The Geomechanics of Single-Seam and Multi-Seam Longwall Coal Mining

Anastasia M. Suchowerska Iwanec
B.E. (Hons I) / B.Adv.Sc. (Chem)

A thesis submitted for the degree of
Doctor of Philosophy

THE UNIVERSITY OF NEWCASTLE
AUSTRALIA

January 2014
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Anastasia M. Suchowerska Iwanec
I hereby certify that the work embodied in this thesis contains published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Prof. John Carter
Supervisor

Dr. James Hambleton
Supervisor
Acknowledgements

I take this opportunity to acknowledge and sincerely thank several people for supporting me in this PhD.

A sincere thank you to my supervisors Prof. John Carter, Dr. Richard Merifield and Dr. Jim Hambleton. Prof. Carter was always ready to provide well thought out advice and he has instilled in me a great appreciation of approaching a problem from the fundamentals. His guidance, patience and countless reviews of my written work were indispensable for the completion of this thesis. Dr. Merifield helped develop the research topic, the framework for the project and showed me the beauty and dangers of using the finite element program ABAQUS. Dr. Hambleton joined the supervisory team in the third year of my candidature and from the onset drew on his boundless knowledge of geotechnical engineering. Together with his talent for applying that knowledge, he highlighted aspects of the research that I had not already considered. Thank you John, Richard and Jim for investing countless hours to help me develop my critical thinking, clarity in writing and research skills. Your passion for the art of research and lateral thinking will remain an inspiration to me for the rest of my career.

I am grateful to industry consultants Ross Seedsman and Don Kay, who were ever willing to share their time to provide expert advice which helped ground the work and connect it to the practical scenarios for which it was intended. I would like to thank Glencore Xstrata Pty Ltd for their co-operation in letting me use field measurements as a case study. I appreciated the help from Ned Stephenson and James Barbato for assisting me with the Blakefield South colliery case study. Many thanks go to the members of the Centre of Excellence in Geotechnical and Materials Modelling for their assistance in my research.

I extend my gratitude to the friendship of fellow PhD students in EF120 and Jessica Mitchison, who acted as my lighthouse in foggy weather on many occasions.

To my parents, Natalka and Jurij, thank you for showing me the joys of continually learning in life and the rewards of challenging oneself. To my sisters, Alexandra and Roksolana, your encouragement by either listening to my concerns or distracting me from my worries did not go unnoticed.

To my husband Jeremy, thank you for your endless support in this quest.
Contents

ABSTRACT

CHAPTER 1. INTRODUCTION

1.1. Longwall mining ... 2

1.2. Geomechanics of longwall mining .. 4
 1.2.1. Instabilities ... 5
 1.2.2. Subsidence ... 6

1.3. Multi-seam longwall mining .. 7

1.4. Uncertainties in single-seam and multi-seam longwall mining 9

1.5. Objectives and scope ... 11

1.6. Thesis outline ... 11

CHAPTER 2. LITERATURE REVIEW

2.1. General aspects of ground instability in multi-seam mining 14

2.2. Stress redistribution .. 21
 2.2.1. Virgin in situ stress ... 21
 2.2.2. Stress redistribution during roadway development 23
 2.2.3. Stress redistribution during longwall extraction 25

2.3. Strata deformations .. 29
 2.3.1. Caved goaf ... 31
 2.3.2. Field measurements of subsidence 33

2.4. Numerical methods ... 37
 2.4.1. Numerical modelling of longwall mining 37

2.5. Constitutive laws .. 39
 2.5.1. Elastic response of coal measure strata 40
 2.5.2. Failure criteria of rock masses 42
 2.5.3. Constitutive law for the caved goaf material 46

2.7 Summary ... 48

CHAPTER 3. VERTICAL STRESS CHANGES UNDER SUPERCRITICAL LONGWALL PANELS

3.1. Introduction ... 50

3.2. Background ... 51
 3.2.1. In situ stresses surrounding previously mined longwalls ... 52
 3.2.2. Abutment angle ... 54
 3.2.3. Vertical stress distribution in a chain pillar 56

3.3. Problem definition ... 60
 3.3.1. Solution method ... 61

3.4. Results and discussion .. 63
 3.4.1. Reference case ... 64
 3.4.2. Effect of abutment angle, β 69
 3.4.3. Effect of overburden depth and pillar width 72
 3.4.4. Effects of transverse isotropy 76
3.4.5. Effects of other variables ... 80
3.5. Discussion ... 82
3.6. Conclusions ... 84

CHAPTER 4. HORIZONTAL STRESSES UNDER SUPERCritical
LONGWALL PANELS .. 86
4.1. Introduction .. 86
4.2. Background .. 87
 4.2.1. Numerical modelling ... 88
 4.2.2. Geological conditions .. 89
4.3. Problem definition .. 92
 4.3.1. Solution method .. 93
4.4. Results and discussion .. 97
 4.4.1. Elastic strata .. 97
 4.4.2. Anisotropic strata ... 103
 4.4.3. Low shear strength layer ... 111
4.5. Discussion ... 114
4.6. Conclusions ... 115

CHAPTER 5. PREDICTION OF UNDERGROUND CAVITY ROOF COLLAPSE
USING THE HOEK-BROWN FAILURE CRITERION 117
5.1. Introduction ... 117
5.2. Background ... 118
 5.2.1. Failure mechanisms for cavities .. 118
 5.2.2. Previous studies to assess cavity stability 119
5.3. Problem definition ... 121
 5.3.1. Solution methods .. 122
5.4. Results ... 126
 5.4.1. Finite element upper and lower bound .. 126
 5.4.2. Closed form upper bound ... 132
 5.4.3. Displacement finite element modelling 134
 5.4.4. Application example .. 135
5.5. Discussion ... 135
5.6. Conclusions ... 137

CHAPTER 6. PREDICTION OF UNDERGROUND CAVITY ROOF COLLAPSE
USING THE MOHR-COULOMB FAILURE CRITERION 138
6.1. Introduction ... 138
6.2. Background ... 138
6.3. Problem definition ... 139
 6.3.1. Solution methods .. 141
6.4. Results ... 142
 6.4.1. Linear form of the Mohr-Coulomb failure criterion 142
 6.4.2. Mohr-Coulomb with tension cut-off .. 149
6.5. Discussion ... 152
6.6. Conclusions ... 154
<table>
<thead>
<tr>
<th>CHAPTER 7. PREDICTION OF SUBSIDENCE ABOVE A SINGLE-SEAM SUPERCRITICAL LONGWALL PANEL USING FINITE ELEMENT MODELLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction ... 155</td>
</tr>
<tr>
<td>7.2. Background ... 156</td>
</tr>
<tr>
<td>7.2.1. Numerical modelling of longwall panels ... 157</td>
</tr>
<tr>
<td>7.3. Problem definition .. 160</td>
</tr>
<tr>
<td>7.3.1. Solution methods .. 162</td>
</tr>
<tr>
<td>7.4. Results ... 166</td>
</tr>
<tr>
<td>7.4.1. Isotropic linear-elastic overburden .. 167</td>
</tr>
<tr>
<td>7.4.2. Elastoplastic overburden ... 177</td>
</tr>
<tr>
<td>7.4.3. Bedded overburden ... 185</td>
</tr>
<tr>
<td>7.5. Discussion .. 194</td>
</tr>
<tr>
<td>7.6. Conclusions ... 195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 8. PREDICTION OF SUBSIDENCE ABOVE A MULTI-SEAM SUPERCRITICAL LONGWALL PANEL USING FINITE ELEMENT MODELLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Introduction ... 197</td>
</tr>
<tr>
<td>8.2. Background ... 197</td>
</tr>
<tr>
<td>8.2.1. Case studies of multi-seam longwall subsidence profiles 200</td>
</tr>
<tr>
<td>8.2.2. Mechanics of sub-surface strata deformations ... 201</td>
</tr>
<tr>
<td>8.2.3. Numerical modelling of multi-seam longwall panels .. 202</td>
</tr>
<tr>
<td>8.3. Problem definition ... 206</td>
</tr>
<tr>
<td>8.3.1. Solution methods .. 208</td>
</tr>
<tr>
<td>8.4. Results ... 208</td>
</tr>
<tr>
<td>8.4.1. Stacked arrangement .. 209</td>
</tr>
<tr>
<td>8.4.2. Staggered arrangement ... 218</td>
</tr>
<tr>
<td>8.5. Discussion .. 225</td>
</tr>
<tr>
<td>8.6. Conclusions ... 227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9. CASE STUDY: SUBSIDENCE ABOVE SINGLE-SEAM AND MULTI-SEAM LONGWALL MINING IN THE HUNTER VALLEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction ... 228</td>
</tr>
<tr>
<td>9.2. Background information .. 229</td>
</tr>
<tr>
<td>9.2.1. Geology .. 229</td>
</tr>
<tr>
<td>9.2.2. Geometry of workings .. 233</td>
</tr>
<tr>
<td>9.3. Single-seam mining ... 235</td>
</tr>
<tr>
<td>9.3.1. Field measurements of subsidence ... 235</td>
</tr>
<tr>
<td>9.3.2. Numerical modelling method ... 238</td>
</tr>
<tr>
<td>9.3.3. Results .. 239</td>
</tr>
<tr>
<td>9.4. Multi-seam mining ... 245</td>
</tr>
<tr>
<td>9.4.1. Field measurements ... 245</td>
</tr>
<tr>
<td>9.4.2. Numerical modelling method ... 252</td>
</tr>
<tr>
<td>9.4.3. Results .. 254</td>
</tr>
<tr>
<td>9.5. Discussion .. 258</td>
</tr>
<tr>
<td>9.6. Conclusion ... 259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 10. CONCLUSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>10.1</td>
</tr>
<tr>
<td>10.2</td>
</tr>
<tr>
<td>10.3</td>
</tr>
<tr>
<td>10.4</td>
</tr>
<tr>
<td>10.5</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1 - Schematic diagram of the cut-away view of typical panels and gate roads during longwall mining (adapted from Infomine Inc., 2011). ... 2

Figure 1.2 - The strata above an extracted longwall panel is typically divided into three zones (adapted from Peng et al., 1984). .. 4

Figure 1.3 - Schematic diagram of the subsidence through that forms behind the longwall face. 6

Figure 1.4 - Schematic diagram of the subsidence profile above a single longwall panel and the associated subsidence parameter profiles (Mine Subsidence Engineering Consultants, 2007). 7

Figure 1.5 - Schematic diagrams of types of multi-seam mining: (a) undermining, (b) overmining and (c) ultra-close mining (adapted from Mark et al., 2007). .. 8

Figure 2.1 - Pillar arrangement options for multi-seam mining: (a) stacked, (b) pyramid with increasing pillar size with depth (c) off-set (adapted from Haycocks and Zhou, 1990). .. 16

Figure 2.2 - Predicted magnitudes of peak vertical stress transferred on the second seam in Harris No.1 mine, with schematic drawings of the vertical stress distribution (Chase et al., 2005). 17

Figure 2.3 - Severity of multi-seam interactions for undermining was classed as extreme, moderate and none (from Ellenberger et al., 2003). ... 19

Figure 2.4 - Influence of percentage of sandstone in the interburden on the overall stability of the interburden (Wu et al., 1987). ... 19

Figure 2.5 - Influence of the presence of interbeds in the interburden, where: (a) empirical data shows the abundance of interbeds in a small interburden leads to instability (from Wu et al., 1986) and (b) interbedding increases the depth of pillar stress transfer (from Wu et al., 1987). ... 20

Figure 2.6 - Pressure arches of vertical stress formed around: (a) single roadways, and (b) around multiple roadways if individual pillars yield (adapted from Chekan et al., 1993). ... 24

Figure 2.7 - Stress distribution below a point load applied to: (a) an isotropic elastic material and (b) elastic material with horizontal discontinuities (Su et al., 1986). ... 25

Figure 2.8 - Vertical stress redistribution in the plane of the seam around a longwall (Whittaker, 1974). 26

Figure 2.9 - (a) Horizontal stress concentration in the maingates (Hanson et al., 2005) and (b) field observations of the horizontal stress concentration at maingate corner as a function of the angle between gateroads and maximum horizontal stress direction (Seedsman, 2011). ... 28

Figure 2.10 – Schematic diagram of subsidence zones above an extracted longwall panel. The overburden displacements are assumed to be governed by a bulking controlled goaf (adapted from McNally et al. (1996) and Hill (1995)). .. 30

Figure 2.11 – Schematic diagram of the combination of sag and strata compression that govern subsidence (adapted from Mills (1998)). ... 35

Figure 2.12 - Prediction curves for maximum incremental subsidence for coalfields in New South Wales, Australia show that for multi-seam cases the subsidence factor for supercritical panels is equal to 0.9 (Mine Subsidence Consulting Engineers, 2007). ... 37

Figure 2.13 – Schematic diagram of a transverse isotropic material, where the xy plane is the plane of isotropy (adapted from Brady & Brown (1992)). ... 41

Figure 2.14 – Schematic representation of: (a) linear form of the Mohr-Coulomb failure criterion (adapted from Brady and Brown (1992)) and (b) prescribed tension cut-off form of the Mohr-Coulomb failure criterion (adapted from Chen (1982) and Clausen and Damkilde (2006)). ... 44

Figure 3.1 – Schematic representation of the problem considered in this Chapter. .. 50

Figure 3.2 - Vertical stress redistribution due to underground mine excavation (adapted from schematic diagram in Chekan et al., 1993). ... 53

Figure 3.3 – Load redistribution of overburden material after mining of a supercritical longwall panel (adapted from King et al., 1971; Wilson et al., 1972)). ... 54
Figure 4.7 – Horizontal stress distributions below the centreline of the first extracted seam normalised by
the initial horizontal stress for different ratios of W_{eq}/H. ...100
Figure 4.8 - Horizontal stress distribution below the first extracted seam for: (a) $W_{eq}/H=2$, (b) $W_{eq}/H=8$, and
(c) $W_{eq}/H=16$. ..102
Figure 4.9 – Horizontal stress normalised by the initial horizontal stress for different ratios of G'/G_{iso}
below the centreline of the first extracted seam for the reference case. ..105
Figure 4.10 – Ratio of maximum and minimum shear modulus for the equivalent material calculated
using Gerrard's equations for a two layer orthorhombic material. ...105
Figure 4.11 – Normalised horizontal stress curves for varying values of G_{min}/G_{max} for the reference case.
...106
Figure 4.12 – Horizontal stress normalised by the initial horizontal stress below the centreline of the first
extracted seam for layered elastic strata for: (a) t_S/t_M of 1.0 and E_S/E_M of 0.1, (b) t_S/t_M of 1.0 and E_S/E_M of
0.1, (c) t_S/t_M of 0.1 and E_S/E_M of 0.1, (d) t_S/t_M of 10 and E_S/E_M of 0.1, (e) t_S/t_M of 1.0 and E_S/E_M of 0.2.110
Figure 4.13 – Shear distance for frictional layer obtained from: (a) hand calculations, and (b) finite
element analyses. ..112
Figure 4.14 – Shear stress distribution along frictional surface from the edge of the extracted equivalent
width. ..113
Figure 4.15 - Shear distance for cohesive layer determined from hand calculations.114
Figure 5.1 - Schematic representation of the problem analysed in this Chapter.................................118
Figure 5.2 - Stability chart for entry-type underground excavations (Lang, 1994).................................119
Figure 5.3 - Model used in the FE Limit Analysis method, showing the effects of the adaptive mesh.
Rough interfaces (dashed lines) were placed at the top and bottom of the pillars.124
Figure 5.4 - Model used in the displacement finite element modelling. A high density of elements was
required at the top of the cavity abutments for the analysis to converge..126
Figure 5.5 - Charts of stability factor N obtained using FE-UB (solid line) and FE-LB (dotted line).128
Figure 5.6 - Charts of stability factor M obtained using FE-UB (solid line) and FE-LB (dotted line). ...130
Figure 5.7 – FE-UB predictions of the degree of plastic dissipation showing that the failure surfaces are:
(a) subcritical for low ratios W/H and (b) supercritical for high ratios W/H. ...131
Figure 5.8 - Stability charts for m_1 of 20, obtained using the CF-UB analysis for stability parameter: (a)
N and (b) M. ..133
Figure 5.9 – Scaling for the stability factors (N and M), obtained from Figure 5.8, for m_1 values other
than 20. ..134
Figure 5.10 – Stability chart with results from displacement FE modelling...134
Figure 5.11 – Stability chart with predictions from FE-LB and CF-UB..136
Figure 5.12 – Plasticity plots obtained from displacement finite element modelling for GSI of 50, m_1 of 20
and: (a) W/H of 3 (b) W/H of 8. ..137
Figure 6.1 – Schematic representation of the problem analysed in this Chapter140
Figure 6.2 – Charts of the results obtained using the FE-UB (solid line) and FE-LB (dotted line)
formulation for: (a) stability factor N and (b) stability factor Q. ...143
Figure 6.3 – FE-UB predictions of the degree of plastic dissipation showing that the failure surfaces are:
(a) subcritical for low value of ratio W/H, and (b) supercritical for high value of ratio W/H.144
Figure 6.4 – FE-UB predictions of the degree of plastic dissipation showing the failure surfaces as
dashed lines. There is a progressive transition from subcritical to supercritical failure mechanisms for
increasing ratio W/H. ..145
Figure 6.5 – FE-UB predictions of the degree of plastic dissipation for ratio W/H of 3.0 and varying
friction angle. ...146
for the average goaf with elastic or elastoplastic strain-softening overburden with $E_o=10\text{GPa}$ and varying cohesion c. ... 185

Figure 7.19 – Plots of surface vertical displacement normalised by extracted seam height for the Cavity Model with an elastic overburden material and varying transverse-anisotropy (G'/G_{iso}) ... 187

Figure 7.20 – Plots of surface vertical displacement normalised by extracted seam height for the Cavity Model with an elastic overburden material and smooth interfaces separated by spacing D. 188

Figure 7.21 – Plot of principal stress rosettes on the deformed strata for the Cavity Model with an elastic overburden material and smooth interfaces separated by spacing 30m................................. 188

Figure 7.22 – Plots of normalised vertical stress at the height of the longwall floor from the Cavity Model with an elastic overburden material and smooth interfaces separated by spacing D. .. 189

Figure 7.23 – Plots of surface vertical displacement normalised by extracted seam height for the Goaf Model with an elastic overburden material and smooth interfaces spaced every 7.5m......................... 191

Figure 7.24 – Plots of normalised vertical stress at the height of the longwall floor from the Goaf Model with an elastic overburden material and smooth interfaces spaced every 7.5m................................. 191

Figure 7.25 – Plots of surface vertical displacement normalised by extracted seam height for the Goaf Model with a ubiquitous jointed overburden material... 192

Figure 7.26 – Plots of normalised vertical stress at the height of the longwall floor from the Goaf Model with a ubiquitous jointed material overburden... 192

Figure 8.1 – Schematic diagram of the problem analysed in this Chapter, where S_{max2} is the incremental subsidence caused by the extraction of a longwall panel in the second seam.. 197

Figure 8.2 – Stress-strain curves for three forms of Terzaghi strain stiffening material. 205

Figure 8.3 – Schematic drawing of geometry and material properties of: (a) initial conditions of both stacked and staggered arrangement, (b) final conditions for the stacked arrangement, and (c) final conditions for the staggered arrangement... 207

Figure 8.4 – Plot of incremental subsidence profiles from the stacked arrangement after extraction of the longwall in the first seam and second seam with a transversely isotropic overburden................................. 209

Figure 8.5 – Plots of incremental vertical displacement in metres from the stacked arrangement for the transversely isotropic elastic overburden after: (a) extraction of the longwall panel in the first seam, (b) extraction of the longwall panel in the second seam with a transversely isotropic interburden and (c) extraction of the longwall panel in the second seam with a bedded interburden ... 211

Figure 8.6 – Plot of incremental subsidence profiles from the stacked arrangement after extraction of the longwall in the first seam and the second seam with a bedded overburden... 212

Figure 8.7 – Plots of total vertical displacement in metres from the stacked arrangement for the bedded overburden after: (a) extraction of the longwall panel in the first seam, (b) extraction of the longwall panel in the second seam with a transversely isotropic interburden and (c) extraction of the longwall panel in the second seam with a bedded interburden. ... 213

Figure 8.8 – Plot of incremental subsidence profiles from the stacked arrangement after extraction of the longwall in the first seam and second seam with a ubiquitous overburden.. 214

Figure 8.9 – Plots of total vertical displacement in metres for the stacked arrangement with ubiquitous joint overburden after: (a) extraction of the longwall panel in the first seam, (b) extraction of the longwall panel in the second seam with a transversely isotropic interburden and (c) extraction of the longwall panel in the second seam with a bedded interburden... 215

Figure 8.10 – Plots of vertical stress in kPa for the stacked arrangement with bedded interburden with: (a) transversely isotropic overburden after extraction of the first seam longwall (b) transversely isotropic overburden after extraction of the second seam longwall (c) bedded overburden after extraction of the first seam longwall (d) bedded overburden after extraction of the second seam longwall (e) ubiquitous joint overburden after extraction of the second seam longwall and (f) ubiquitous joint overburden after extraction of the second seam longwall. ... 218

Figure 8.11 – Plot of incremental subsidence profiles from the staggered arrangement after extraction of longwalls in the first seam and second seam with a transversely isotropic overburden. 219
Figure 8.12 – Plots of incremental vertical displacement in metres from the staggered arrangement for the transversely isotropic elastic overburden after: (a) extraction of the first seam longwalls, (b) extraction of the second seam longwall with a transversely isotropic interburden and (c) extraction of the second seam longwall with a bedded interburden......................... 220

Figure 8.13 – Plot of incremental subsidence profiles from the staggered arrangement after extraction of the longwalls in the first seam and the second seam with a bedded overburden. ... 221

Figure 8.14 – Plots of incremental vertical displacement for the staggered arrangement with bedded overburden after: (a) extraction of the first seam longwalls, (b) extraction of the second seam longwall with a transversely isotropic interburden and (c) extraction of the second seam longwall with a bedded interburden... 222

Figure 8.15 – Plot of incremental subsidence profiles from the staggered arrangement after extraction of the longwalls in the first seam and the second seam with a ubiquitous overburden... 223

Figure 8.16 – Plots of incremental vertical displacement for the ubiquitous joint overburden after: (a) extraction of the in the first seam longwalls, (b) extraction of the second seam longwall with a transversely isotropic interburden and (c) extraction of the second seam longwall with a bedded interburden... 224

Figure 8.17 – Plot of incremental subsidence profiles from the staggered arrangement after extraction of the longwalls in the first seam and the second seam with a bedded. Not the first seam and the second seam have a strain stiffening goaf material. ... 225

Figure 8.18 – Schematic representation of the mechanics of load distribution for the staggered arrangement with a transversely isotropic elastic overburden. The arrows indicate regions of increased pillar load... 226

Figure 9.1 – Schematic map of the coalfields within the Sydney Basin © State of New South Wales through Department of Trade and Investment, Regional Infrastructure and Services. .. 230

Figure 9.2 – Map of the layout of longwalls in the Lower Whybrow seam (prefixLW) and Blakefield seam (prefix BSLW). The map also shows the survey lines used to monitor the subsidence when extracting longwalls in the Lower Whybrow seam (denoted in pink) and longwall BSLW1 (denoted in green)(MSEC subsidence monitoring report for 2010).. 234

Figure 9.3 – Total subsidence recorded along survey line XLA line due to extraction of longwalls in the Lower Whybrow seam. The crosses mark the location of where subsidence measurements had been recorded. .. 236

Figure 9.4 – Normalised incremental vertical subsidence recorded along survey line XLA above (a) LW1 and (b) LW1 to LW4. .. 237

Figure 9.5 – Scale drawing of the geometry and material properties used in the numerical models to predict subsidence above LW1 in the Whybrow seam: (a) initial conditions for both the Cavity and Goaf models (b) final conditions for the Cavity model and (b) final conditions for the Goaf model. 239

Figure 9.6 – Normalised predicted vertical subsidence for LW1 using the Cavity model with an isotropic elastic overburden and the normalised measured vertical subsidence for LW1 along survey line XLA.. 240

Figure 9.7 – Normalised predicted vertical subsidence for LW1 using the Cavity model with a transversely isotropic elastic overburden and the normalised measured vertical subsidence for LW1 along survey line XLA. .. 241

Figure 9.8 – Normalised predicted vertical subsidence for LW1 using the Goaf model with a transversely isotropic elastic overburden and the normalised measured vertical subsidence for LW1 along survey line XLA. .. 242

Figure 9.9 – Normalised predicted vertical subsidence for LW1 using the Goaf model with a bedded overburden and the normalised measured vertical subsidence for LW1 along survey line XLA. The parameters used in the goaf model were E_i = 5MPa and $a=38$. .. 243

Figure 9.10 – Normalised predicted vertical subsidence for LW1 using the Goaf model with a ubiquitous joint overburden and the normalised measured vertical subsidence for LW1 along survey line XLA..... 244

Figure 9.11 – Normalised predicted vertical subsidence for LW1 using the Goaf model with an elasto-plastic strain softening overburden and the normalised measured vertical subsidence for LW1 along
survey line XLA. The parameters used in the goaf model were $E_i=5\text{MPa}$ and $a=38$.

Figure 9.12 – Map showing the survey lines used to monitor the subsidence when extracting longwall BSLW2 (Mine Subsidence Engineering Consultants, 2013).

Figure 9.13 – Incremental vertical subsidence, due to extraction of BSLW2, recorded along survey lines (a) DL line, (b) XL1 line, (c) LOM line and (d) SBCP2 line.

Figure 9.14 – Proposed contributions from trough formation and strata compression of the first seam goaf to the subsidence recorded along survey line DL above longwall BSLW2.

Figure 9.15 – Scale drawings of the geometry and material properties used in the numerical models to predict subsidence above BSLW1 in the Blakefield seam, with: (a) initial conditions for both the Cavity and Goaf models (b) final conditions for the Cavity model and (b) final conditions for the Goaf model.

Figure 9.16 – Normalised predicted incremental vertical subsidence for BSLW2 using the Cavity model with a bedded overburden and the normalised measured vertical subsidence for BSLW2 along survey line DL.

Figure 9.17 – Normalised predicted incremental vertical subsidence for BSLW2 using the Goaf model with a bedded overburden and the normalised measured vertical subsidence for BSLW2 along survey line DL.

List of Tables

Table 2.1 - Variables that contribute to multi-seam interactions, with critical variables as identified by Haycocks and Zhou (1990).

Table 3.1 - Variable definition and values used in parametric study.

Table 4.1 – Variable definition and values used for parametric study of elastic strata.

Table 5.1 - Variables considered in the analysis.

Table 6.1 - Variables considered in the analysis of cavity roof collapse using the Mohr-Coulomb failure criterion.

Table 7.1 - Definition of parameters used for the Terzaghi strain-stiffening material.

Table 7.2 –Variable definition and values used in parametric study.

Table 7.3 - Normalised maximum subsidence and edge subsidence from Cavity Model parametric study.

Table 7.4 –Normalised maximum subsidence and edge subsidence from Goaf Model parametric study.

Table 8.1 – Summary of the geometry and maximum subsidence (S_{max}) for multi-seam mining cases when longwall mining beneath previously extracted longwall panels (from Li et al., 2010).

Table 9.1 – Stratigraphy of the Hunter Coalfield (Stevenson et al., 1998).

Table 9.2 – Stratigraphy of the Wittingham Coal Measures (Stevenson et al., 1998).

Table 9.3 – Geometry of the extracted longwalls in the Lower Whybrow seam.

Table 9.4 – Geometry of the extracted longwalls in the Lower Whybrow seam.
List of symbols and notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>curve fitting coefficient</td>
</tr>
<tr>
<td>a</td>
<td>rock mass constant used in Hoek-Brown failure criterion</td>
</tr>
<tr>
<td></td>
<td>dimensionless constant in the equation of Terzaghi strain-stiffening material</td>
</tr>
<tr>
<td>B</td>
<td>thickness of interburden between top seam and second seam, also referred to as IB</td>
</tr>
<tr>
<td>b</td>
<td>curve fitting coefficient</td>
</tr>
<tr>
<td>b</td>
<td>bulking factor</td>
</tr>
<tr>
<td>c</td>
<td>rock mass cohesion</td>
</tr>
<tr>
<td>D</td>
<td>thickness of bedding layers</td>
</tr>
<tr>
<td>E</td>
<td>Young’s Modulus of the strata</td>
</tr>
<tr>
<td>E_c</td>
<td>Young’s modulus of coal</td>
</tr>
<tr>
<td>E_g</td>
<td>Young’s modulus of the goaf</td>
</tr>
<tr>
<td>E_i</td>
<td>initial tangent Young’s modulus of the Terzaghi strain-stiffening material</td>
</tr>
<tr>
<td>E_o</td>
<td>Young’s modulus of overburden strata</td>
</tr>
<tr>
<td>E_s</td>
<td>secant Young’s modulus</td>
</tr>
<tr>
<td>E_t</td>
<td>tangent Young’s modulus</td>
</tr>
<tr>
<td>G_{iso}</td>
<td>isotropic shear modulus</td>
</tr>
<tr>
<td>G'</td>
<td>independent shear modulus</td>
</tr>
<tr>
<td>GSI</td>
<td>Geological strength index</td>
</tr>
<tr>
<td>H</td>
<td>depth of top seam, also referred to as OB</td>
</tr>
<tr>
<td>h_c</td>
<td>height of caving above the longwall panel roofline</td>
</tr>
<tr>
<td>h_g</td>
<td>height of caved zone above the longwall panel floor</td>
</tr>
<tr>
<td>h_f</td>
<td>maximum height to failing surface</td>
</tr>
<tr>
<td>K</td>
<td>ratio of horizontal in situ stress to vertical in situ stress</td>
</tr>
<tr>
<td>K_s</td>
<td>relative shear stiffness value of a joint set</td>
</tr>
<tr>
<td>N</td>
<td>stability parameter</td>
</tr>
<tr>
<td>M</td>
<td>stability parameter</td>
</tr>
<tr>
<td>m_i</td>
<td>material constant used in Hoek-Brown failure criterion</td>
</tr>
<tr>
<td></td>
<td>reduced value of material constant used in Hoek-Brown failure criterion</td>
</tr>
<tr>
<td>Q</td>
<td>stability parameter</td>
</tr>
<tr>
<td>R</td>
<td>shear compliance of a joint set</td>
</tr>
</tbody>
</table>
s rock mass constant used in Hoek-Brown failure criterion
si convergence of the roof and the floor of a longwall panel at the time of contact with caved goaf
S percentage sandstone in the interburden
 regular spacing of a joint set
S_{edge} vertical subsidence above the edge of the longwall panel
S_{max} maximum vertical subsidence above the longwall panel
S_{max1} maximum incremental subsidence above a first seam longwall panel
S_{max2} maximum incremental subsidence above a second seam longwall panel
T extracted coal seam thickness
T_{x} extracted thickness of seam, where x is the order of seam extracted
W width of longwall panel from centreline of gateroad
W_{eq} equivalent extracted width for horizontal stress redistribution
(W/H)_{crit} critical width of cavity corresponding to the boundary of subcritical and supercritical failure of the overburden
w width of pillar (rib to rib)
\beta abutment or shear angle
\gamma unit weight of rock mass
\varepsilon strain
\theta the angle between the failure surface and vertical
\sigma_{ci} uniaxial compressive strength of intact rock
\sigma_{n} normal stress
\sigma_{t} tensile strength of the rock mass
\sigma_{t*} tension cut-off, i.e., prescribed maximum tensile strength of the rock mass
\sigma_{h} horizontal stress
\sigma_{hi} initial horizontal stress before mining of the first seam
\sigma_{v} vertical stress
\sigma_{vi} initial vertical stress before mining of the first seam
\sigma'_{i} effective major principal stress
\sigma'_{2} effective minor principal stress
\sigma'_{3max} upper limit of \sigma'_{3} for calculating equivalent Mohr-Coulomb parameters
\tau shear stress
\nu Poisson’s ratio
\[\phi \] rock mass friction angle

Parameters for Wilson’s equation for vertical stress distribution around a longwall panel (Wilson, 1980)

- \(F \): constant
- \(C \): stress dissipation constant
- \(k \): Rankine passive stress state constant
- \(M \): height of extraction
- \(p \): restraint on boundary of opening
- \(q \): overburden stress
- \(\sigma_0 \): unconfined compressive strength of coal
- \(\sigma'_0 \): unconfined compressive (residual) strength of failed coal
- \(\hat{\sigma} \): peak abutment stress

Parameters for Gerrard’s equations for equivalent elastic moduli of a rock mass consisting of orthorhombic layers (Gerrard, 1982)

- \(t \): thickness of a stratum layer with constant Young’s modulus
- \(\alpha \): constant
- \(\beta \): constant
- \(\gamma \): constant
- \(\zeta \): constant
- \(\lambda \): constant
- \(\chi \): constant
ABSTRACT

In coal mining, the most favourable and most easily won coal reserves are depleted first, typically from within a single coal seam. A recent trend in Australia and elsewhere in the world is to attempt to recover coal from multiple seams within a single site, a practice known as multi-seam mining. With longwall mining becoming one of the safest and most economical means of underground extraction of coal in Australia, we are likely to see an increase in the number of multi-seam longwall mining operations. Evidence thus far has indicated that the geomechanics of multi-seam longwall mining differs from that of single-seam longwall mining, especially with respect to variations in mine stability and subsidence.

The overarching aim of this Thesis is to critically compare predicted stresses and deformations for single-seam and multi-seam longwall mines based on commonly used constitutive laws and continuum-based modelling assumptions. The main approach used to predict stresses and deformations is the displacement finite element method. Finite element limit analyses of roof collapse are also considered. In all cases, two-dimensional (plane strain) conditions were assumed, and focus is on relatively wide longwall panels at shallow depth, known as supercritical longwall panels. Key objectives are to predict stress redistributions in multi-seam longwall mines, roof collapse in underground openings, and subsidence profiles above single-seam and multi-seam longwall mines.

The changes in the vertical and horizontal stress distribution due to the extraction of a series of parallel longwall panels were predicted using isotropic and anisotropic linear elastic constitutive laws to represent the coal measure strata. The key finding from the study of vertical stress redistribution is that the abutment angle, the overburden depth, the pillar width and the anisotropic behaviour most influence the change in the in situ vertical stress in the lower seam. The redistribution of horizontal stress originally transmitted through the overburden generates smaller changes to the in situ stresses in the rock strata below the first mined seam than is predicted for the vertical stress. Transversely isotropic material causes the vertical stresses imposed onto the chain pillars to be transferred deeper into the underlying strata. The implications of the findings are that the predicted rapid changes in vertical stress with horizontal distance in transverse isotropic strata behaviour are likely to be reflected in more sudden changes in
rock mass response which pose a safety risk.

The differences occurring in predictions of roof collapse in underground rectangular cavities using the Hoek-Brown and Mohr-Coulomb failure criteria were evaluated. The predicted shape of the failure surface is shown to be governed by the friction angle of the rock mass. The friction angle also governs the so-called critical width, which corresponds to the boundary between subcritical and supercritical failure of the overburden. The predictions of the critical width matches best field observations in the New South Wales coalfields when the linear Mohr-Coulomb failure criterion is used with a friction angle of approximately 30 degrees. The prediction of the critical width when using the Hoek-Brown failure criterion overestimates the value observed in the field. This is because the Hoek-Brown failure criterion corresponds to effectively high friction angles in the range of tensile and very low confining stresses encountered in the strata above underground openings. Stability charts for rectangular cavities using the Hoek-Brown failure criterion and two forms of the Mohr-Coulomb failure criterion are presented to enable designers of underground openings to predict rapidly the safe widths of underground cavities.

Predictions of vertical subsidence profiles above single-seam and multi-seam longwall panels are compared using various constitutive laws to represent the coal measure strata and goaf. A key finding is that the best agreement between the numerical predictions and the field observations, for both the single-seam and multi-seam supercritical longwall cases, is when the coal measure strata is represented as an elastic material with closely spaced frictionless interfaces representing bedding planes. Representing the coal measure strata as a bedded material also allows for the vertical stresses to return to the level of the original overburden stress in the caved goaf material within the first seam, prior to extraction of the second seam. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate results when compared to field measurements. A case study based on a multi-seam mine in the Hunter Valley assists in validating the conclusions made in the comparative study.

The findings presented in this Thesis will enable engineers to design economically viable multi-seam longwall mines, while still meeting legislative needs in terms of the environment and safety of personnel.