63

Figure 3.3: Schematic representation of the movements used during the cricket protocols (a) run-a-3; (b) bowling; (c) fielding. ...64

Figure 3.4: Schematic representation of the movements used during the FBTS protocol (a) gradual 5 m COD; (b) tight 3 m COD. ...65

Figure 3.5: Comparison of speed-time (a) and distance-time (b) curves between VICON and GPS devices for the random tennis protocol.69

Figure 3.6: Comparison of speed-time (a) and distance-time (b) curves between VICON and GPS devices for the cricket bowling protocol.72

Figure 3.7: Comparison of speed-time (a) and distance-time (b) curves between VICON and GPS devices for the COD 90º FBTS protocol.73

Figure 5.1: Layout of BZ playing area for a right-handed batsmen.118

Figure 7.1: Layout of BZ playing area for different scenarios for a right-handed batsmen. ...176

Figure 8.1: Factors affecting training outcomes with Battlezone.218
List of Tables

Table 2.1: Physical demands of elite, medium-fast bowlers during match-play (mean ± standard deviation [SD]). ... 16

Table 2.2: Physical demands of elite, male batsmen during match-play (mean ± SD). .. 19

Table 2.3: Physical demands of elite spin bowlers, fielders and wicketkeepers (mean ± SD). .. 23

Table 2.4: Summary of studies examining the physiological responses to changes in player numbers during small-sided games (mean ± SD). 37

Table 2.5: Summary of studies examining the physical demands to changes in player numbers during small-sided games (mean ± SD). 38

Table 2.6: Summary of studies examining the physiological responses to changes in field size during small-sided games (mean ± SD). 41

Table 2.7: Summary of studies examining the physiological responses to changes in the playing rules during small-sided games (mean ± SD) 42

Table 2.8: Summary of studies examining the physical demands to changes in the playing rules during small-sided games (mean ± SD). 43

Table 2.9: Effects of generic vs. small-sided soccer games training on junior soccer players (mean ± SD) (adapted from Impellizzeri et al., 2006) 49

Table 3.1: Measures for distance covered, mean speed and peak speed during court-based sports movements from the movement analysis devices (mean ± SD). .. 68

Table 3.2: Comparison of speed-time (a) and distance-time (b) curves between VICON and GPS devices for the random tennis protocol (mean ± SD). 71

Table 3.3: Intra-class correlation analysis (ICC), co-efficient of variation (CV) within movement analysis devices (within models) for each respective drill. 75

Table 4.1: Comparison of the physiological responses by playing position during traditional cricket training, centre-wicket simulation and One-Day matches (mean ± SD). ... 93

Table 4.2: Distance covered in each movement category across playing positions during traditional cricket training, centre-wicket simulation and One-Day matches (mean ± SD). ... 95

Table 4.3: Movement characteristics by playing position during traditional cricket training, centre-wicket simulation and One-Day matches (mean ± SD). 96
Table 4.4: Technical characteristics of elite batsmen during traditional cricket training, centre-wicket simulation and One-Day matches (mean ± SD).98

Table 4.5: Technical characteristics of elite medium-fast bowlers, spin bowlers, fielders and wicketkeepers during traditional cricket training, centre-wicket simulation and One-Day matches (mean ± SD). ...99

Table 5.1: Physiological and perceptual responses by position during a generic Battlezone bout (mean ± SD). ...123

Table 5.2: Total distances covered in each movement category across playing positions during a generic Battlezone bout (mean ± SD).124

Table 5.3: Movement characteristics by position during a generic Battlezone bout (mean ± SD). ..126

Table 5.4: Co-efficient of variance and intra-class correlation analysis between generic Battlezone sessions. ...128

Table 6.1: Comparison of the physiological and perceptual responses by position during Battlezone, traditional cricket training and One-Day matches (mean ± SD). ..151

Table 6.2: Comparison of the total distances covered in each movement category across playing positions during Battlezone, traditional cricket training and One-Day matches (mean ± SD).153

Table 6.3: Comparison of the movement characteristics by position during Battlezone, traditional cricket training and One-Day matches (mean ± SD). ..154

Table 6.4: Comparison of the technical characteristics of batsmen during Battlezone, traditional cricket training and One-Day matches (mean ± SD). ..155

Table 6.5: Comparison of the technical characteristics of medium-fast bowlers, spin bowlers, fielders and wicketkeepers during Battlezone, traditional cricket training and One-Day matches (mean ± SD). ...157

Table 7.1: Physiological and perceptual responses by position during a bout of different BZ scenarios (mean ± SD). ...181

Table 7.2: Movement category distances by position during a bout of different BZ training scenarios (mean ± SD). ...182

Table 7.3: Movement characteristics by position during a bout of different BZ training scenarios (mean ± SD). ...184

Table 9.1: Summary of the physical, physiological and technical demands of amateur cricket players during Battlezone and Traditional cricket training (mean ± SD). ..224
List of Abbreviations and Nomenclature

\(p \) \quad \text{Alpha}

ANOVA \quad \text{Analysis of variance}

AU \quad \text{Arbitrary unit}

balls min\(^{-1}\) \quad \text{Balls per minute}

BATEX \quad \text{Batting exercise}

b min\(^{-1}\) \quad \text{Beats per minute}

[BLa\(\text{-} \)] \quad \text{Blood lactate concentration}

BZ \quad \text{Battlezone}

cm \quad \text{Centimetre}

COD \quad \text{Changes of direction}

CR-10 \quad \text{Category ratio 10 scale}

r \quad \text{Coefficient of correlation}

CV \quad \text{Coefficient of variation}

CW \quad \text{Centre-wicket}

\degree \quad \text{Degree}

\degree \text{C} \quad \text{Degrees Celsius}

d \quad \text{Cohen's effect size}

FBTS \quad \text{Field-based team sports}

GPS \quad \text{Global positioning system}

> \quad \text{Greater than}

HDOP \quad \text{Horizontal dilution of position}

HR \quad \text{Heart rate}

HR\(_{\text{max}}\) \quad \text{Maximum heart rate}

\%HR\(_{\text{max}}\) \quad \text{Mean heart rate as a percentage of maximum heart rate}

HR\(_{\text{mean}}\) \quad \text{Mean heart rate}

HI \quad \text{High-intensity}

Hz \quad \text{Hertz}

ICC \quad \text{Intra-class correlation}
kg Kilogram/s
km Kilometre/s
km·h\(^{-1}\) Kilometres per hour
< Less than
L·min\(^{-1}\) Litres per minute
LI Low-intensity
m Metre/s
m·h\(^{-1}\) Metres per hour
m·min\(^{-1}\) Metres per minute
m·s\(^{-1}\) Meters per second
µL Microlitre
ml·kg\(^{-1}\)·min\(^{-1}\) Millilitres per kilogram per minute
mmol·L\(^{-1}\) Millimole per litre
min Minute
n Number
Number of
OD One-Day
% Percent
·h\(^{-1}\) Per hour
RPE Rating of perceived exertion
s Second/s
SD Standard deviation of the mean
SSG Small-sided games
TCT Traditional cricket training
TL Training Load
T20 Twenty20
TE% Typical error as a percentage of the mean
\(\dot{V}O_2\) Oxygen consumption
\(\dot{V}O_{2\text{max}}\) Maximal aerobic capacity
yd Yard
yr Year/s
List of Publications Arising from this Thesis

Peer Reviewed Articles

Conference Proceedings

