Factors influencing fish assemblages of Intermittently Closed and Open Lakes and Lagoons (ICOLLs) of the Central and Near-South Coasts of New South Wales, Australia

Leslie Milton Edwards
BSc, MSc

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at The University of Newcastle, Australia

August 2013
Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Signed: ...

(Leslie Milton Edwards)
Acknowledgements

Firstly to Professor William Gladstone whose supervision and guidance was invaluable over a long, long period of time, especially during those tough and frustrating periods of explaining statistics. However you were always available and provided inspiration during the duration of this epic thesis. To Dr David Powter who provided support, ideas and fun, as well as assistance in the field. To Dr Tom Trnski you gave invaluable advice and direction as well as aid in identification of fishes during the larval fish study.

The work in this thesis was undertaken over a long period of time and involved the assistance of many people both in the field and in the laboratory, without them this project would not have been possible. Field work was a major part of this project and involved many hours spent travelling and sampling in different and sometimes difficult conditions therefore I wish to thank all those people involved. Those who deserve a special mention are Margaret O’Bryan, Dr David Powter, and Glenn Courtney, Steven ‘Scuppers’ Fartek, Hamlet Giragossyan and Jo Walker. Other people who helped out in the field were Norm Boardman, Jill Clancy, Craig Northrop, David McElroy and Tomas Starke-Peterkovic.

A special mention goes to Tom Savage from the Department of Geosciences, University of Sydney for the loan of their boat and other equipment throughout the study and his invaluable knowledge of sediment collection and for help with the preparation and analysis of sediments for trace metal concentrations. To Malcolm Ricketts in the School of Biological Sciences, University of Sydney, for his patient help and assistance in producing graphics and photos for this thesis, along with assistance in the fieldwork and to Dr Liz May and Mark Ahern for their help in proofing the drafts of this thesis.

To David Bishop in the Department of Chemistry, University of Technology, Sydney I am greatly appreciative of his knowledge, assistance and use of their laboratory for the analysis of trace metals in fishes tissues. Also Gemma Armstrong for her assistance in acquiring chemicals and materials for this analysis. To the staff of the Australian Museum who helped in the identification of polychaete fauna (Anna Murray) and larval and juvenile fishes (Dr Tom Trnski and Sally Reader) and Bruce Gill (University of Sydney, Macleay Museum).

Finally, many thanks go to my partner Margaret and daughter Sara, who have always been encouraging and patient as I strive to reach my goals and to Bonnie (Mum), who did not survive to see me reach this milestone: miss you lots.
Table of Contents

Statement of Originality .. i

Acknowledgements .. ii

Table of contents... iii

Abstract.. ix

List of Tables ... xii

List of Figures ... xxii

Chapter 1: Introduction ... 1

1.1 General Introduction ... 2

1.2 Classification and definitions of estuaries .. 2

1.2.1 Intermittently Closed and Open Lakes and Lagoons (ICOLLS) .. 4

1.3 Estuarine fish assemblages ... 5

1.3.1 Fish assemblages of NSW ICOLLS ... 6

1.3.2 Recruitment of larval and juvenile fishes into ICOLLS ... 6

1.4 Ecology of ICOLLS ... 7

1.4.1 Physical and water chemistry characteristics .. 7

1.4.2 Habitats within ICOLLS .. 9

1.5 Feeding ecology of fishes in ICOLLS .. 10

1.6 Anthropogenic impacts on ICOLLS ... 11

1.7 Conclusion .. 13

1.8 Current study ... 14

1.9 Aims of study ... 14

1.10 Thesis structure ... 15

Chapter 2: Study area ... 16

2.1 Study area ... 17

2.2 Northern Site-Gosford ... 17

2.2.1 Climate .. 17

2.2.2 Catchment characteristics ... 19

2.2.3 Cockrone Lagoon .. 19
2.2.4 Avoca Lagoon .. 24
2.2.5 Terrigal Lagoon ... 28
2.2.6 Wamberal Lagoon ... 32
2.2.7 Adjacent surf zones ... 36
2.3 Southern Site–Ulladulla .. 36
2.3.1 Climate .. 36
2.3.2 Catchment characteristics ... 37
2.3.3 Termeil Lake ... 37
2.3.4 Meroo Lake ... 38
2.4. Sampling regime .. 39

Chapter 3: Factors influencing temporal and spatial variations of the invertebrate faunal
assemblages of ICOLLs ... 45
3.1 Introduction .. 46
3.2 Materials and methods ... 48
 3.2.1 Study area ... 48
 3.2.2 Invertebrate fauna collection and laboratory analysis .. 48
 3.2.3 Environmental variables ... 49
 3.2.4 Data analysis .. 49
3.3 Results .. 51
 3.3.1 ICOLL openings ... 51
 3.3.2 Invertebrate faunal assemblages of ICOLLs .. 52
 3.3.3 Comparison of invertebrate faunal assemblages between ICOLLs 60
 3.3.4 Comparison of environmental factors structuring invertebrate faunal assemblages of
ICOLLs .. 64
3.4 Discussion .. 69
 3.4.1 Physical and environmental aspects of ICOLLs ... 69
 3.4.2 Invertebrate faunal assemblages of ICOLLs .. 70
 3.4.3 Spatial and temporal variation of invertebrate faunal assemblages of ICOLLs 71
 3.4.4 Influence of environmental variables on invertebrate faunal assemblages 72
 3.4.5 Implications of the study ... 74
Chapter 4: Effects of barrier openings on larval and juvenile fish assemblages within ICOLLs and in adjacent surf zones

4.1 Introduction .. 86
4.2 Materials and Methods .. 88
 4.2.1 Pilot study ... 88
 4.2.2 Field fish collection and laboratory analyses ... 90
 4.2.3 Life history categories ... 92
 4.2.4 Environmental variables ... 92
 4.2.5 Sampling design and data analysis ... 93
4.3 Results ... 94
 4.3.1 ICOLL openings and environmental variables of ICOLLs and adjacent surf zones..... 94
 4.3.2 Larval and juvenile fishes of ICOLLs .. 97
 4.3.3 Temporal variation in assemblages of larval and juvenile fishes of ICOLLs 99
 4.3.4 Larval and juvenile fishes of adjacent surf zones ... 110
 4.3.5 Temporal variation in assemblages of larval and juvenile fishes of adjacent surf zones ... 110
 4.3.6 Effects of barrier openings on larval and juvenile fish assemblages 122
 4.3.7 Length-frequency distributions of larval and juvenile fishes 123
4.4. Discussion ... 125
 4.4.1 Effects of barrier openings on larval and juvenile fish assemblages of ICOLLs and adjacent surf zones .. 125
 4.4.2 Comparison of larval and juvenile fish assemblages in ICOLLs and adjacent surf zones ... 128
 4.4.3 Implications of this study for ICOLL management ... 130
4.5 Conclusion .. 130

Chapter 5: Factors influencing temporal and spatial variations of the fish assemblages of ICOLLs .. 132
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and methods</td>
<td>136</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Study area</td>
<td>136</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Pilot study</td>
<td>141</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Sampling design</td>
<td>145</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Environmental variables</td>
<td>146</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Data analysis</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td>149</td>
</tr>
<tr>
<td>5.3.1</td>
<td>ICOLL openings</td>
<td>149</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Fish assemblages of ICOLLs</td>
<td>150</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Multivariate analysis - seine net samples</td>
<td>165</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Univariate analysis - seine net samples</td>
<td>169</td>
</tr>
<tr>
<td>5.3.3.3</td>
<td>Multivariate analysis - multi-panel gill net samples</td>
<td>170</td>
</tr>
<tr>
<td>5.3.3.4</td>
<td>Univariate analysis - multi-panel gill net samples</td>
<td>173</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Comparison of environmental factors structuring fish assemblages of ICOLLs</td>
<td>175</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>Environmental variables</td>
<td>175</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Influence of environmental variables on seine net fish assemblages</td>
<td>176</td>
</tr>
<tr>
<td>5.3.4.3</td>
<td>Influence of environmental variables on multi-panel gill net fish assemblages</td>
<td>180</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>183</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Overview of fish assemblages in ICOLLs</td>
<td>183</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Diversity of fishes in Central Coast ICOLLs</td>
<td>185</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Comparison of fish assemblages in ICOLLs</td>
<td>186</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Spatial and temporal variation of fish assemblages of ICOLLs</td>
<td>188</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Influence of environmental variables on fish assemblages</td>
<td>189</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Implications of this study</td>
<td>190</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>191</td>
</tr>
<tr>
<td>Appendix</td>
<td>Fish assemblages, water variables and algal mass of ICOLLs</td>
<td>193</td>
</tr>
</tbody>
</table>

Chapter 6: Diets of fishes in ICOLLs and the effects of barrier openings | 204 |
Table of Contents

6.1 Introduction ... 205

6.2 Materials and methods .. 207
 6.2.1 Study area .. 207
 6.2.2 Study species ... 208
 6.2.3 Sample size ... 209
 6.2.4 Examination of gut contents .. 211
 6.2.5 Dietary composition ... 212
 6.2.6 Data analysis .. 212

6.3 Results ... 213
 6.3.1 Acanthopagrus australis-Cockrone Lagoon .. 213
 6.3.2 Atherinosoma microstoma-Avoca Lagoon .. 218
 6.3.3 Atherinosoma microstoma–Wamberal Lagoon ... 221
 6.3.4 Ambassis jacksoniensis-Terrigal Lagoon ... 225

6.4 Discussion ... 228
 6.4.1 General overview of diets of fishes in ICOLLs .. 228
 6.4.2 Effects of barrier openings on diets of ICOLL fishes ... 231

6.5 Conclusions .. 233

Appendices: Frequency of occurrence (%F) and estimated percentage volumetric contributions (%V) of dietary items of fishes in ICOLLs.. 234

Chapter 7: Trace metal concentrations in sediments and tissues of *Mugil cephalus* in ICOLLs: effects of ICOLL condition and barrier openings ... 239

7.1 Introduction ... 240

7.2 Materials and methods ... 242
 7.2.1 Study site .. 242
 7.2.2 Study species .. 244
 7.2.3 Sediment collection .. 244
 7.2.4 Environmental variables ... 244
 7.2.5 Sediment processing and analysis ... 245
 7.2.6 Fish tissue collection and trace metal analysis ... 246
 7.2.7 Data analysis .. 247
7.3 Results

7.3.1 Environmental variables ... 249
7.3.2 Trace metal concentrations in ICOLL sediments 249
7.3.3 Multivariate analysis ... 253
7.3.4 Length and weight comparisons of Mugil cephalus 254
7.3.5 Metal concentrations in tissues of Mugil cephalus 255
7.3.6 Multivariate analysis ... 259

7.4 Discussion

7.4.1. Environmental variables and sediment characteristics of ICOLLs 266
7.4.2 Sources of trace metals .. 267
7.4.3 Trace metals in ICOLL sediments .. 268
7.4.4 Comparison of trace metals in ICOLL sediments 269
7.4.5 Trace metals in liver and gonad tissues of Mugil cephalus 270
7.4.6 Implication and limitations of the study .. 272

7.5 Conclusion

Chapter 8: General discussion and conclusions ... 274

8.1 General Discussion .. 275
8.2 Barrier openings .. 276
8.3 Recruitment of larval and juvenile fishes into ICOLLs 277
8.4 The effects of environmental factors on the invertebrate and fish assemblages of ICOLLs ... 278
8.4.1 Invertebrate assemblages .. 278
8.4.2 Fish assemblages .. 278
8.5 Diets of fish in ICOLLs .. 279
8.6 Trace metals in sediments and fishes in ICOLLs ... 279
8.7 Implications of this study ... 280
8.8 Opportunities for Further Research .. 280
8.9 General conclusions .. 281

References cited .. 283
Abstract

Intermittently Closed and Open Lakes and Lagoons (ICOLLs) are coastal waterbodies that have intermittent connection to the ocean due to the formation of a barrier across the entrance. Catchment development is a major cause of pollution and also a justification for artificial barrier openings, which can have an adverse effect on the flora and fauna of ICOLLs. In most cases barrier openings may not have a direct effect on the biota of ICOLLs, but they can affect the factors which may influence invertebrate faunal and fish assemblages. The overall aim of this study was to determine what factors may influence fish assemblages of Central Coast ICOLLs. In order to understand these factors the research looked at the general ecology of Central Coast ICOLLs, including their invertebrate faunal assemblages and environmental parameters that may influence them (Chapter 3). Vegetated habitats within Central Coast ICOLLs include Ruppia sp. and the algae Chara sp. and Enteromorpha intestinalis that support an invertebrate fauna dominated by polychaetes, crustaceans and molluscs. No single environmental variable had a major influence in structuring the invertebrate faunal assemblages at all four Central Coast ICOLLs. However, salinity was a major influencing factor at Cockrone, Avoca and Terrigal Lagoons, with percentage sediment composition a major factor at Wamberal Lagoon.

Recruitment processes of larval and juvenile fishes are also presumably influenced by the status of the barrier. Larval and juvenile fishes occurring in Central Coast ICOLLs and their adjacent surf zones were identified to determine if movement of various species occurs once the barrier has been opened (Chapter 4). In this study, larval and juvenile fishes were more abundant in Central Coast ICOLLs but had lower species richness compared to their adjacent surf zones. The dominant larval and juvenile fish species found in ICOLLs included Ambassis jacksoniensis (Terrigal Lagoon), Philypnodon grandiceps (Avoca and Wamberal Lagoons) Atherinosoma microstoma (Wamberal Lagoon) and Acanthopagrus australis (Cockrone Lagoon). Hyperlophus vittatus was the dominant species collected from the adjacent surf zones. In this study there were no significant changes in larval and juvenile fish assemblages in either habitat from before to after barrier openings. Although some marine spawning species such as A. australis were present it could not be determined if these species were recruited from adjacent surf zones or from within these ICOLLs themselves. In most cases, Central Coast ICOLLs are considered to be generally self-recruiting environments, not for all species, but for many of their resident species of fish.

Chapter Five determined the effects environmental parameters have on influencing fish assemblages. Fish assemblages of Central Coast ICOLLs showed low species richness, but high abundances of particular species when sampled using seine nets and multi-panel gillnets.
Acanthopagrus australis (Cockrone Lagoon), Atherinosoma microstoma (Avoca and Wamberal Lagoons) and Ambassis jacksoniensis (Terrigal Lagoon) were the numerically dominant fish species collected using seine nets. Mugil cephalus was the species which was overall most frequently collected by gill netting. Fish assemblages were shown to be significantly different between Central Coast ICOLLs, and in this case were not directly influenced by barrier openings except at Wamberal Lagoon. However, Terrigal Lagoon, which had more barrier openings over the study period, compared to the other three ICOLLs, did have a higher diversity of fishes, which indicates that frequent barrier openings can influence fish assemblages. The major environmental influence on fish assemblages collected by seine nets at Cockrone and Wamberal Lagoons was salinity, and water temperature at Avoca and Terrigal Lagoons. The major environmental influence on fish assemblages collected by multi-panel gill nets at Cockrone and Avoca Lagoons was salinity, and water temperature at Terrigal Lagoon and >212 µm percentage sediment grain size at Wamberal Lagoon. Also, stochastic factors in the times and durations of barrier openings may play a large part in determining the fish assemblages that may be present at any one time in individual ICOLLs.

High abundances of fish and their isolation from the ocean for long periods can result in competition for limited food resources, along with the effects that barrier openings may have on these resources not being fully understood (Chapter 6). Gut contents for each dominant species examined were similar; however each fish species had a dietary preference for a particular taxonomic group. Amphipods were the main dietary component of Acanthopagrus australis and Atherinosoma microstoma, with zooplankton being the main dietary component of Ambassis jacksoniensis. Barrier openings had a significant effect on the diets of A. australis (in Cockrone Lagoon) and A. microstoma (in Wamberal Lagoon), but not for species examined from Avoca and Terrigal Lagoons.

Trace metal concentrations in sediments of Central Coast and Near-South Coast ICOLLs and gonad and liver tissues of Mugil cephalus were determined (Chapter 7). In the six ICOLLs studied, trace metal concentrations in both sediments and fish tissues were found to be relatively low and below guideline levels. Concentration levels did not differ significantly when compared between near-pristine (Termeil and Meroo Lakes), modified (Avoca and Terrigal Lagoons) and extensively-modified (Cockrone and Wamberal Lagoons) ICOLLs. Trace metal concentrations in sediments were not influenced by barrier openings.

This study has shown that ICOLLs which are located geographically close to each other generally do not have similar environmental characteristics or fish assemblages which can be
attributed to varying levels of development and land use activities within their individual catchments.
Table 2.1. Physical characteristics of surf zones (after Short 2007) adjacent to ICOLLs used in this study. Aspect is (ESE) east south easterly, and (ENE) east north easterly. Beach types are (RBB) rhythmic bar and beach, (TBR) transverse bar and rip, (LTT) low tide terrace beach. ...

Table 2.2. Summary and comparison of ICOLL characteristics based on Roy et al. (2001), BoM (2010) and OEH (2011). IV = intermittently closed estuary; 8 = saline coastal lagoon; Evolution stage: A = youthful, B = intermediate and C = semi-mature, I = intermittent entrance.

Table 2.3. Sampling dates, barrier openings, the number of sites sampled and the total number of samples collected of invertebrate fauna, larval and juvenile fishes (also in adjacent surf zones), fish fauna, gut analysis and trace metal concentrations in fish tissue and sediments at Cockrone Lagoon between October 2004 and April 2012. * denotes no sampling in surf zones due to bad weather conditions. ..40

Table 2.4. Sampling dates, barrier openings, the number of sites sampled and the total number of samples collected of invertebrate fauna, larval and juvenile fishes (also in adjacent surf zones), fish fauna, gut analysis and trace metal concentrations in fish tissue and sediments at Avoca Lagoon between October 2004 and April 2012. ...41

Table 2.5. Sampling dates, barrier openings, the number of sites sampled and the total number of samples collected of invertebrate fauna, larval and juvenile fishes (also in adjacent surf zones), fish fauna, gut analysis and trace metal concentrations in fish tissue and sediments at Terrigal Lagoon between October 2004 and April 2012. ...42

Table 2.6. Sampling dates, barrier openings, the number of sites sampled and the total number of samples collected of invertebrate fauna, larval and juvenile fishes (also in adjacent surf zones), fish fauna, gut analysis and trace metal concentrations in fish tissue and sediments at Wamberal Lagoon between October 2004 and April 2012. * denotes no sampling in adjacent surf zones due to bad weather conditions. ..44

Table 3.1. Summary of the 10 environmental variables used in DISTLM analysis. Sediments were grouped according to their grain-sizes, with coarse sand ≥1.0 mm, medium sand >0.5 mm, fine sand >212 µm, coarse silt >63 µm and fine silt/clay <63 µm (Briggs 1977).51
Table 3.2. ICOLL barrier openings between November 2004 and October 2005. *denotes artificial barrier openings undertaken by Gosford City Council. The dates of other openings were obtained from Manly Hydraulic Laboratories (2004) and confirmed by visual inspection.

Table 3.3. Presence/absence of invertebrate infauna and epifauna. Collections occurred bimonthly between December 2004 and October 2005. X indicates the species was present at the ICOLL.

Table 3.4. Summary of results of 3-factor PERMANOVA testing for differences in the invertebrate assemblages of ICOLLs.

Table 3.5. Summary of SIMPER results showing invertebrate species responsible for temporal differences in invertebrate assemblages at each ICOLL. Invertebrate species that contributed up to 90% of the dissimilarity between sampling times are shown.

Table 3.6. Summary of results of univariate PERMANOVA testing for differences among ICOLLs in the mean number of species and mean number of total individuals.

Table 3.7. Results of distance-based multivariate linear model (DISTLM) for environmental variables for Cockrone, Avoca, Terrigal and Wamberal Lagoons that are the BEST predictors of spatial and temporal variation in invertebrate assemblages. The relative importance of each variable in the model linking these variables to assemblage variation (fitted model) and the relative importance of each variable to the total variation in invertebrate assemblages are shown.

Table 3.8. Values of Pearson correlations of selected environmental variables with each of the dbRDA axes for Cockrone, Avoca, Terrigal and Wamberal Lagoons.

Table 4.1. ICOLL and surf zone sampling periods between April 2006 and March 2007. *denotes ICOLLs only sampled due to dangerous surf and adverse weather conditions.

Table 4.2. ICOLL barrier openings between April 2006 and February 2007. *denotes Gosford City Council sanctioned artificial barrier opening. Other barrier opening data, whether an illegal artificial opening or *natural opening, were obtained from Manly Hydraulic Laboratories and confirmed by visual inspection.
Table 4.3. Total numbers of larval and juvenile fishes collected in ICOLLs from April 2006 to March 2007, showing life history categories (F=Freshwater, R=Resident, MED=Marine–estuary dependant, EM=Estuarine and marine, T=Transient and M=Marine species), and range in total length (TL).

Table 4.4. Summary of one-factor ANOVAs testing for temporal variation in total abundance of larval and juvenile fishes collected from four ICOLLs between April 2006 and March 2007.

Table 4.5. Summary of changes in mean total abundance of larval and juvenile fishes between successive sampling periods in relation to the status of the ICOLL entrance in the interval between sampling periods. Increase and decrease refer, respectively, to significant ($p<0.05$) increases and decreases in mean abundance.

Table 4.6. Summary of one-factor ANOVAs testing for temporal variation in number of species of larval and juvenile fishes collected from four ICOLLs between April 2006 and March 2007.

Table 4.7. Summary of changes in mean number of species of larval and juvenile fishes between successive sampling periods in relation to the status of the ICOLL entrance in the interval between sampling periods. Increase and decrease refer, respectively, to significant ($p<0.05$) increases and decreases in mean abundance.

Table 4.8. Summary of one-factor ANOVAs testing for temporal variation in numbers of larvae and juveniles of the dominant species in each ICOLL between April 2006 and March 2007.

Table 4.9. Summary of changes in mean abundance of larvae and juveniles of the dominant species between successive sampling periods in relation to the status of the ICOLL entrance in the interval between sampling periods. Increase and decrease refer, respectively, to significant ($p<0.05$) increases and decreases in mean abundance.

Table 4.10. Summary of pair-wise ANOSIM tests comparing larval and juvenile fish assemblages of ICOLLs between successive sampling periods from April 2006 to March 2007 (\rightarrow denotes period during which ICOLL was opened). Monthly samples where no fish were collected are not included in the analysis. The values shown are pairwise R-values and their significance levels. Significant values are in italics.
Table 4.11. Summary of changes in assemblages of larval and juvenile fishes of ICOLLs between successive sampling periods in relation to the status of the ICOLL entrance in the interval between sampling periods. Change refers to a significant ($p<0.05$) difference in assemblage structure by pairwise ANOSIM test. ...109

Table 4.12. Total number of larval and juvenile fishes collected in adjacent surf zones from April 2006 to March 2007. Surf zone sampled ~100 m south of ICOLL entrance, adjacent to ICOLL entrance and ~100 m north of ICOLL entrance. Also shown are the life history categories (F=Freshwater, R=Resident, MED=Marine–estuary dependant, EM=Estuarine and marine, T=Transient and M=Marine species), and range in total length (TL).111

Table 4.13. Summary of results of one-factor ANOVA testing for temporal variation in total abundance of larval and juvenile fishes collected from four surf zones between April 2006 and March 2007..112

Table 4.14. Summary of changes in mean total abundance of larval and juvenile fishes of surf zones between successive sampling periods in relation to the status of the ICOLL barrier at the interval between sampling periods. Increase and decrease refer, respectively, to significant ($p<0.05$) increases and decreases in mean abundance as detected by SNK tests....................113

Table 4.15. Summary of results of one-factor ANOVA testing for temporal variation in number of species of larval and juvenile fishes collected from four surf zones between April 2006 and March 2007..115

Table 4.16. Summary of changes in the mean number of species of larval and juvenile fishes of surf zones between successive sampling periods in relation to the status of the ICOLL entrance in the interval between sampling periods. Increase and decrease refer, respectively, to significant ($p<0.05$) increases and decreases in mean abundance as detected by SNK tests.....116

Table 4.17. Summary of results of one-factor ANOVA testing for temporal variation in dominant species of larval and juvenile fishes collected from four surf zones between April 2006 and March 2007..118

Table 4.18. Summary of changes in the mean abundance of dominant species of larval and juvenile fishes of surf zones between successive sampling periods in relation to the status of the barrier in the interval between sampling periods. Increase and decrease refer, respectively, to significant ($p<0.05$) increases and decreases in mean abundance as detected by SNK tests....119
Table 4.19. Summary of pair-wise ANOSIM tests comparing larval and juvenile fish assemblages of surf zones between successive sampling periods from April 2006 to March 2007 (→ denotes period during which ICOLL was opened). Absence of a test value for some surf zones for some sampling period occurs because sampling did not occur due to poor weather or no fish were collected. The values shown are pair-wise R-values and their significance levels. Significant values are in italics.

Table 4.20. Jaccard’s coefficient of similarity for larval and juvenile fish assemblages between ICOLLs and surf zones before and after opening events.

Table 5.1. Fishes collected from Avoca Lagoon during the pilot study using baited traps. (‘too damaged to identify).

Table 5.2. Fishes collected from ICOLLs using seine and multi-panel gill nets during the pilot study. Gill nets were not used in Cockrone Lagoon due to unsuitable weather conditions.

Table 5.3. Summary of the 17 environmental variables used in DISTLM analysis. Sediments were separated into different grain-sizes; coarse sand ≥1mm, medium sand >0.5 mm, fine sand >212 µm, coarse silt >63 µm and fine silt/clay <63 µm (Briggs 1977).

Table 5.4. ICOLL barrier openings between February 2009 and June 2010. * denotes artificial barrier opening by Gosford City Council. # denotes illegal barrier opening confirmed by Gosford City Council. Other barrier opening data, natural or artificial, were obtained from MHL and confirmed by visual inspection. n= the number of barrier openings.

Table 5.5. Presence/absence of fishes collected from ICOLLs between February 2009 and June 2010. Fishes were collected by seine net (s) or gill nets (g) or by both methods (s,g).

Table 5.6. Summary of 3-factor PERMANOVA testing for differences in the fish assemblages of ICOLLs collected by seine nets. Data was square-root transformed.

Table 5.7. Summary of SIMPER results showing fish species collected by seine net responsible for temporal differences among sites in fish assemblages of each ICOLL. Species that contributed up to 90% of the dissimilarity between sampling times are shown.
Table 5.8. Summary of SIMPER results showing fish species collected by seine net responsible for temporal differences among fish assemblages between ICOLLS. (Species that contributed up to 90% of the dissimilarity between sampling times are shown) ...168

Table 5.9. Summary of results of 3-factor univariate PERMANOVA testing for differences in the mean number of species and mean total number of individuals collected by seine nets. Data was square-root transformed...170

Table 5.10. Summary of 3-factor PERMANOVA testing for differences in the fish assemblages of ICOLLS collected by multi-panel gill nets. Data was square-root transformed.171

Table 5.11. Summary of SIMPER results showing fish species responsible for temporal differences among sites in fish assemblages at each ICOLL. Species that contributed up to 90% of the dissimilarity between sampling times are shown...173

Table 5.12. Summary of 3-factor univariate PERMANOVA testing for differences in the mean number of species and mean total number of individuals collected by multi-panel gill nets. Data was square-root transformed...174

Table 5.13. Results of distance-based multivariate linear model (DISTLM) for environmental variables for Cockrone, Avoca, Terrigal and Wamberal Lagoons that is the BEST predictor of temporal and spatial variation in seine net fish assemblages. The relative importance of each variable in the model linking these three variables to assemblage variation (fitted model) and the relative importance of each variable to the total variation in fish assemblages are shown.......177

Table 5.14. Values of Pearson correlations of selected environmental variables with each of the dbRDA axes for Cockrone, Avoca, Terrigal and Wamberal Lagoons..179

Table 5.15. Results of distance-based multivariate linear model (DISTLM) for environmental variables for Cockrone, Avoca, Terrigal and Wamberal Lagoons that are the BEST predictors of temporal and spatial variation in multi-panel gill net fish assemblages. The relative importance of each variable in the model linking these three variables to assemblage variation (fitted model) and the relative importance of each variable to the total variation in fish assemblages are shown. ...181

Table 5.16. Values of Pearson correlations of selected environmental variables with each of the dbRDA axes for Cockrone, Avoca, Terrigal and Wamberal Lagoons..183
Table 6.1. Summary of results of 1-factor PERMANOVA testing for differences in the gut contents (defined by %V) of *Acanthopagrus australis* from before to after (i.e. status) barrier openings at Cockrone Lagoon (PERMDISP $p=0.013$). Data was square-root transformed.214

Table 6.2. Summary of SIMPER results showing taxonomic units responsible for differences in the gut contents of *Acanthopagrus australis* in Cockrone Lagoon from before to after a barrier opening. (Taxonomic units that contributed up to 90% of the dissimilarity of the before and after samples are shown). ..215

Table 6.3. Summary of results of 1-factor PERMANOVA testing for differences in the number of taxonomic units (PERMDISP $p=0.80$) and the number of dietary items (PERMDISP $p=0.003$) of *Acanthopagrus australis* from before to after barrier openings (status) at Cockrone Lagoon. Data was square-root transformed...216

Table 6.4. Summary of results of 1-factor PERMANOVA testing for differences in the mean gut fullness (PERMDISP $p=0.40$) and mean TL (PERMDISP $p=0.0001$) of *Acanthopagrus australis* from before to after the barrier had opened (status) at Cockrone Lagoon. * denotes untransformed, ** square-root transformation...217

Table 6.5. Summary of results of 1-factor PERMANOVA testing for differences in the gut contents (defined by %V) of *Atherinosoma microstoma* from before to after (i.e. barrier status) barrier openings at Avoca Lagoon (PERMDISP $p=0.91$). Data was square-root transformed. ..218

Table 6.6. Summary of results of univariate PERMANOVA testing for differences in the mean numbers of taxonomic units (PERMDISP $p=0.02$) and the mean number of dietary items (PERMDISP $p=0.84$) for *Atherinosoma microstoma* at Avoca Lagoon from before to after the barrier was opened. Data was square-root transformed...219

Table 6.7. Summary of results of 1-factor PERMANOVA testing for differences in the mean gut fullness (PERMDISP $p=0.28$) and mean TL (PERMDISP $p=0.003$) of *Atherinosoma microstoma* from before to after the barrier opening (i.e. status) at Avoca Lagoon. * data was untransformed, ** data was square-root transformed...220

Table 6.8. Summary of results of 1-way PERMANOVA testing for differences in the %V of gut contents (PERMDISP $p=0.25$) of *Atherinosoma microstoma* from before to after barrier openings (i.e. status) at Wamberal Lagoon. Data was square-root transformed.................................222
Table 6.9. Summary of SIMPER showing taxonomic units responsible for differences in the gut contents of *Atherinosoma microstoma* in Wamberal Lagoon from before to after a barrier opening. Taxonomic units that contributed up to 90% of the dissimilarity of the before and after samples are shown. ...223

Table 6.10. Summary of results of univariate PERMANOVA testing for differences in the mean numbers of taxonomic units (PERMDISP *p*=0.29) and the mean number of dietary items (PERMDISP *p*=0.09) for *Atherinosoma microstoma* at Wamberal Lagoon from before to after (i.e. barrier status) barrier opening. Data was untransformed...223

Table 6.11. Summary of results of 1-way PERMANOVA testing for differences in the mean gut fullness (PERMDISP *p*=0.002) and mean TL (PERMDISP *p*=0.46) of *Atherinosoma microstoma* from before to after barrier openings (i.e. status) at Wamberal Lagoon. Data was square-root transformed...224

Table 6.12. Summary of results of 1-factor PERMANOVA testing for differences in the gut contents (defined by %V) of *Ambassis jacksoniensis* from open to after (i.e. barrier status) barrier closure at Terrigal Lagoon (PERMDISP *p*=0.88). Data was square-root transformed...226

Table 6.13. Summary of results of univariate PERMANOVA testing for differences in mean numbers of taxonomic units (PERMDISP *p*=0.19) and the mean number of dietary items (PERMDISP *p*=0.28) for *Ambassis jacksoniensis* from open to after (i.e. barrier status) barrier closure at Terrigal Lagoon. Data was untransformed. ...227

Table 6.14. Summary of results of univariate PERMANOVA testing the differences for mean gut fullness (PERMDISP *p*=0.92) and mean TL (PERMDISP *p*=0.01) of *Ambassis jacksoniensis* from open to after (i.e. barrier status) barrier closure at Terrigal Lagoon. *data untransformed, **data square root transformed..228

Table 7.1. Mean trace metal concentrations (±s.e.) and detection limits for sediment reference material (AGAL-10 river sediment) and the lowest level established by ANZECC and ARMCANZ (2000) and Interim Sediments Quality Guidelines (ISQG- in mg/kg). (-) no guidelines available..246
Table 7.2. Mean trace metal concentrations (±s.e.) for tissue reference material (DOLT-4 dogfish liver) and guidelines from ANZFA (1999). *indicates the level was below detectable limits or (-) no guidelines available. ...247

Table 7.3. Environmental variable ranges and means ± s.e. for surface waters and average depth for all ICOLLs at sites where the target species was collected. # derived from (OEH, 2011). *indicates ICOLL had opened once during this sampling period..251

Table 7.4. Pearson’s correlation coefficient (r) and levels of significance (p) for the relationship between trace metal concentrations, Cr, Cu, Fe and Zn, in sediments and the number of barrier openings. As, Cd, Pb and Se were not tested as they were found to be below detectable levels. ..253

Table 7.5. Summary of results of 2-way PERMANOVA testing for differences in the suite of trace metals of sediments resulting from ICOLL status (near-pristine, modified, extensively-modified), and among ICOLLs within each status category...254

Table 7.6. Total length (cm) and weight (g) of *Mugil cephalus* collected from near-pristine (NP) modified (M) and extensively-modified (EM) ICOLLs. n= number of fish collected.255

Table 7.7. Summary of results of univariate PERMANOVA testing for differences in the TL (cm) and weight (g) of *Mugil cephalus* collected from near-pristine, modified and extensively-modified ICOLLs. Univariate dispersions of the TL (PERMDISP p=0.05) and for the weight (PERMDISP p=0.12) were not significantly different...255

Table 7.8. Summary of results of 2-factor PERMANOVA, with total length and weight as co-variates testing for differences in trace metal concentrations in gonad tissues of *Mugil cephalus* from near-pristine, modified and extensively-modified ICOLLs. ...260

Table 7.9. Summary of results of 2-factor PERMANOVA, with length and weight as co-variates testing for differences in trace metal concentrations in liver tissues of *Mugil cephalus* from near-pristine, modified, and extensively-modified ICOLLs. ..262

Table 7.10. Pearson’s correlation coefficients (r) and levels of significance (p) for the relationship between concentrations of individual metals in the liver and gonads of *Mugil cephalus*, and their TL and mass. *p<0.05 **p<0.001...263
Table 7.11. Summary of p-value results for 3-factor PERMANOVA testing for differences in trace metal concentrations in liver and gonad tissues of *Mugil cephalus* from near-pristine, modified, extensively-modified ICOLLs. Data transformed using log(x+1)* and square root** to obtain a PERMDISP that is not significant. *** indicates PERMDISP significant using any data transformation. ...265
List of Figures

Figure 2.1. Study location of ICOLLs at the northern sites (Gosford) and southern sites (Ulladulla). ... 18

Figure 2.2. Aerial view of Cockrone Lagoon (OEH 2011). ... 20

Figure 2.3. Collecting sites (1-9) and sediment types of Cockrone Lagoon, May 2004. Areas not coloured indicate sites where sediment was not collected. ... 21

Figure 2.4. Percentage grain size composition of ambient sediment samples collected from nine sites within Cockrone Lagoon in May 2004. ... 22

Figure 2.5. Seagrass and algal habitats of Cockrone Lagoon obtained by field measurements during 2004 and derived from aerial photos and West et al. (1985). Fortnightly sampling sites for salinity, turbidity and water temperature and bimonthly invertebrate collection are labelled 1-6 (see Chapter 3). Areas not coloured indicate sites where seagrasses and/or algae were not present or areas that were not assessed. ... 23

Figure 2.6. Aerial view of Avoca Lagoon (OEH 2011). ... 24

Figure 2.7. Collecting sites (1-15) and sediment types of Avoca Lagoon, May 2004. Areas not coloured indicate sites where sediment was not collected. ... 25

Figure 2.8. Percentage grain size composition of ambient sediment samples collected from fifteen sites within Avoca Lagoon in May 2004. ... 26

Figure 2.9. Seagrass and algal habitats of Avoca Lagoon obtained by field measurements during 2004 and derived from aerial photos and West et al. (1985). Fortnightly sampling sites for salinity, turbidity and water temperature and bimonthly invertebrate collection are labelled 1-6 (see Chapter 3). Areas not coloured indicate sites where seagrasses and/or algae were not present or areas that were not assessed. ... 27

Figure 2.10. Aerial view of Terrigal Lagoon (OEH 2011). ... 28

Figure 2.11. Collecting sites (1-12) and sediment types of Terrigal Lagoon, May 2004. 29
Figure 2.12. Percentage grain size composition of ambient sediment samples collected from twelve sites within Terrigal Lagoon in May 2004. ...30

Figure 2.13. Terrigal Lagoon showing positions of fortnightly sampling sites (labelled 1-4) for salinity, turbidity and water temperature and bimonthly invertebrate collection (see Chapter 3). No aquatic vegetation was observed in Terrigal Lagoon.31

Figure 2.14. Aerial view of Wamberal Lagoon (OEH 2011). ...32

Figure 2.15. Collecting sites (1-13) and sediment types of Wamberal Lagoon, May 2004. Areas not coloured indicate sites where sediment was not collected.33

Figure 2.16. Percentage grain size composition of ambient sediment samples collected from thirteen sites within Wamberal Lagoon in May 2004. ...34

Figure 2.17. Distribution of seagrass and algae in Wamberal Lagoon obtained by field measurements during 2004 and derived from aerial photos and West et al. (1985). Fortnightly sampling sites for salinity, turbidity and water temperature and bimonthly invertebrate collection are labelled 1-6 (see Chapter 3). Areas not coloured indicate sites where seagrasses and/or algae were not present or areas that were not assessed.35

Figure 2.18. Aerial view of Termeil Lake (OEH 2011). ...38

Figure 2.19. Aerial view of Meroo Lake (OEH 2011). ...39

Figure 3.1. Comparison of the total number of invertebrates (a) and the total number of invertebrate taxa (b) collected from sites (n) within each ICOLL from December 2004 to October 2005. ..53

Figure 3.2. Temporal and spatial variation of (a) the total number of individual invertebrates and (b) the total number of taxa collected using core samples (sites 1-6) and from Ruppia sp. (site 4R) and algae (sites 4A and 5A) from Cockrone Lagoon. Dotted vertical lines indicate single barrier openings occurred between sampling periods. ..56
Figure 3.3. Temporal and spatial variation of (a) the total number of invertebrates and (b) the total number of taxa collected using core samples (sites 1-6) and from Ruppia sp. (site 3R) and algae (sites 4A and 5A) from Avoca Lagoon. Dotted vertical lines indicate single barrier openings occurred between sampling periods. ... 57

Figure 3.4. Temporal and spatial variation of (a) the total number of individual invertebrates and (b) the total number of taxa collected using core samples (sites 1-4) from Terrigal Lagoon. Solid vertical lines indicate multiple barrier openings occurred between sampling periods............ 58

Figure 3.5. Temporal and spatial variation of (a) the total number of individual invertebrates and (b) the total number of taxa collected using core samples (sites 1-6) and from Ruppia sp. (sites 3R, 4R and 6R) from Wamberal Lagoon. Dotted vertical lines indicate single barrier openings occurred between sampling periods................................. 59

Figure 3.6. MDS ordination plots showing the temporal and spatial variability of invertebrate assemblages at sites within each ICOLL. Assemblages are based on the mean abundance of each species in each site at each sampling time. Sampling times are represented by symbols: ▲T1, ▼T2, ■T3, ♦T4, ●T5, +T6. The replicate symbols represent the different sites at each time... 61

Figure 3.7. Mean number (±se) of species (a) and mean number (±se) of individuals (b) of invertebrate fauna from all ICOLLs. * denotes the ICOLL was significantly different................. 64

Figure 3.8. dbRDA ordination plots showing the structural arrangement of invertebrate assemblages in Cockrone, Avoca, Terrigal and Wamberal Lagoons overlaid with the vectors of the environmental variables that explained significant amounts of variation in the assemblages. Vectors represent the direction and magnitude of the Pearson correlation of each variable with the dbRDA axes. The different symbols represent different sampling times, and the replicate symbols represent the different sites at each time. Sampling times are represented by symbols: ▲T1, ▼T2, ■T3, ♦T4, ●T5, +T6. Sal=salinity, Turb=turbidity, Temp=water temperature, Dist=distance from barrier... 68

Figure 4.1. Illustration of beach seine net used for sampling larval and juvenile fishes from surf zones and ICOLLs (after Geraghty 2004).. 89
Figure 4.2. Pilot study comparison of sampling precision (standard error/mean) for total number of fishes collected using a 20 m and 50 m transect during new and full moon phases in Terrigal Lagoon, for sample sizes of 2 to 6 replicate hauls. ... 89

Figure 4.3. Pilot study comparison of sampling precision (standard error/mean) for total number of fishes collected using 30 m transect during new and full moon phases at 3 sites (south, adjacent, north) on Terrigal Beach, for sample sizes of 2 to 6 replicate hauls. 90

Figure 4.4. Diagrammatic representation of the relative positions of transects used to collect larval and juvenile fishes in surf zones and ICOLLs. ● indicates where environmental variables (salinity and water temperature) were measured. ... 91

Figure 4.5. Water surface temperature (°C) sampled at ICOLLs from April 2006 to March 2007. The dotted vertical lines indicate a single barrier opening occurred between sampling periods. The solid vertical lines indicate multiple barrier openings occurred between sampling periods. ... 96

Figure 4.6. Water surface temperature (°C) sampled at surf zones from April 2006 to March 2007. ... 96

Figure 4.7. Water surface salinity (ppt) sampled at ICOLLs from April 2006 to March 2007. The dotted vertical lines indicate a single barrier opening occurred between sampling periods. The solid vertical lines indicate multiple barrier openings occurred between sampling periods. Salinities were not measured in surf zones. ... 97

Figure 4.8. Mean total number (± se) of larval and juvenile fishes collected at ICOLLs from April 2006 to March 2007. Mean values with the same letter are not significantly different. The dotted vertical lines indicate a single barrier opening occurred between sampling periods.101

Figure 4.9. Mean number of species (± se) of larval and juvenile fishes collected at ICOLLs from April 2006 to March 2007. Mean values with the same letter are not significantly different. The dotted vertical lines indicate a single barrier opening occurred between sampling periods. ... 104
Figure 4.10. Mean abundance (± se) of larvae and juveniles of the dominant species at ICOLLs from April 2006 to March 2007. Mean values with the same letter are not significantly different. The dotted vertical lines indicate a single barrier opening occurred between sampling periods. ...106

Figure 4.11. Dendrograms showing similarity of assemblages of larval and juvenile fishes collected at different sampling times at ICOLLs. Sampling periods occurred bimonthly unless barriers had opened, in which case a sampling period occurred before and after the barrier opening. Sampling periods where no fish were collected were not included in the analysis. ^indicates first sampling period after ICOLLs were opened. The division line is shown at the 50% level. ...108

Figure 4.12. Mean abundance (± se) of larval and juvenile fishes collected at all surf zones from April 2006 to March 2007. Mean values with the same letter are not significantly different. The dotted vertical lines indicate a single barrier opening occurred between sampling periods.113

Figure 4.13. Mean number of species (± se) of larval and juvenile fishes collected at all surf zones from April 2006 to March 2007. Mean values with the same letter are not significantly different. The dotted vertical lines indicate a single barrier opening occurred between sampling periods...116

Figure 4.14. Mean abundance (± se) of the dominant species of larval and juvenile fishes at all surf zones from April 2006 to March 2007. Mean values with the same letter are not significantly different. The dotted vertical lines indicate a single barrier opening occurred between sampling periods...119

Figure 4.15. Dendrogram showing similarity of assemblages of larval and juvenile fishes collected at different sampling times at surf zones. Sampling periods occurred bimonthly unless barriers had opened, in which case a sampling period occurred before and after the barrier opening. Sampling periods where no fish were collected were not included in the analysis. ^indicates first sampling period after barriers were opened. The division line is shown at the 50% level. ...120

Figure 4.16. Length-frequency distributions of the most abundant species collected from each ICOLL before and after opening events. (a) Cockrone Lagoon (no A. australis were collected before the barrier opening), (b) Avoca Lagoon, (c) Terrigal Lagoon, (d)-(e) Wamberal Lagoon. ...124
Figure 5.1. Cockrone Lagoon showing subcatchments (C1-C7) and locations of sampling sites (1-5) for bimonthly seine and multi-panel gill netting, and water sampling and algae collection.

Figure 5.2. Avoca Lagoon showing subcatchments (A1-A11) and locations of sampling sites (1-5) for bimonthly seine and multi-panel gill netting, and water sampling and algae collection.

Figure 5.3. Terrigal Lagoon showing subcatchments (T1-T10) and locations of sampling sites (1-4) for bimonthly seine and multi-panel gill netting and water sampling. No algae were present in this lagoon.

Figure 5.4. Wamberal Lagoon showing subcatchments (W1-W10) and locations of sampling sites (1-5) for bimonthly seine and multi-panel gill netting, and water sampling and algae collection.

Figure 5.5. Results of the pilot study comparing three replicate samples of seine and multi-panel gill nets showing (a) total number of fishes collected and (b) the number of species of fishes collected from Cockrone, Avoca, Terrigal and Wamberal lagoons during December 2008. Gill nets were not used in Cockrone Lagoon due to unsuitable weather during sampling.

Figure 5.6. (a) Total abundances of fishes, and (b) the total number of species collected (results from seine and multi-panel gill nets combined) from the four ICOLLs. n=the total number of samples taken over the sampling period.

Figure 5.7. Temporal and spatial variation of fishes collected with seine and multi-panel gill nets for (a) the total number of individuals and (b) the number of species collected bimonthly from Cockrone Lagoon between February 2009 and June 2010. Months and sites with no data indicate no fishes were collected, and the data is the sum of all replicates in each site. The solid vertical line indicates multiple barrier openings that occurred between sampling periods.

Figure 5.8. Length-frequency distribution of *Acanthopagrus australis* (n=1 491) collected between February 2009 and June 2010 using a seine net in Cockrone Lagoon.

Figure 5.9. Length-frequency distribution of *Mugil cephalus* (n=136) collected between February 2009 and June 2010 using multi-panel gill nets in Cockrone Lagoon.
Figure 5.10. Temporal and spatial variation of fishes collected with seine and multi-panel gill nets for (a) the total number of individuals and (b) the number of species collected bimonthly from Avoca Lagoon between February 2009 and June 2010. Months and sites with no data indicate no fishes were collected, and the data is the sum of all replicates in each site. Solid vertical lines indicate multiple barrier openings that occurred between sampling periods.

Figure 5.11. Length-frequency distribution of *Atherinosoma microstoma* (n=1,702) collected between February 2009 and June 2010 using a seine net in Avoca Lagoon.

Figure 5.12. Length-frequency distributions of *Mugil cephalus* (n=315) collected between February 2009 and June 2010 using multi-panel gill nets in Avoca Lagoon.

Figure 5.13. Temporal and spatial variation of fishes collected with seine and multi-panel gill nets for (a) total number of individuals and (b) the number of species collected bimonthly from Terrigal Lagoon between February 2009 and June 2010. Solid vertical lines indicate multiple barrier openings occurred between sampling periods.

Figure 5.14. Length-frequency distribution of total lengths of *Ambassis jacksoniensis* (n=475) collected between February 2009 and June 2010 using a seine net in Terrigal Lagoon.

Figure 5.15. Length-frequency distribution of total length of *Myxus elongatus* (n=209) collected between February 2009 and June 2010 using multi-panel gill nets in Terrigal Lagoon.

Figure 5.16. Temporal and spatial variation of fishes collected with seine and multi-panel gill nets of (a) the total number of individuals and (b) the number of species collected bimonthly from Wamberal Lagoon between February 2009 and June 2010. The dotted vertical lines indicate a single barrier opening that occurred between sampling periods.

Figure 5.17. Length-frequency distribution of *Atherinosoma microstoma* (n=5,666) collected between February 2009 and June 2010 using a seine net in Wamberal Lagoon.

Figure 5.18. Length-frequency distribution of *Mugil cephalus* (n=176) collected between February 2009 and June 2010 using multi-panel gill nets in Wamberal Lagoon.
Figure 5.19. MDS ordination plots showing temporal and spatial variability in fish assemblages of ICOLLs for species collected by seine net (based on the mean abundance of each species in each site). The different symbols represent different sampling times (T), and the replicate symbols represent the different sites at each time. Sampling times are represented by symbols: ▲ T1, ▼ T2, ■ T3, ◆ T4, ○ T5, +T6, Δ T7, OT8. .. 166

Figure 5.20. MDS ordination plots showing temporal and spatial variability in fish assemblages of ICOLLs for species collected by multi-panel gill nets (based on the mean abundance of each species in each site). The different symbols represent different sampling times (T), and the replicate symbols represent the different sites at each time. Sampling times are represented by symbols: ▲ T1, ▼ T2, ■ T3, ◆ T4, ○ T5, +T6, Δ T7, OT8. .. 172

Figure 5.21. dbRDA ordination plots showing the spatial and temporal variation of fish assemblages collected using seine nets in Cockrone, Avoca, Terrigal and Wamberal Lagoons overlaid with the vectors of the environmental variables that explained significant amounts of variation in the assemblages. Vectors represent the direction and magnitude of the Pearson correlation of each variable with the dbRDA axes. The different symbols represent different sampling times, and the replicate symbols represent the different sites at each time. Sampling times are represented by: ▲ T1, ▼ T2, ■ T3, ◆ T4, ○ T5, +T6, Δ T7, OT8. Sal=salinity, Temp=water temperature, Dist=distance from barrier, % Bare=bare substrate and Algae=% cover. .. 178

Figure 5.22. dbRDA ordination plots showing the spatial and temporal variation of fish assemblages collected using multi-panel gill nets in Cockrone, Avoca, Terrigal and Wamberal Lagoons overlaid with the vectors of the environmental variables that explained significant amounts of variation in the assemblages. Vectors represent the direction and magnitude of the Pearson correlation of each variable with the dbRDA axes. The different symbols represent different sampling times, and the replicate symbols represent the different sites at each time. Sampling times are represented by: ▲ T1, ▼ T2, ■ T3, ◆ T4, ○ T5, +T6, Δ T7, OT8. Sal=salinity, Temp=water temperature, Dist=distance from barrier, %Bare=bare substrate..................... 182

Figure 6.1. Acanthopagrus australis, collected from Cockrone Lagoon (Photo M. Ricketts). 208

Figure 6.2. Atherinosoma microstoma collected from Avoca and Wamberal Lagoons (Photo M. Ricketts). .. 209

Figure 6.3. Ambassis jacksoniensis collected from Terrigal Lagoon (Photo M. Ricketts).209
Figure 6.4. Species accumulation curves showing mean number (for n=9999 permutations) of food species detected with increasing numbers of guts sampled, for *Acanthopagrus australis* (Cockrone Lagoon), *Atherinosoma microstoma* (Wamberal Lagoon) and *Ambassis jacksoniensis* (Terrigal Lagoon).

Figure 6.5. Estimated percentage volumetric (%V) contribution of different dietary categories associated with the diet of *Acanthopagrus australis* in relation to the barrier status (before, after openings) at Cockrone Lagoon. * denotes planktonic taxa.

Figure 6.6. MDS ordination plot of the mean percentage volumetric contribution (%V) of the dietary categories for *Acanthopagrus australis* at sites within Cockrone Lagoon (barrier status: ●=before, ○=after). Each point is based on the mean of 5 guts examined.

Figure 6.7. Mean number (±se) of taxonomic units (a) and mean number (±se) of dietary items (b) of *Acanthopagrus australis* before and after (i.e. barrier status) barrier openings at Cockrone Lagoon.

Figure 6.8. Mean gut fullness (±s.e.) of *Acanthopagrus australis* at Cockrone Lagoon before and after the barrier opening.

Figure 6.9. Length-frequency distribution of *Acanthopagrus australis* used in dietary analysis from Cockrone Lagoon before and after barrier openings.

Figure 6.10. Estimated percentage volumetric (%V) contribution of different dietary categories associated with the diet of *Atherinosoma microstoma* in relation to the barrier status (before, after openings) at Avoca Lagoon. * denotes planktonic taxa.

Figure 6.11. Mean number (±se) of taxonomic units (a) and mean number (±se) of dietary items (b) of *Atherinosoma microstoma* from before to after (i.e. barrier status) barrier openings at Avoca Lagoon. * denotes a significant difference.

Figure 6.12. Mean gut fullness (±s.e.) of *Atherinosoma microstoma* at Avoca Lagoon before and after (i.e. barrier status) the barrier opening.

Figure 6.13. Length-frequency distribution of *Atherinosoma microstoma* used in the dietary examination at Avoca Lagoon before and after barrier openings.
Figure 6.14. Estimated percentage volumetric (%V) contribution of different dietary categories associated with the diet of Atherinosoma microstoma in relation to barrier status (before and after barrier opening) at Wamberal Lagoon. * denotes planktonic taxa.........................222

Figure 6.15. MDS ordination plot of the mean percentage volumetric contribution of the dietary categories for Atherinosoma microstoma in relation to the barrier at Wamberal Lagoon (Barrier status: ●=before, o=after). Each point is based on the mean of 5 guts examined.........................222

Figure 6.16. Mean number (±se) of taxonomic units (a) and the mean number (±se) of dietary items (b) of Atherinosoma microstoma before and after (i.e. barrier status) barrier openings at Wamberal Lagoon..224

Figure 6.17. The mean gut fullness (±se) of Atherinosoma microstoma at Wamberal Lagoon before and after the barrier opening..225

Figure 6.18. Length-frequency distribution of Atherinosoma microstoma used in dietary examination at Wamberal Lagoon before and after barrier opening. ...225

Figure 6.19. Estimated percentage volumetric (%V) contribution of different dietary categories associated with the diet of Ambassis jacksoniensis in relation to the barrier status (open, after closure) at Terrigal Lagoon. * denotes planktonic taxa...226

Figure 6.20. Mean number (±se) of taxonomic units and mean number (±se) of dietary items (b) of Ambassis jacksoniensis open and after (i.e. barrier status) barrier closure at Terrigal Lagoon. ...227

Figure 6.21. Mean gut fullness (±se) of Ambassis jacksoniensis at Terrigal Lagoon open and after the barrier closure...228

Figure 6.22. Length-frequency distributions of Ambassis jacksoniensis used in dietary examination at Terrigal Lagoon from open to after barrier closure..228

Figure 7.1. Collecting sites for Mugil cephalus, sediment and water samples used in trace metal analysis from near-pristine (Meroo and Termeil Lakes), modified (Avoca and Terrigal Lagoons) and extensively-modified (Cockrone and Wamberal Lagoons) ICOLLs. ..243
Figure 7.2. Percentage composition of fine sediments (<63 µm) subsampled from sediments collected from each of the 6 ICOLLs. Denotes *near-pristine, **modified and ***extensively-modified ICOLLs. 250

Figure 7.3. Mean (± s.e.) of trace metal in fine sediments (<63 um). Sample sizes for each ICOLL include; Meroo (n=4), Termeil (n=2), Cockrone (n=2), Avoca (n=2), Terrigal (n=1) and Wamberal (n=1). (a) Al, (b) Ca, (c) Cr, (d) Cu, (e) Fe, (f) Mn, and (g) Zn. Denotes *near-pristine, **modified and ***extensively-modified ICOLLs. 253

Figure 7.4. MDS ordination plot depicting patterns of similarity in the trace metal content of sediment from 6 ICOLLs. Symbols indicate status of ICOLLs: ▲=Meroo Lake (near-pristine), Δ=Termeil Lake (near-pristine), ■=Avoca Lagoon (modified), □=Terrigal Lagoon (modified) and ○=Wamberal Lagoon (extensively-modified) and ●=Cockrone Lagoon (extensively-modified). 254

Figure 7.5. Trace metal levels in liver and gonad tissues of *Mugil cephalus*. Sample sizes for each ICOLL were: Meroo (n=3), Termeil (n=4), Cockrone (n=10), Avoca (n=10), Terrigal (n=8) and Wamberal (n=6). Levels of trace metals in liver () and gonad () tissues of sea mullet. Mean ± standard error (ug/g wet wt). Wet wt = wet weight. Denotes *near-pristine, **modified and ***extensively-modified ICOLLs. 259

Figure 7.6. MDS ordination plot depicting patterns of similarity in the trace metal content in gonad tissues of *Mugil cephalus* from 6 ICOLLs. Symbols indicate status of ICOLLs: ▲= Meroo Lake (near-pristine), Δ=Termeil Lagoon (near-pristine), ■=Avoca Lagoon (modified), □=Terrigal Lagoon (modified) and ●=Wamberal Lagoon (extremely-modified) and ○=Cockrone Lagoon (extensively-modified). 261

Figure 7.7. MDS ordination plot depicting patterns of similarity in the trace metal content in liver tissue of *Mugil cephalus* from 6 ICOLLs. Symbols indicate status of ICOLLs: ▲= Meroo Lake (near-pristine), Δ=Termeil Lagoon (near-pristine), ■=Avoca Lagoon (modified), □=Terrigal Lagoon (modified) and ●=Wamberal Lagoon (extensively-modified) and o=Cockrone Lagoon (extensively-modified). 263