Online Constrained Receding Horizon Control for Astronomical Adaptive Optics

by

Mikhail Konnik

Thesis
submitted in partial fulfilment
of the requirements for the Degree of

Doctor of Philosophy

THE UNIVERSITY OF NEWCASTLE
AUSTRALIA

School of Electrical Engineering
and Computer Science

August, 2013
Online Constrained Receding Horizon Control for Astronomical Adaptive Optics

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Mikhail Konnik
27th August 2013
Acknowledgments

Many people have helped, encouraged, and supported me during the research and writing of this thesis. My deepest appreciation goes to Prof. José De Doná, who supported and encouraged me throughout the most difficult part of my postgraduate study and research. His immense knowledge of control theory, enthusiasm and positive outlook have been a constant beacon of encouragement to pursue the sometimes difficult results. To José I express my most sincere and wholehearted gratitude.

I would like to extend my gratitude to Dr. James Welsh for his invaluable help in the early stage of the project, and to Prof. Peter Schreier who opened up the world of advanced linear algebra for me. Many thanks to Dr. Rodolphe Conan for his hospitality during my visit to ANU RSA, and to Prof. Mazen Alamir for a fruitful discussion that gave valuable hints for my research project.

I am indebted to the faculty and general staff members of the School of Electrical and Computer Engineering for their help and support. Thanks to Kathy Allan, Kathryn Killen, Chanel Hopkinson and Sally Ann Heron who helped me with formal matters. Special thanks to Dianne Piefke and Jayne Disney for their efficient and cheerful assistance.

My sincere appreciation goes to fellow postgraduate students with whom I have had the good fortune to share many experiences in Newcastle. Special thanks to Rahmat Heidari, Ali Mohammadee, Raheleh Nazari, Majid Hosseini, Kasun Thotahewa, and Saeid Mehrkanoon for the many fruitful discussions on research topics and beyond. All the best with your theses.

Last but not the least, my warmest regards to Ansel and Solara Zwaneveld, who have turned Newcastle into my home. Solara’s excellent cooking gave me all the energy to undertake such a challenging research, and Ansel’s constant philosophical support kept me on track. And, of course, a huge thanks to my parents, Galina and Vsevolod Konnik, for their support and understanding thousands miles away from the home.

Mikhail Konnik
The University of Newcastle
August 2013
Table of Contents

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
<tr>
<td>Publications and Outcomes</td>
<td>x</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction 1
 1.1 Optimal and Classical control in Adaptive Optics 2
 1.2 Contributions of this Thesis 4
 1.3 Thesis Overview 6

2 Where optics meets automatic control: Adaptive Optics 9
 2.1 Adaptive Optics for Astronomy 10
 2.1.1 Wavefront Sensing 12
 2.1.2 Wavefront Reconstruction 14
 2.2 Deformable Mirrors and Actuators 16
 2.2.1 Actuators for Deformable Mirrors 17
 2.2.2 Types of Deformable Mirrors 18
 2.2.3 Current technologies for Deformable Mirrors 18
 2.2.4 Desirable parameters of Deformable Mirrors 22
 2.3 Control Strategies for Adaptive Optics Systems 23
 2.3.1 Control techniques currently used in Adaptive Optics 23
 2.3.2 Proposed control strategy: constrained Receding Horizon Control 23
 2.3.3 Alternative Solutions and Approaches for Constrained Control 24
 2.4 Optimisation Strategies for Receding Horizon Control in Adaptive Optics 25
 2.4.1 Quadratic and Linear Programming 25
 2.4.2 Optimal Control Problem Formulation: Linear or Quadratic? 26
 2.4.3 Which optimisation formulation is preferable for Adaptive Optics? 28
 2.5 Chapter Summary 28

3 Optimal control for Adaptive Optics: from Infinite to Receding Horizon 29
 3.1 Dynamic models of Adaptive Optics components 29
 3.1.1 The model of a wavefront sensor 29
 3.1.2 Dynamic Models of Deformable mirrors 30
 3.1.3 Coupling models for actuators in Deformable Mirrors 30
3.1.4 Typical sampling rate of an Adaptive Optics system 33
3.1.5 Output disturbance dynamics .. 33
3.1.6 The complete model of an Adaptive Optics system 33

3.2 Formulation of Linear Quadratic Gaussian control for Adaptive Optics ... 34
3.2.1 Linear Quadratic Gaussian control for Adaptive Optics 34
3.2.2 Formulation of Linear Quadratic Gaussian control 35
3.2.3 Numerical issues of the optimal control for Adaptive Optics systems 35
3.2.4 Summary for Linear Quadratic Regulator control 37

3.3 From Infinite to Receding Horizon control ... 38
3.3.1 Motivation for constrained optimal control in Adaptive Optics 38
3.3.2 The main idea behind Receding Horizon Control 39
3.3.3 Formulation of Receding Horizon Control for Adaptive Optics 40

3.4 Accounting for hard constraints: Constrained Receding Horizon Control .. 42
3.4.1 Motivational example: Waffle mode mitigation in Adaptive Optics ... 42
using the Constrained Control approach .. 43
3.4.2 Discussion of waffle modes mitigation via constrained control 45
3.4.3 Summary for constrained Receding Horizon Control 46

3.5 Initial assessment of applicability of Receding Horizon Control in Adaptive Optics using general-purpose Quadratic Programming algorithms 47
3.5.1 Results for the decoupled case .. 48
3.5.2 Results for the case of coupling between nearest neighbour actuators 49
3.5.3 Results for the case of coupling between nearest neighbour and di-
agonally adjacent actuators .. 49
3.5.4 Discussion of simulations results ... 50
3.5.5 Summary of initial assessment of Receding Horizon Control 51

3.6 Chapter Summary .. 52

4 Structure of the Hessian matrix in optimal control of Deformable Mir-
rors .. 55
4.1 Structure of the Hessian matrix in constrained optimal control for Adaptive Optics ... 56
4.1.1 Considered cases of inter-actuators coupling 56
4.1.2 The length of a prediction horizon and the matrices structure 58

4.2 Inter-actuators coupling and its influence on the matrices structure 60
4.2.1 No coupling between actuators ... 60
4.2.2 Coupling between four nearest neighbour actuators only 61
4.2.3 Coupling between four nearest neighbours and four diagonally adja-
cent actuators ... 61

4.3 Time-delays augmentation of Receding Horizon Control matrices 63
4.3.1 Sources of delays in Adaptive Optics .. 63
4.3.2 Augmentation of state space matrices for time delays 63

4.4 Thresholding matrices in optimisation problem and sparsity patterns 65
4.4.1 Coupling between nearest neighbour actuators 65
6.3.4 Results for Barzilai-Borwein PABB QP algorithm 138
6.3.5 Results for Gradient Projection Conjugate Gradients algorithm ... 149
6.3.6 Results for Gradient Projection Preconditioned Conjugate Gradients algorithm .. 156
6.4 Chapter Summary ... 164

7 Performance evaluation for Receding Horizon Control in Adaptive optics 167

7.1 Saturation versus constrained optimisation: A Motivational Example 167
7.1.1 An illustrative example of constrained optimisation in the presence
of coupling ... 169
7.1.2 The unconstrained case ... 170
7.1.3 The constrained case .. 170
7.1.4 Summary for the illustrative example 171
7.2 Initial comparison of the residual disturbance for Linear Quadratic Regulator and Receding Horizon Control 172
7.2.1 Details of Numerical Simulations for the comparison of LQR and
RHC controllers performance .. 173
7.2.2 Performance comparison for the unconstrained case 173
7.2.3 Performance comparison for the constrained case 174
7.2.4 Summary for initial comparison of disturbance rejection performance 176
7.3 Output disturbance rejection performance for Receding Horizon Control and Linear Quadratic Regulator 176
7.3.1 High-gain control case ... 177
7.3.2 Low-gain control case .. 179
7.3.3 Optimised gain control case ... 181
7.3.4 Summary of the disturbance rejection performance comparison 182
7.4 Computational burden for Linear Quadratic Regulator and Receding Horizon Control ... 184
7.4.1 Computational time evaluation for Linear Quadratic Control 185
7.4.2 Comparison of computational burden for Receding and Infinite Horizon Control .. 185
7.4.3 Summary of computational time comparison 189
7.5 Chapter Summary ... 189

8 Conclusions and Future work .. 191

8.1 Summary of the Results ... 191
8.1.1 A summary of the main results 192
8.1.2 The novel contributions ... 194
8.2 Thesis Reflection ... 194
8.3 Future Research ... 195

Bibliography ... 197
ABSTRACT

Actuators are naturally limited in the force they can apply, and efficiency often dictates operation that is close to the limits of the permissible values. This is especially true for adaptive optics systems that compensate for the atmospheric turbulence using the mirrors deformable on-the-fly by the actuators. On the one hand, the actuator should use all the authority to bend the deformable mirror and thus compensate the turbulence. On the other hand, the actuators must not damage the mirror by pushing the surface too hard, and the controller must account for these constraints.

This thesis focuses on the high-speed constrained control of deformable mirrors in astronomical adaptive optics. The main approach considered in this work is constrained Receding Horizon Control with Quadratic Programming. A thorough study of the structure and the physics of the control problem allowed exploiting the structure of the problem and an inherently fast sampling rate to hot-start the online optimisation. These features are of crucial importance, making it possible to accelerate the constrained control by orders of magnitude compared to standard algorithms.

The original contribution of this thesis is a thorough feasibility analysis of the online optimisation algorithms for constrained control in adaptive optics systems. While the Convex Optimisation and the Receding Horizon Control are well studied areas, their application for astronomical adaptive optics has not been systematically studied. The thesis provides the results of numerical simulations that conclusively prove the feasibility of online constrained control of a deformable mirror. Using state-of-the-art Quadratic Optimisation algorithms of my own implementation, a control rate of 10 kHz for a relatively large deformable mirror has been achieved.

The significance of the results of this thesis is a comprehensive performance analysis of various optimisation approaches for constrained optimal control of deformable mirrors in adaptive optics. This is an important step towards attaining the ultimate compensation potential of adaptive optics systems.
Publications and Outcomes

The material presented in this Thesis has been already published, or accepted for publication, in peer-reviewed journals and conferences. Some of the material has been recently submitted for publication. The list of publications is provided below.

Articles in peer-reviewed journals

Mikhail V. Konnik and James Welsh (2013, submitted), On high-level numerical simulations of noise in solid-state photosensors: a Review. Journal on Simulations

Mikhail V. Konnik and José De Doná (2013, under review, TCST-2012-0662), Feasibility of Constrained Receding Horizon Control Implementation in Adaptive Optics. IEEE Transactions on Control Systems Technology

Conference proceedings

Mikhail V. Konnik and José De Doná (2013), Waffle mode mitigation in adaptive optics systems: a constrained Receding Horizon Control approach. Proceedings of American Control Conference (ACC), page 3396-3402, Washington, DC, USA

Mikhail Konnik, José De Doná and James Stuart Welsh (2012), Constrained control of low order adaptive optics systems using a fast suboptimal solution based on “feedback from coupling”, in Proceedings of Australian Control Conference (AuCC), Sydney, 15-16 November 2012. Pages 313-319

Software development

Research software for adaptive optics has been developed in MATLAB and ANSI C by the author as a part of this Ph.D. project.

Adaptive Optics Real Time Analyser (AORTA)

All the numerical simulations in this project were carried out using my own MATLAB-based simulator with C/MEX routines for speed-up. The AORTA simulator was written in the form of a toolbox of interconnected functions and was extensively documented using Doxygen. The code of the simulator contains about 65000 lines of MATLAB code and about 6000 lines of documentation. The following features have been implemented:

✔ Atmosphere and phase screens are generated using the Taylor frozen-turbulence hypothesis, Models of power spectrum of atmosphere turbulence (Kolmogorov, Tatarskii, von Karman, Modified von Karman, Hill), models of turbulence (pure Hufnagel, Hufnagel-Valley, Mauna Kea), optical propagators (Fresnel, Fraunhofer, Angular spectrum propagation);

✔ Photosensor model with light noise (photo response non-uniformity, photon shot noise), dark noise (dark current shot noise, dark current fixed pattern noise, source
follower noise, sense node reset noise (kTC noise), offset fixed pattern noise) and ADC (quantisation noise);

✓ Laser guide star (Rayleigh scattering, sodium beacons, NGS);

✓ Wavefront sensor: Shack-Hartmann, with variable lenslets size/amount and photosensor model, centroiding algorithms (CoG, WCoG);

✓ Wavefront reconstructors: Fried (FFT-based), Hudgin (classical and modified, via FFT), Southwell, Least-squares, Zernike modes;

✓ Deformable Mirrors: DM with influence functions and Thin Plate Splines;

✓ Control: Discrete PI, discrete LQG, discrete MPC.

Quadratic Programming Faster-Than-Light (QPFTL)

QPFTL is the toolbox for the convex quadratic optimisation of my own implementation. The algorithms are customised specifically to exploit the structure and physics of the Adaptive Optics problem. The QP solvers are written in MATLAB and ANSI C with the BLAS routines and compiled as MEX files. The qpOASES algorithm (one of the fastest available) *has been outperformed by my own QPFTL solver* in AO problems. The following QP solvers were implemented:

✓ Primal-Dual Interior Point (Predictor-Corrector, Directed Cones);

✓ Primal and Dual Active Set (Range-space and Null-space);

✓ Gradient-based (GPCG, PABB, SPG, PSPG, Projection-Contraction);

✓ Branch-and-Bound (bread-first, depth-first);

✓ and other methods (Hildreth-D’Elippo, Jacobi iterations, Dantzig-Wolfe).

Various pre-conditioner strategies (Jacobi, SSOR, incomplete Cholesky) were implemented, along with structure exploiting methods. QPFTL takes advantage of the custom implementation of QPs, gains significant acceleration in terms of computational time (typically 50-100x compared to MATLAB code), and is able to be called directly from MATLAB. The AORTA simulator uses QP routines from QPFTL to estimate the computational time of the optimisation algorithms.
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym...</th>
<th>stands for</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Active Set (type of optimisation algorithms)</td>
</tr>
<tr>
<td>AO</td>
<td>Adaptive Optics</td>
</tr>
<tr>
<td>AS WGS</td>
<td>Active Set with Weighting Gram-Schmidt</td>
</tr>
<tr>
<td>BaB</td>
<td>Branch-and-Bound (type of the optimisation algorithms)</td>
</tr>
<tr>
<td>BLAS</td>
<td>Basic Linear Algebra Subroutine</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Coupled Device (photosensor type)</td>
</tr>
<tr>
<td>CG</td>
<td>Conjugate Gradients (optimisation algorithm)</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complimentary Metal Oxide Semiconductor (photosensor type)</td>
</tr>
<tr>
<td>DARE</td>
<td>Discrete Algebraic Riccati Equation</td>
</tr>
<tr>
<td>DM</td>
<td>Deformable Mirror</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>GP</td>
<td>Gradient Projection</td>
</tr>
<tr>
<td>GPCG</td>
<td>Gradient Projection Conjugate Gradients</td>
</tr>
<tr>
<td>GPreconCG</td>
<td>Gradient Projection Preconditioned Conjugate Gradients</td>
</tr>
<tr>
<td>IP</td>
<td>Interior Point (type of optimisation algorithms)</td>
</tr>
<tr>
<td>KKT</td>
<td>Karush-Kuhn-Tucker (optimality conditions)</td>
</tr>
<tr>
<td>LAPACK</td>
<td>Linear Algebra Package</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>LQ</td>
<td>lower triangular (L) - orthogonal (Q) matrix decomposition</td>
</tr>
<tr>
<td>LQG</td>
<td>Linear Quadratic Gaussian (type of control)</td>
</tr>
<tr>
<td>LQR</td>
<td>Linear Quadratic Regulator (type of control)</td>
</tr>
<tr>
<td>MPC</td>
<td>Model Predictive Control</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>PABB</td>
<td>Projected Alternating Barzilai-Borwein</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-Integration (type of control)</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-Integration-Derivative (type of control)</td>
</tr>
<tr>
<td>QP</td>
<td>Quadratic Programming</td>
</tr>
<tr>
<td>QR</td>
<td>orthogonal (Q) - triangular (R) matrix decomposition</td>
</tr>
<tr>
<td>RHC</td>
<td>Receding Horizon Control (type of control)</td>
</tr>
<tr>
<td>RSPAS</td>
<td>Range-Space Primal Active Set (same as AS WGS)</td>
</tr>
<tr>
<td>RTOS</td>
<td>Real Time Operating System</td>
</tr>
<tr>
<td>SH</td>
<td>Shack-Hartmann (wavefront sensor)</td>
</tr>
<tr>
<td>TF</td>
<td>Transfer Function</td>
</tr>
<tr>
<td>TM</td>
<td>Transfer Matrix</td>
</tr>
<tr>
<td>WFR</td>
<td>Wavefront reconstruction</td>
</tr>
<tr>
<td>WFS</td>
<td>Wavefront sensor</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

- The word “impossible” is not in my dictionary.

Napoleon Bonaparte

Turbulence of the Earth’s atmosphere produces inhomogeneity in the air refractive index that differs for hot and cold air. The volume distribution of the refractive index can be thought of as a surface, or a wavefront. If there is no atmospheric turbulence, the wavefront will be flat, which means that all the light rays have travelled the same distance. Due to mixing of hot and cold air along with strong wind gusts, the wavefront becomes non-flat, which causes the light to travel differently. In turn, this causes blurring of astronomical images acquired by ground-based telescopes.

Adaptive Optics (AO) systems use a reference wavefront to estimate the aberration induced by the atmospheric turbulence and compensate for the wavefront error. The distortions caused by the atmosphere are estimated by a wavefront sensor (WFS). To compensate for the atmospheric turbulence, the shape of the deformable mirror (DM) is adjusted in real-time by actuators that are attached underneath the reflective surface of the DM. The AO system works in a closed-loop feedback, estimating the degraded wavefront and generating the commands for mirror’s actuators to counteract the turbulence.

This thesis is concerned with constrained optimal control for astronomical adaptive optics systems. The main problem being addressed is that the actuators have a maximum allowable movement, and the controller must account for these hard constraints. Constrained control is considered as a safeguard against potential mirror surface damage. Moreover, the ability of the constrained controller to generate the control inputs within arbitrary constraints allows the full potential of an adaptive optics system to be utilised.

The main obstacle that limits the use of constrained optimal control is the prohibitive computational complexity of solving the optimisation problem online. It was believed that solving the Quadratic Programming problem online for DM control in adaptive optics would constrain (a pun) the use of Receding Horizon Control (RHC) in this particular area.

Therefore, the main focus of this project was to analyse and exploit the structure and physics of the control problem in adaptive optics. The thesis provides a detailed
study of the feasibility of constrained Receding Horizon Control with the online Quadratic Programming for adaptive optics. Using customised quadratic programming algorithms, it is possible to develop an ultra-fast constrained controller that can operate within the prescribed constraints and solve the constrained optimisation control problem for adaptive optics systems within a fraction of a millisecond.

1.1 Optimal and Classical control in Adaptive Optics

As pointed out by François Roddier [1], the compensation efficiency of large Adaptive Optics (AO) systems is still unduly low. Most control systems for AO use a proportional-integral (PI) feedback of the measured wavefront error above each actuator to control that actuator [2]. Control loops in classical AO systems are linear and time-invariant (LTI), having fixed gains based on assumed statistics of the atmospheric turbulence [3]. This simple design approach works well, provided two assumptions are satisfied:

1. The influence function of the DM is nearly diagonal;
2. The bandwidth of the closed-loop system is significantly less than the dynamics of the actuators and mirrors.

Demands on the performance of AO systems require bandwidth increasing to the point that these assumptions may not hold [4]. However, despite the shortcomings of the classical control, astronomers and instrumentalists have good reasons [5] for not using optimal control in Adaptive Optics:

1. In good seeing conditions, a PI control law seems to work well enough.
2. A PI control law is easy to implement.
3. Optimal control usually requires a state estimator and system identification methods for models of deformable mirrors and the atmospheric turbulence.
4. A large number of sensors and actuators have made (so far) the computational burden of the optimal control infeasible within the millisecond or so duty cycle necessary for adaptive optics systems.

However, with the ever-increasing size of astronomical telescopes and the consequently increasing complexity of DM dynamics [6], modern state-space control techniques are attracting more attention in the area of adaptive optics.

Classic control in Adaptive Optics

The most widely used control technique for adaptive optics systems is a simple PI [7–9] or PID [10] controller. The gain of the integral feedback can be adjusted independently for each mode [8,9]. Classic control loops in AO do not address the problem of the components dynamics, leading to a suboptimal correction [11] and the mediocre performance of current AO systems on large astronomical telescopes. Although classical control does not account
for the actuators coupling in deformable mirrors and the constraints on maximum actuators movement, PI/PID controllers are still widely used due to the fact that in good seeing conditions, PI controllers are generally recognised good enough [5].

The main argument in favour of the classical control is its ease of implementation and that it gives the fastest achievable sampling rate. A PI controller does not require any sophisticated calculations, which is important for large telescopes. For example, the number of actuators on the Thirty Meter Telescope is over 30000, making the computational burden infeasible for the usual optimal control within the millisecond or so duty cycle [5].

Modern state-space control for Adaptive Optics

Although optimal and robust control theory is a well-studied area of knowledge, many AO systems still use classical approaches like root-locus and Bode plots for controller design [10]. In particular, standard integrator-based AO controllers assume a constant turbulent phase, which renders them prone to the wind-up effect [11].

The Linear Quadratic Gaussian (LQG) framework has been used by Paschall and Anderson [12] to design an AO controller under the simplifying assumption that the first 14 Zernike modes of the atmospheric wavefront distortions can be described by independent first-order Markov processes. The LQG controllers have been designed [5,13] and simulated [14,15] for adaptive optics. Looze [14] used LQG to design a diagonal modal controller based on an atmospheric disturbance model in which each individual mode is described by an autoregressive moving average (ARMA) model. Le Roux [15] developed and simulated the LQG control for both classical and multi-conjugate [16] adaptive optics systems. Wiberg [5,13] used LQG in the design of a static controller. Gavel and Wiberg [17] proposed an optimal control approach based on the Taylor hypothesis. In the experimental validation of the optimal control was shown to outperform the classical control [18,19].

A robust control design approach has been discussed [20-23] for adaptive optics systems. Robust control has also been implemented [4,20,21], simulated [24], and tested [25] for adaptive optics applications. The H_{∞} controller in theory offers better performance than the PID designs. Nonetheless, it assumes low-noise Gaussian statistics, which leads to suboptimal compensation in a low-light scenario.

Adaptive optics performance is ultimately defined as minimising the residual phase variance in the field of interest. Optimising this performance criterion naturally gives rise to minimum variance (MV) control problems. A survey of MV control applications in adaptive optics is given in [26,27]. Adaptive control and filtering for the adaptive optics have also been considered [28,29], but the complicated noise structure of the AO system does not allow for the full use of the power of such techniques.

Proposed solution: constrained control in Adaptive Optics

All the aforementioned control techniques are unconstrained, whereas the actuators in deformable mirrors (DM) are constrained by a maximum allowable movement. Too large of a control signal can damage the mirror’s surface. Although methods are available that
account for a saturation \cite{30,31} and a windup \cite{32}, they are not optimisation-based and therefore do not allow the full compensational potential of AO to be obtained.

A Receding Horizon Control (RHC) approach solves an optimisation problem at each sampling instant to generate the best possible control signal for the DM. The basic idea of RHC is to make a plan of the future control signals. An optimisation algorithm computes the optimal strategy within the prediction horizon and constraints, then executes the first control move, before moving the prediction horizon one step further and re-planning. This feedback strategy continuously re-evaluates the optimal control input based on the most recent observations of the output.

The constrained Receding Horizon Control technique remains relatively unexplored in adaptive optics \cite{33-37}. It has been used \cite{33} for a thermal DM to correct static aberrations in a light beam. The consecutive line searches method \cite{38} in the direction of several Zernike modes was used in \cite{33}. The Nelder-Mead \cite{39} algorithm was used in \cite{34} for correction of optical aberrations in a closed-loop feedback. The Receding Horizon approach was recently applied for control of aero-optical wavefronts \cite{35}.

The main feature of RHC is its ability to generate a control signal that is optimal within the prescribed constraints. This allows for addressing the following unsolved problems in AO control:

1. Respecting hard constraints on a control input prevents the surface damage of a deformable mirror;
2. Mitigating specific modes, such as waffle mode \cite{40}.

This project focuses on the constrained operation of AO systems in the case of relatively strong atmospheric turbulence, which has not been addressed previously.

The main motivation for using constrained RHC is to provide a control signal that is optimal within constraints, which also prevents damage to the surface of a DM and provides a better disturbance rejection in the constrained operation. This allows the use of AO systems in case of stronger atmospheric turbulence and therefore constitutes an important step towards attaining the full compensation potential of deformable mirrors in AO systems.

1.2 Contributions of this Thesis

Throughout the thesis, the contributions of each chapter are emphasised in the summary of the corresponding chapter. The main contributions of the thesis are highlighted below.

1. Formulation and development of a numerical simulator of an astronomical adaptive optics system. The simulator consists of models of the atmosphere turbulence power spectrum (Kolmogorov, Tatarskii, von Karman, Hill), models of atmospheric turbulence (Hufnagel-Valley, Mauna Kea), optical propagation methods (Fresnel, Fraunhofer, Angular spectrum propagation), wavefront sensors models (Shack-Hartmann, Curvature sensor), wavefront reconstructor geometries (Fried,
Hudgin, Southwell), deformable mirror models (influence functions and Thin Plate Splines), and controllers (discrete PI, LQR, and RHC).

2 **Detailed analysis of the structure of the optimisation problem in adaptive optics control.** The control problem of a deformable mirror with coupled actuators has a particular banded matrix structure that can be exploited for a significant acceleration of online optimisation algorithms. The crucial importance of hot-start in constrained control for adaptive optics is revealed. Both physics and the structure of the optimisation problem were exploited to speed-up the constrained control for adaptive optics by orders of magnitude compared to standard optimisation algorithms.

3 **Comparison, customisation, and implementation of optimisation algorithms for convex quadratic programming.** The following optimisation algorithms were considered: Primal-Dual Predictor-Corrector Interior Point, Primal and Dual Active Set (Range-space and Null-space), Gradient-based (GPCG, PABB, SPG, PSPG, Projection-Contraction), Branch-and-Bound, and other methods (Hildreth-D’Ezopo, Jacobi iterations, Dantzig-Wolfe). The customised optimisation algorithms were implemented and tested for their performance comparison in adaptive optics control.

4 **Extensive numerical studies of the computational feasibility of the optimisation algorithms for constrained control of deformable mirrors in adaptive optics were performed.** The results suggest that the gradient-based optimisation algorithms are suitable only for relatively well-conditioned problems. It was found that for the online constrained control in adaptive optics the most promising algorithms are Primal and Parametric Active Set algorithms. Using efficient numerical techniques, hot-start and structure-exploiting, it is possible to achieve a 10 kHz control rate even for a relatively large deformable mirror with 10 x 10 coupled actuators even in the constrained case.

5 **Performance evaluation of Receding Horizon Control in terms of atmospheric disturbance rejection and the comparison with existing methods was performed.** In the case of fast sampling rates and relatively slow dynamics of the atmospheric turbulence, which is common for the astronomical adaptive optics, Receding Horizon Control with online constrained QP appears to be only marginally slower than the LQR control. More importantly, RHC can be used in high-gain mode, unlike LQR, providing better atmospheric disturbance rejection in the constrained case.
1.3 Thesis Overview

A brief description of the contents of the forthcoming chapters concludes this introduction.

Chapter 2 introduces adaptive optics and establishes the link between the optomechanical problem (the maximal phase error that can be compensated by a DM) and the control problem (composition of the constrained optimal control input in the presence of the output disturbance). The methods of wavefront sensing and reconstruction are discussed. A short survey of DM technologies is provided. Control techniques and optimisation strategies for the adaptive optics are outlined.

Chapter 3 provides mathematical formulation of Linear Quadratic Regulator and Receding Horizon Control, and gives the motivation to use the constrained optimal control in adaptive optics. The dynamics models of adaptive optics components are described, and the chapter discusses potential numerical problems in solving Discrete Algebraic Riccati Equations (DARE) for AO systems. The benefits of constrained RHC are described. The results of the initial assessment of constrained RHC for adaptive optics are presented. It is shown that even with general-purpose Quadratic Programming (QP) solvers, RHC can be considered feasible for astronomical adaptive optics systems.

Chapter 4 gives insights into the structure of the matrices that arise from the constrained control of a deformable mirror. The banded structure of the Hessian matrix is due to the inter-actuators coupling between the actuators in a deformable mirror, which is a key factor for the acceleration of the constrained online Quadratic Programming problem.

A particular topic addressed in this chapter is the physics of the control problem, which includes an inherently fast sampling rate and an inter-actuator coupling between the neighbour actuators. These aspects allow for greater efficiency in the exploitation of the structure of the Hessian matrix, and narrow the choice of optimisation strategies.

Chapter 5 outlines the mathematical background of the optimisation algorithms for constrained convex quadratic programming. The main families of optimisation methods for convex quadratic programming are described, namely Active Set, Interior Point, Branch-and-Bound, and Gradient-based. The strengths and weaknesses of each family of algorithms are discussed, and the implementation details for the algorithms are provided.

Chapter 6 is the longest, the most “picturesque”, and (some say) taxonomical, and the most important of the chapters of this thesis: it contains detailed results of numerical simulations and an analysis of the computational time requirements for different types of optimisation algorithms for AO control.

The key point of the chapter is to provide the analysis of the simulations results and to assess the performance of different QP algorithms. It is shown that bound constraints are necessary to satisfy the tight computational requirements of astronomical adaptive optics. Moreover, it is imperative to use hot-start and exploit the structure of the optimisation
problem for further acceleration of online QP in constrained RHC. The chapter provides recommendations for choosing QP algorithms suitable for AO.

Chapter 7 compares the performance of the Linear Quadratic Regulator (LQR) and Receding Horizon Control in terms of their computational time and atmospheric disturbance rejection. It starts from a motivational example that answers the question, “Why do we need to use Receding Horizon Control?”.

The results of the numerical simulations in this chapter suggest that the disturbance rejection performance in the unconstrained case is the same for the LQR and RHC, while *RHC clearly outperforms the saturated LQR control* in terms of atmospheric turbulence rejection. In the case of fast sampling rates and relatively slow turbulence dynamics, which are common for astronomical AO, *RHC with hot-started QP is only marginally slower than the LQR control*. RHC can thus be used in high-gain mode and provides better atmospheric disturbance rejection in the constrained case.

The summary of the results is provided in Chapter 8, along with directions for future work.
Chapter 2

Where optics meets automatic control: Adaptive Optics

although there is some debate [41], most historians agree [42] that Hans Lipper- shey was the first inventor of the telescope in 1608. Galileo heard of the invention the following year, and, though he had not seen an instrument, he was soon able to construct a telescope for himself, which, owing to his superior knowledge of optics, was better than the original one [43]. Describing his work Galileo says, “I prepared a tube, at first of lead, in the ends of which I fitted two glass lenses, both plane on one side, but on the other side one spherically convex [object glass] and the other concave [eye-lens].” This was the simplest form of the refracting telescope, the type that now bears Galileo’s name.

Within a century of Galileo’s early work [44], Newton recognised that larger apertures also had the potential for higher resolving power, but that differential refraction by atmospheric turbulence prevented the full resolution from being realised. Galileo’s telescope was not big enough for the atmospheric turbulence to be a problem in terms of blurring images. It was not until Isaac Newton built a reflecting telescope in 1668 that telescopes became large enough in diameter and high enough in quality to be vulnerable to turbulence [45]. With no prospect in view of a way to correct the turbulence, Newton [46] concluded that “[telescopes] cannot be so formed as to take away that confusion of the rays which arises from the tremors of the atmosphere. The only remedy is a most serene and quiet air, such as may perhaps be found on the tops of the highest mountains above the grosser clouds.”

This was the only option until Horace W. Babcock [47], two and a half centuries later, proposed an idea that could in fact be fitted to a telescope to sense the twinkling of light rays and restore them to their proper tracks before they were detected [48]. The concept of adaptive optics started when Babcock published his seminal article [47] on real-time sensing and correction. He proposed correcting light distortions by placing a thin layer of oil over a mirror’s reflective surface. Although Babcock never built a system, many consider him
the father of adaptive optics because was the first to devise the concept of adaptive optics. It would take another 20 years before Itek Optical Systems would successfully demonstrate the first AO system [45].

Nowadays, adaptive optics is a distinct scientific discipline [49–52] considered by many astronomers as nothing less than the “astronomy Renaissance” [53] and the most revolutionary advancement in astronomy [54] since Galileo built his first telescope in 1609. It has become clear [55] that the 8-m class telescopes and future generations of even larger telescopes will heavily rely on Adaptive Optics. However, AO is not limited to astronomical applications and can be used in the following areas:

1. Ophthalmology: to enhance the quality of retinal images and study eye’s aberrations [56–63].
2. Microscopy: to enhance the quality of microscopic images [64–66].
3. Lithography: to better focus X-ray or ultraviolet beams [67–69].
4. Laser weapons and directed energy: to focus a high-power laser beam on a target [70–72] and offset light divergence due to the atmosphere [73, 74].
5. Military applications: ballistic missile defence [75], airborne lasers [76, 77] and satellites imaging [78].
7. Ultra-high power lasers: to improve the focusing of a laser beam [84–86].
8. Laser stabilisation and focusing for space debris removal [87].

2.1 Adaptive Optics for Astronomy

The refraction indexes for hot and cold air are slightly different. The volume distribution of the refractive index can be thought of as a surface, or wavefront. If there is no atmospheric turbulence, the wavefront will be flat, which means that all the light rays have travelled the same distance. Due to the mixing of hot and cold air along with strong wind gusts, the wavefront becomes non-flat, which causes the light to travel differently. This optical effect is similar to the way that distant objects appear to shimmer [45] and blur when viewed through summer heat waves above hot asphalt. This atmospheric turbulence blurs and distorts the images acquired by ground-based astronomical telescopes.

The light-gathering ability of a telescope is determined by the area of its primary mirror, enabling bigger mirrors to see fainter objects. The starlight collected by a telescope decreases as the square of its distance from the star, but increases as the collecting area of the telescope’s primary mirror increases (proportional to the square of the mirror’s diameter) [45]. This is when atmospheric turbulence becomes a problem (see Fig. 2.1). Although bigger telescopes can collect more light and thus detect fainter objects, their
ability to resolve fine detail is reduced dramatically by turbulence-induced distortion. This means that 10- or 30-metre telescope produces blurred images that are hardly better than those produced by a smaller backyard telescope.

![Image of blurred star images]

Figure 2.1: Images of the Cygnus loop: Hubble Space Telescope image at 0.7μm (left), image taken from the ground without AO (centre), the image at 1.6μm as obtained with laser guide star Adaptive Optics on the 6.5-m Multiple Mirror Telescope (right). This image is adopted from [51].

Adaptive optics compensates for atmospheric turbulence in real-time and improves the image quality of ground-based telescopes (see Fig. 2.2). In ground-based astronomy, an estimate of the wavefront error is typically obtained from a wavefront sensor. The estimate is then used to create a counter wavefront, for example, using a deformable mirror to remove the error from the incoming wavefronts [88].

A typical Adaptive Optics system consists of:

1. A **wavefront sensor** (WFS), which measures distortions introduced by the turbulent atmosphere;

2. A **deformable mirror** (DM), which corrects instantaneous wavefront distortions;

3. A **control computer** (CC), which tracks zero reference (flat wavefront) and generates inverse distortions for actuators of the deformable mirror from the wavefront sensor’s data.

![Diagram of Adaptive Optics system]

Figure 2.2: Components of a typical Adaptive Optics system.

These components typically operate in a closed-loop feedback: measuring, adjusting, and estimating the residue correction, and hence compensating for atmospheric turbulence, as seen in Fig. 2.1. The main components of AO systems are described in the following subsections.
2.1.1 Wavefront Sensing

The goal of a wavefront sensor (WFS) is to sense the wavefront with enough resolution for real-time compensation. WFSs for adaptive optics have evolved dramatically from family kitchen-made [89] lenslet arrays to sophisticated modern devices [90]. However, no “ideal” WFS exists yet. In general, WFSs consist of the following main components:

- An optical device that transforms aberrations into light intensity variations;
- A photosensor that transforms light intensity into an electrical signal;
- The algorithm that reconstructs the wavefront.

Several devices and measurement techniques allow estimation of the wavefront curvature from wavefront measuring. The most efficient and widely used wavefront sensors are described below.

2.1.1.1 Shack-Hartmann wavefront sensor

A well-known Hartmann test [91], initially devised for telescope optics control, has been adapted for use in AO systems. In the late 1960s, Shack and Platt [92] modified a Hartmann screen by replacing the apertures in an opaque screen with an array of lenslets.

![Figure 2.3: Principle of the Shack-Hartmann wavefront sensor.](image)

The principle of the Shack-Hartmann (SH) wavefront sensor (WFS) is the following. An image of the exit pupil is projected onto a lenslet array (see Fig. 2.3). Each lens takes a small part of the aperture (sub-aperture), and forms an image of the source. When an incoming wavefront is planar, all images are located in a regular grid defined by the lenslet array geometry. As soon as the wavefront is distorted, images become displaced from their nominal positions. Displacements of image centroids in two orthogonal directions x, y are proportional to the average wavefront slopes in over the sub-apertures.

The wavefront is proportional to the difference between the reference centroids coordinates x_{r_k}, y_{r_k} (flat light field, reference wavefront) and the turbulent centroids coordinates x_{c_k}, y_{c_k} (turbulent light field), as shown in Fig. 2.4. For a sampled light intensity image $I_{i,j}$, positions of the centroid spots x_k, y_k are calculated as:
\[
x_k = \frac{\sum_{i,j} x_{i,j,k} I_{i,j}}{\sum_{i,j} I_{i,j}}, \quad y_k = \frac{\sum_{i,j} y_{i,j,k} I_{i,j}}{\sum_{i,j} I_{i,j}},
\]

for each \(k \)-th lenslet. The local direction angles \(\beta_x \) and \(\beta_y \) are computed from (2.1) as:

\[
\beta_x \approx \left(x_{r_k} - x_{c_k} \right) \frac{L_x}{f}, \quad \beta_y \approx \left(y_{r_k} - y_{c_k} \right) \frac{L_y}{f},
\]

where \(L_x \) is a size of the lenslet and \(f \) is the focus length of the lenslet. This is the Centre of Gravity (CoG) method. However, more efficient methods of centroiding have been proposed \([93-96]\).

A good feature of the Shack-Hartmann WFS is its achromaticity: the slopes do not depend on the light’s wavelength. Another advantage of the Shack-Hartmann sensor is its ability to simultaneously determine \(x \) and \(y \) slopes. However, problems arise for the control computer: the computational complexity required for the wavefront slopes estimation increases as \(N^2 \), where \(N \) is the number of sub-apertures. One feature that makes the Shack-Hartmann wavefront sensor so useful is that its precision and accuracy can be scaled over a huge range depending on the choice of lenslet array and photosensor.

![Figure 2.4: The scheme of centroiding in a Shack-Hartmann wavefront sensor.](image)

2.1.1.2 Summary for wavefront sensors

Wavefront sensors provide the essential data about the atmospheric turbulence in AO, and each type of a WFS has its own benefits. Wavefront sensors are a major source of noise and inevitable delays. The noise comes from a CCD/CMOS photosensor\(^1\) inside the WFS, and the statistics of noise depends on light conditions and the sensor type. For some cases, such as low-light operation and a fast frame-rate, the statistics is not Gaussian \([98]\), which is important for state estimators in modern controllers. Furthermore, WFS are a major source of time-delays due to the exposure time and centroiding time of the acquired images.

Shack-Hartmann WFS was chosen for the study in this research project for its effectiveness, good balance of features, and predictability of results. A Shack-Hartmann WFS is robust in terms of noise in photosensors, provides predictable results, and is scalable and

\(^1\)An avalanche photodiode (APD) can be used for wavefront sensing as well. An APD is a photodiode that internally amplifies the photo-current by an avalanche process. In \([97]\), a successful use of avalanche photodiodes in wavefront sensors for adaptive optics was reported.
achromatic. For these same reasons the Shack-Hartmann WFS is the most widely used wavefront sensor in AO systems for astronomical telescopes.

2.1.2 Wavefront Reconstruction

The main goal of wavefront reconstruction (WFR) is to reconstruct the distorted wavefront given wavefront sensor measurements. The concept of optimal WFR was introduced in [99] and expanded by Welsh [100,101]. The dominant problem for WFR is that a large amount of data must be processed in real time. The estimation of the computational burden is proportional to the number of independent correction channels squared. It is important to note that gradient measuring inevitably contains shot noise due to finite photon counts and electron noise in the detection process [50]. The methods of wavefront reconstruction are briefly outlined below.

2.1.2.1 Zonal approach of wavefront reconstruction

To obtain the estimation of the wavefront slopes s_x and s_y, we need to multiply the measured angles-of-arrival β_x and β_y from (2.2) by:

$$s_x = \frac{2\pi}{\lambda} \beta_x, \quad s_y = \frac{2\pi}{\lambda} \beta_y$$

where $k = \frac{2\pi}{\lambda}$, and λ is a wavelength of observations. The wavefront slopes (s_x, s_y) and the wavefront phase ϕ are related as:

$$\nabla_x \phi = s_x, \quad \nabla_y \phi = s_y$$

Given the measurements of wavefront slopes s_x and s_y, we need to reconstruct the wavefront ϕ. The relationships between the slope measurements $s = [s_x \ s_y]^T$ and the unknown wavefront phase ϕ are:

$$\nabla \phi = A\phi = s$$

where A is the interaction matrix that depends on the selected reconstruction geometry. The least-squares solution is obtained as:

$$\phi \approx (A^T A)^{-1} A^T s$$

In real systems, the least-squares solution cannot be used because the matrix $A^T A$ is singular. The wavefront phase ϕ can be recovered using the Moore-Penrose pseudo-inverse:

$$\phi \approx A^\dagger s$$

Zonal wavefront reconstruction method represents the wavefront gradients as finite differences and numerically integrates them zone-by-zone. The reconstruction geometry is the relationship between positions of the slope measurements and the phase wavefront. Measured wavefront slopes can be approximated by a finite difference [102] using several geometries, such as Fried [103], Hudgin [104], or Southwell [105] geometry.
For example, consider the Fried geometry in Fig. 2.5, where horizontal and vertical arrows represent positions of the slopes measurements in x and y directions, and circles represent the positions of the wavefront phase estimation. The wavefront can be reconstructed using the Fried geometry, where a slope is the average of the phase at the four corners of a square, as follows:

$$
\begin{align*}
 s_{1,1}^x &= \frac{(\phi_2 + \phi_3) - (\phi_1 + \phi_4)}{2}, \\
 s_{1,1}^y &= \frac{(\phi_4 + \phi_3) - (\phi_1 + \phi_2)}{2},
\end{align*}
$$

(2.8) (2.9)

where $h = D/N$, D is the diameter of the aperture and N is the number of lenslets. The wavefront is therefore obtained as:

$$
\begin{bmatrix}
 \phi_1 \\
 \phi_2 \\
 \phi_3 \\
 \phi_4
\end{bmatrix} = A^\dagger \begin{bmatrix}
 s_x \\
 s_y
\end{bmatrix} = A^\dagger \begin{bmatrix}
 \frac{2\pi}{X} \beta_x \\
 \frac{2\pi}{Y} \beta_y
\end{bmatrix}
$$

(2.10)

where A^\dagger is the pseudo-inverse of the interaction matrix A and $\hat{\phi}$ is the phase estimation.

The solution for the zonal approach can also be found by the Fourier method [106]. Considering the phase differences s_x and s_y are calculated for some geometry (Hudgin, Fried, Southwell or other), instead of solving the least-square problem to estimate the phase $\hat{\phi} = (A^TA)^{-1}A^Ts$ using singular values decomposition or pseudo-inverse, properties of the Fourier transform can be used to calculate the phase estimation faster [107]. The overall wavefront is a sum of the Fourier transforms of x- and y- phase differences, and the geometry of the wavefront reconstruction can be presented as:

$$
\Phi_{p,q} = H_{p,q}^x \cdot S_{p,q}^x + H_{p,q}^y \cdot S_{p,q}^y.
$$

(2.11)

where $\Phi_{p,q}$ is the Fourier representation of the wavefronts phase, $H_{p,q}^x$ and $H_{p,q}^y$ are spatial filters for X and Y axis, respectively, $S_{p,q}^x$ and $S_{p,q}^y$ are the Fourier representers of the tilts from the a wavefront sensor. The algorithm of the Fourier wavefront reconstruction is as follows:

1. Take the Fourier transform from the phase differences obtained from the WFS. Denote $S_{p,q}^x = \mathcal{F}\{s_{i,j}^x\}$ and $S_{p,q}^y = \mathcal{F}\{s_{i,j}^y\}$.

2. Apply spatial filters $H_{p,q}^x$ and $H_{p,q}^y$ to obtain the Fourier spectrum of the wavefront $\Phi_{p,q}$. The spatial filters will depend on the selected geometry.

3. Take the inverse Fourier transform from $\Phi_{p,q}$ to obtain the reconstructed wavefront ϕ. Use the real part of inverse Fourier transform: $\phi = \text{Re}[\mathcal{F}^{-1}\Phi_{p,q}]$.

The Fourier series for a zonal WFR are now widely used because of calculation speed due to the FFT algorithm [108,109].
2.1.2.2 Modal approach of wavefront reconstruction

The phase in the modal approach is presented by the coefficients of the Karhunen-Loève expansion or coefficients of orthogonal polynomials such as Seidel or Zernike. The general idea is to represent the wavefront as a sum of Zernike functions:

\[\phi(p, \theta) = \sum_{i=1}^{M} a_i \cdot Z_i(p, \theta) \] \hspace{1cm} (2.12)

where \(Z_i(p, \theta) \)'s are the Zernike functions of the mode number \(i \), \(\phi \) is the wavefront to be represented as a sum of the Zernike functions, \(a_i \) are the Zernike coefficients, and \(M \) is the number of Zernike polynomials used. The wavefront reconstruction reduces then to determine the Zernike coefficients \(a_i \).

2.1.2.3 Summary for Wavefront Reconstruction

Both the Zernike modal method and the zonal method were chosen for this research project. The results of the wavefront reconstructors are similar; however, the Zernike method is preferable since there are no additional errors due to rectangular-to-annular aperture conversion.

A Shack-Hartmann sensor has blind modes: that is, wavefront functions that can yield zero or very small response in the Shack-Hartmann WFS output [40]. Certain reconstruction geometries, such as the Fried geometry [103], are insensitive to chequerboard-like “waffle” pattern phase errors. Waffle mode is the movement of two adjacent actuators in opposite directions, which can be hazardous for the mirror’s surface. Constrained optimal control, which is the main subject of this thesis, can be used for the waffle mode mitigation via additional constraints.

2.2 Deformable Mirrors and Actuators

The image quality of astronomical telescopes is degraded due to the phase and amplitude distortions. Phase fluctuations in the wavefront can be measured by the wavefront sensors. Then, using deformable mirrors (DM), the wavefront distortions are compensated. The DM adjusts the wavefront with controllable optical path difference. The optical corrector introduces an optical phase shift \(\varphi \) by producing the optical path difference \(\delta \). The phase shift may then be expressed as \(\varphi = \frac{2\pi \delta}{\lambda} \), where \(\lambda \) is the light’s wavelength. The phase shift depends on path difference \(\delta = \Delta n \Delta \epsilon \), where \(\Delta \epsilon \) is the geometrical path difference introduced by a DM, and \(\Delta n \) is the refractive index difference that can be produced by deforming birefringent electro-optical materials.
2.2.1 Actuators for Deformable Mirrors

Actuators for deformable mirrors are of two main categories:

- **Force actuators** can be hydraulic or electromagnetic. Electromagnetic actuators are built in linear (voice coil) or rotational combinations (stepper motor), and used to control the surfaces of large (\(0.5 \ldots 8.0\) m) mirrors.

- **Displacement actuators** can be piezoelectric, electrostrictive or magnetostrictive. They are used in small high-speed (\(0.5 \text{ m or less}\)) deformable mirrors.

Typical discrete deformable mirror actuators are shown in Fig. 2.6.

Voice-coil actuators The electromagnetic (EM) driver consists of a coil moving in a magnetic field driving a piston against a cylindrical spring. A permanent magnet with pole pieces is used to transmit the force to the backplate [110]. The electromechanical conversion mechanism of a voice coil actuator is governed by the Lorentz force. In its simplest form, a linear voice coil actuator is a tubular coil of wire situated within a radially oriented magnetic field. The field is produced by permanent magnets embedded on the inside diameter of a ferromagnetic cylinder, and arranged so that the magnets “facing” the coil are all of the same polarity.

The voice coil actuator is a single-phase device. Application of a voltage across the two coil leads generates a current in the coil, causing the coil to move axially along the air gap. The single phase linear voice coil actuator allows direct, cog-free linear motion that is free from backlash or irregularity.

Piezoelectric actuators Piezoelectricity is the ability of some materials to generate an electric field in response to applied mechanical strain. The effect is closely related to a change of polarisation density within the material’s volume. Application of an electric field permanently polarises piezoelectric ceramics and induces a deformation of the crystal (PZT, \(Pb(Zr,Ti)O_3\)). Changes in the relative thickness are given by \(\Delta t/d = d_{33} E\), where \(d_{33}\) is the longitudinal piezoelectric coefficient (typical values of \(d_{33} = 0.3 \ldots 0.8\) \(\mu\text{m}/\text{kV}\)).

A typical piezoelectric material is PZT (lead zirconate titanate with the chemical formula \(Pb[Zr_xTi_{1-x}]O_3\), \(0 \leq x \leq 1\)) has a strong piezoelectric effect [50] with \(\Delta t/d > 0.001\) and hysteresis at 10 to 20\%. A key parameter of the material is the piezoelectric constant \(d_{33}\), which describes the mechanic strain to the applied electric field. The strain for an unloaded piezoelectric element is \(\Delta l = ld_{33} V/l\). Piezoelectric actuators are typically made from disks of thickness \(t\) stacked together, so that the stroke of complete stack of \(N\) disks is \(\Delta z = Ntd_{33} V/t = Nd_{33} V\). PZT has a typical value of \(d_{33} \sim 5 \cdot 10^{-10}\) m/V.

Maximum disk thickness is limited by the maximal electrical field that can be applied to PZT before breakdown. The maximal strain achievable is \(\Delta z/z = E_0d_{33}\). A disadvantage of PZT is a large voltage required to obtain a useful stroke; typically about 4\(\mu\)m.

It is well-known [111] that the piezoelectric actuators have a hysteresis that limits their control accuracy of PZT actuators. Several methods exist for describing this hysteresis, in the piezoelectric actuators [112–114]. The hysteresis behaviour of piezoelectric actuators,
including the minor loop trajectory and residual displacement near zero input, are modelled by a set of hysteresis operators, including a gain and input-dependent lag [113]. In addition, an ellipse-based mathematical model has been developed to characterise rate-dependent hysteresis [115].

2.2.2 Types of Deformable Mirrors

The faceplate of a deformable mirror is made from a low-expansion material such as quartz of Corning ultra-low expansion (ULE) glass. The material for the faceplate and baseplate is the same in order to match thermal properties. Deformable mirrors have a two step design: a first-order design with analytical expressions, and a more rigorous finite-element model for fine-tuning [50].

2.2.3 Current technologies for Deformable Mirrors

The list below, inspired by [116], presents the key details and the most important characteristics of modern DMs.

Continuous face-sheet mirrors. Discrete axial piezoelectric (PZT) or electrostrictive (PMN) actuators produce a local displacement of the substrate. A deformable mirror is a thin glass sheet with bonded actuators. A modal response with a very large number of actuators is possible. The shape of the mirror is given by the expression:

\[r(x, y) = \sum_i V_i r_i(x, y) \]

where \(V_i \) is the voltage applied to the \(i \)-th actuator and \(r_i(x, y) \) is the \(i \)-th influence function. The key characteristics of continuous face-sheet deformable mirrors are:
• Number of actuators: up to 1000, potentially up to 100000
• Inter-actuator spacing: 2-10mm;
• Electrode geometry: rectangular or hexagonal;
• Voltage: a few hundred Volts;
• Stroke (depends on actuators): up to 10\mu m;
• Resonant frequency: a few kHz;
• Cost: high.

Membrane mirrors. Membrane mirrors with global curvature are controlled by an array of electrostatic actuators. The shape of the mirror is given by the expression:

\[\nabla^2 r(x, y) = \frac{q(V_i)}{D}, \quad q(V_i) \sim (V_i^2(x, y)) \]

where \(q \) is the voltage-dependent distributed loading and \(D \) is the coefficient describing the flexural rigidity of the membrane.

The key characteristics of Membrane deformable mirrors are:

• Number of actuators: up to \(10^3 \), increasing the number of actuators reduces the stroke per actuator;
• Electrode geometry: rectangular or hexagonal;
• Voltage: a few hundred Volts;
• Stroke: a few microns, limited by the mirror curvature and the actuator size.
• Resonant frequency: several kHz;
• Cost: moderate.

Bimorph mirrors. Local curvature of the mirror is controlled by sheets of piezoelectric material bonded to a thin mirror (e.g., two piezoelectric wavers bonded together with an array of electrodes between them). The front surface acts as a mirror, and the shape of the mirror is given by \(\nabla^4 r(x, y) = -A \nabla^2 V(x, y) \), where \(A \) is the constant related to the properties of the piezoelectric material (\(A \propto d_{13} \)), and \(V \) is the voltage distribution in the plane of the PZT.
The key characteristics of Bimorph deformable mirrors are:

- Number of actuators: 13 - 85;
- DM size: 30 - 200 mm;
- Electrode geometry: radial;
- Voltage: few hundred Volts;
- Stroke: few microns;
- Resonant frequency: more than 500 Hz;
- Cost: moderate.

MEMS (micro-electromechanical systems) mirrors. MEMS-based DMs are made by micro-lithography and semiconductor batch processing. Small mirror elements are deflected by electrostatic forces. The overall profile of the DM is directly controlled by an array of micro mirrors. The remaining problems of DMs utilising current MEMS technology are: insufficient stroke, elements are too-small, scattering, difficulties with multilayer coating, and difficulties with integration of large arrays of high-voltage drivers.

The key characteristics of MEMS mirrors are:

- Number of actuators: up to $10^5 - 10^6$;
- Electrode geometry: rectangular, hexagonal, and others;
- Voltage: several Volts;
- Stroke: up to several μm;
- Response time: expected to be less than 10μs;
- Cost: potential to be very inexpensive, estimated at $10 per actuator.

Segmented mirrors. In segmented mirrors, smaller independent elements are actively controlled by the actuators to conform to the mirror’s shape. Segmented mirrors are comprised of separate segments with small gaps between each segment. Segmented mirrors are usually used for large mirrors.
The key characteristics of segmented deformable mirrors are:

- Number of actuators: up to 100;
- Elements geometry: sector-shaped segments or hexagonal segments;
- Control signals: depend on the actuator type, but precision electromechanical drivers are typically employed;
- Stroke: may be as large as needed;
- Response time: several hundred ms;
- Cost: very high.

Liquid crystal modulators. Phase modulation stems from the orientation of the liquid crystal molecules in the presence of an applied electric field. Phase profile is determined by the orientation of the liquid crystals molecules controlled by an applied electric field. Typically, the amplitude of the phase shift does not exceed 2π and the mirror operates in a "wrapped" mode.

The key characteristics of liquid crystal modulators are:

- Electrode geometry: rectangular or hexagonal;
- Voltage: ~ 10 Volts at a frequency of several kHz;
- Effective stroke: one λ to several λ (light wavelengths, $\sim 0.400 - 1 \mu m$);
- Response time: typically $\gt 10$ms;
- Polarization sensitive, strong dispersion, slow response, temperature sensitive.
- Cost: moderate as the technology is similar to LCDs, potentially inexpensive;

Ferrofluid mirrors. Ferrofluids are liquids that contain a suspension of ferromagnetic particles. In the presence of an external magnetic field, the magnetic particles align themselves with the field and the liquid becomes magnetised [117]. For a ferrofluid surface at rest in the plane $z = 0$, the equation that describes the ferrofluid surface amplitude h under the applied magnetic field is given by [118]:
\[
 h(x, y) = \frac{\mu_r - 1}{2\mu_r\mu_0\rho g}[B_n^2(x, y) + \mu_r B_t^2(x, y)]
\]

where \(\rho \) is the density of the ferrofluid, \(\mu_r \) the relative magnetic permeability of the ferrofluid, and \(B_n \) and \(B_t \) are the normal and tangential components (relative to the \(x-y \) plane) of the external magnetic field [119]. Each actuator is made of about 200 loops of 0.3 mm copper wire. The effective external diameter of an actuator is 5 mm [119].

The key characteristics of Ferrofluid mirrors are:

- Number of actuators: 100-1000 (e.g. a 2-inches diameter ferrofluid DM can have more than 450 actuators);
- Electrode geometry: rectangular, circular;
- Voltage: several Volts;
- Current: 10-100 mA;
- Stroke: the maximum surface amplitudes achievable with ferrofluids are limited by the so-called Rosensweig instability. Typically several \(\mu m \);
- Response time: mirror can be driven at a frequency of 40 Hz
- Cost: moderate, estimated at $100 per actuator [119].

2.2.4 Desirable parameters of Deformable Mirrors

Astronomical AO systems require a large variety of deformable mirrors with challenging parameters [6]. Even an 8 m telescope can require up to 5000 actuators, with this number increasing up to 250 000 for Extremely Large Telescopes (ELT). A summary of parameters, adopted from [6], is provided in Table 2.1

The required stroke for the actuators in a deformable mirror is generally given as 5 – 10 \(\mu m \). For high-order corrections, the bandwidth must be of the order of 1 kHz. For a smooth overall shape of the surface with low residual errors, the inter-actuator coupling [6] should be 20-30%.

2.2.4.1 Summary for the Deformable mirrors

Deformable mirrors define the dynamics of the AO system and the specific properties of the corresponding optimisation problem. For example, segmented mirrors do not have coupling between the segments, whereas membrane mirrors have complicated dynamics that involves
Table 2.1: Parameters for deformable mirrors in ELT-class telescopes [from [6]].

<table>
<thead>
<tr>
<th>Parameter of a Deformable mirror</th>
<th>Required value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of actuators</td>
<td>5000 to ≥ 250000</td>
</tr>
<tr>
<td>Inter-actuator spacing</td>
<td>200µm – 1mm</td>
</tr>
<tr>
<td>Actuator stroke</td>
<td>5–10µm</td>
</tr>
<tr>
<td>Inter-actuator coupling</td>
<td>20 – 30%</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

coupling between many adjacent actuators. Different types of DMs have different dynamics, and this is what motivates the study and modelling of DMs. The hardware limitations of deformable mirrors are more important, since a too-large movement of an actuator can damage the surface of a continuous-faceplate DM. This motivates the study of actuator constraints and constrained control.

2.3 Control Strategies for Adaptive Optics Systems

In general, AO systems can be modelled as Linear Time-Invariant (LTI) Multi-Input Multi-Output (MIMO) systems. The goal of the control system is to compensate for distortions in incoming wavefronts, which it does by processing the data from the WFS and generating signals for the DMs. The typical criterion of effectiveness is the minimal residual phase variance of the wavefront [51].

2.3.1 Control techniques currently used in Adaptive Optics

The most widely used control technique for AO systems is a simple PI [7–9] or PID [10] controller. Although classical control does not account for the actuators coupling in the deformable mirror and the constraints on maximum actuator movement, PI/PID controllers are still used due to their ease of implementation and the fact that in good seeing conditions, PI controllers are generally considered to be good enough [5].

More advanced controllers, such as Linear Quadratic Gaussian (LQG) and minimum variance [27,120] controllers have been also considered. LQG controllers have been designed [5,13] and simulated [14,15] for adaptive optics. The experimental validation of optimal control was shown to outperform classical control [18,19]. Robust control has also been discussed [4,20–22], simulated [24], and tested [25] for adaptive optics applications. Adaptive control for adaptive optics has also been considered [28,29].

2.3.2 Proposed control strategy: constrained Receding Horizon Control

All the aforementioned control techniques are unconstrained, whereas the actuators in deformable mirrors are obviously constrained by a maximum allowable movement. Too large control signals can cause damage to the surface of DMs.
The main motivation for using constrained Receding Horizon Control (RHC) is to provide a control signal that is optimal within the imposed constraints, to prevent the damage to the surface of a DM. Therefore, RHC provides the means for intelligent handling of constraints and dynamics, making it possible to use adaptive optics even in strong turbulence conditions.

The constrained RHC technique remains relatively unexplored in adaptive optics [33–35, 37]. It has been used [33] to control a Thermal Deformable Mirror to correct static aberrations in a light beam. The consecutive line searches method [38] in the direction of several Zernike modes was used in [33]. The Nelder-Mead [39] algorithm was used in [34] for correction of optical aberrations in a closed-loop feedback.

2.3.3 Alternative Solutions and Approaches for Constrained Control

Other possible solutions include switched controllers for constrained and unconstrained cases separately. One of the solutions to the over-saturation problem is to use controller switching methods, such as multi-mode regulators [121] or piecewise-linear control (PLC) [122], to deal with input constraints. A common feature of these strategies (and PLC in particular) is that these schemes yield relatively low gain controllers to ensure that the input constraints are avoided. These methods are conservative since the control is away from the constraints [123]. However, the analysis of stability of switched systems is far from obvious [124–127].

While PLC is an interesting approach and can be considered for low-dimensional systems, it is too cumbersome for high-dimensional coupled control systems. Further, PLC yields lower-gain control and therefore does not use the full potential of control. An attractive feature of an online QP is that, even for large systems, it will make the best possible decision in both constrained and unconstrained cases, thus providing high-gain control without the risk of over-saturation and abrupt changes of control inputs.

2.3.4 Receding Horizon Control for Adaptive Optics

The main reason to apply Receding Horizon Control (RHC) in adaptive optics is to account for the inevitable hardware constraints of deformable mirrors: actuators are constrained by a maximal allowable movement, and the controller must generate a signal that is optimal within constraints. Doing otherwise will lead to inferior performance and a risk to the DM's surface.

RHC solves an optimisation problem at each sampling instant to generate the best possible control signal for the deformable mirror and therefore to compensate for the atmospheric turbulence. The basic idea of Receding Horizon Control, as illustrated in Fig. 2.7, is to make a plan of the future control signals \(N \) steps forward.

An optimisation algorithm (1) computes the optimal strategy within prediction horizons (\(N \) steps ahead) and constraints, then (2) executes the first control move, before (3) moving the prediction horizon one step further and re-planning [128]. Using the Measured Output and comparing it with the Reference Trajectory (see Fig. 2.7), Receding Horizon Control produces the Predicted Output control signal. This is why only the first signal is applied:
on the next sampling instance the control signal is recalculated, as Receding Horizon Control constantly adjusts the control moves based on the most recent information [129]. The prediction horizon is continually shifted forward; hence the name *receding* horizon control. The derivation of RHC is provided in Chapter 3.

The essential ingredient of constrained RHC is an optimisation algorithm that actually solves the control problem online. However, the optimisation problem can be formulated differently, such as Quadratic or Linear Programming. The next section introduces a comparison of the two formulations, along with their benefits and shortcomings.

2.4 Optimisation Strategies for Receding Horizon Control in Adaptive Optics

An article entitled “Who needs QP for linear MPC anyway?” appeared in *Automatica* [130] and discussed the pitfalls and benefits of Linear Programming algorithms compared to Quadratic Programming. The following short section, inspired by insightful discussions in the book by Jan Maciejowski [131], discusses the advantages of Quadratic Programming and its benefits for Receding Horizon Control.

2.4.1 Quadratic and Linear Programming

Optimisation problems are usually solved numerically by “going downhill”. However, many optimisation problems have “local” minima, and the algorithm might become stuck at such a local minimum, unaware that the true “global” minimum is elsewhere [131]. The optimisation problem being discussed in this thesis is *smooth*, or *convex*. Simply speaking [38], a set is *convex* if every point in the set can be seen from every other point, along an unobstructed straight path between them, where unobstructed means lying in the set.

An objective function is convex if the straight line joining any two points on the cost surface is never below the surface. Due to the convexity of the objective function, there is only one minimum, thus it is guaranteed that a global minimum will eventually be reached if one keeps “going downhill” [131]. The optimisation problem of optimal control can be formulated as a Linear or a Quadratic Program.
A Quadratic Program (QP) is an optimisation problem of the form:

\[
\begin{align*}
\text{minimise} & \quad \frac{1}{2} \theta^T \mathbb{H} \theta + \mathbf{F}^T \theta \\
\text{subject to} & \quad \mathbf{O} \theta \leq \gamma
\end{align*}
\]

The problem is convex if the Hessian matrix is positive semidefinite \(\mathbb{H} \succeq 0 \). Since the constraints are linear inequalities, the surfaces on which they are active are hyperplanes. The constrained objective function can be visualised as an ellipsoid surface, parts of which have been cut off by a number of flat “faces”. It is clear that this constrained surface remains convex [131].

A Linear Program (LP) is the special case of a QP when \(\mathbb{H} = 0 \):

\[
\begin{align*}
\text{minimise} & \quad \mathbf{F}^T \theta \\
\text{subject to} & \quad \mathbf{O} \theta \leq \gamma
\end{align*}
\]

The objective function is also convex, and the minimum always occurs at a vertex. The constrained objective surface can be visualised as a surface with flat faces (simplex) [132, 133].

2.4.2 Optimal Control Problem Formulation: Linear or Quadratic?

It is possible to modify the cost function used in constrained optimal control, so that absolute values, rather than squared values, of errors are penalised. One of the historical reasons for adopting such a formulation is that LP problems can be solved more quickly than QP problems, and that there is more experience of solving LP problems. The importance of this reason is decreasing rapidly because of the efforts being made in the development of algorithms for solving QP problems. Another reason for adopting the QP formulation of the constrained control problem is that the resulting behaviour is different.

2.4.2.1 Linear and Quadratic Programming formulations: difference in behaviour of a solution

The solutions of LP problems are always at the intersection of constraints, occasionally on a single constraint. The solutions of QP problems can be off constraints, on a single constraint, or (relatively rarely) at an intersection of constraints, as seen in Fig. 2.8. Consider a problem with only two decision variables \(x_1 \) and \(x_2 \). In Fig. 2.8, adapted from [131], the thick solid lines represent linear inequality constraints, the feasible region is the interior of the region bounded by these lines. The dashed lines represent constant cost contours, those for an LP problem being shown on the left (straight lines, or hyperplanes in general) and those for a QP problem being shown on the right (ellipses, or hyper-ellipsoids in general). For the LP problem, the cost increases as one moves upwards in the figure, and for the QP problem the cost increases as one moves out from the centre of the ellipse.
Figure 2.8: Cost contours and constraints for the LP (left) and QP (right) problems. The black dots show the optimal solution.

It can be seen from Fig. 2.8 (on the left), that the optimal solution to an LP problem must always lie on at least one constraint. The solution is relatively robust with respect to the cost function: the slope of the cost contours can vary quite a lot before the optimal solution changes. But when it does change, it jumps suddenly to one of the other corners of the feasible region.

The figure on the right in Fig. 2.8 shows that the optimal solution to a QP problem behaves differently: the optimal solution is on one of the constraints. However, there can be situations when the centre of the ellipse is in the interior of the feasible region, and then the solution will not be on any of the constraints. In this case the optimal solution is completely insensitive to changes in the constraints if it is in the interior of the feasible region, but depends continuously on the cost function. If it is on the boundary of this region - that is, some constraints are active - then it depends continuously on both the cost function and the constraints.

2.4.2.2 Issues with Linear Programming in Constrained Control

The comparison of the closed-loop responses between a linear (or l_1) criterion and a quadratic criterion [134] indicates that the l_1 formulation forces the state to the origin in finite time as opposed to the quadratic programming formulation, where the state exponentially approaches the origin. Forcing the state to the origin in finite time is appealing for servo regulation. However, a dead-beat control may yield poor closed-loop performance in process control applications, becoming especially evident in the presence of state noise.

Recently Dave [135] has advocated the use of an l_1 and l_∞ norm as a performance criterion for RHC. The solution of a linear program is less computationally demanding than the corresponding solution of a quadratic program of the same size and complexity. Thus it may be preferable to formulate RHC as a linear program [134]. However, it was found that the l_1 formulation may result in dead-beat performance or idle control performance (i.e., no control action) when the input penalty matrix R is large relative to the matrix Q. Extensive numerical simulations in [136] show that the idle control policy in the l_1
formulation appears to be common, which represents potential problems for closed-loop operations.

2.4.3 Which optimisation formulation is preferable for Adaptive Optics?

Each of the formulations - Linear or Quadratic Programming - has its own benefits. The main consequence of the l_1 criterion is that it may yield either dead-beat or idle control responses. Both of these types of responses may be unsuitable for process control applications [136]. Thus, it can be concluded that the Linear Programming formulation of RHC is not suitable for adaptive optics systems, since the performance issues raise questions concerning the suitability of the l_1 criterion for RHC. Therefore, we choose the Quadratic Programming formulation of an optimisation problem for the control of adaptive optics systems.

2.5 Chapter Summary

This chapter has introduced the key concepts of Astronomical AO and motivates further developments as follows:

1. Optimal control for AO systems is a logical choice. The numerical issues and poor performance of Linear Quadratic Regulator in high-gain mode are far from obvious. This motivates the transition from Infinite to Receding Horizon Control in Chapter 3.

2. In justifying the choice of the QP formulation for this research project, it has been explained that the QP formulation of the optimisation problem for adaptive optics control offers more flexibility than the LP formulation.

3. The control problem of a DM with coupled actuators has a particular matrix structure, which can be analysed and exploited to accelerate further the online QP solution in Receding Horizon Control. This is the main topic of Chapter 4.

4. Tight computational speed requirements in AO are the main motivation for the detailed study of optimisation algorithms in Chapter 5.

5. Development of fast optimisation algorithms in Chapter 5 and an insightful structure analysis in Chapter 4 provide the basis for a comprehensive numerical study of the feasibility of constrained RHC in AO in Chapter 6.

6. As will be shown in Chapter 6, Receding Horizon Control can be computed very quickly in adaptive optics, but is it worth the effort? The answer to this important question in terms of disturbance rejection performance is given in Chapter 7.

This project has a considerable potential for further work, as indicated in Chapter 8.
Chapter 3

Optimal control for Adaptive Optics: from Infinite to Receding Horizon

The greatest difficulties lie where we are not looking for them.

— Johann Wolfgang von Goethe

The formulation of Infinite and Receding Horizon Control for Adaptive Optics systems is the main topic of this chapter. The dynamic model of adaptive optics components is the subject of Section 3.1. The formulation of Infinite Horizon Control (or Linear Quadratic Regulator) along with its strong and weak points is provided in Section 3.2. The potential numerical problems of the LQR control and the motivation for the transition from Infinite to Receding Horizon Control are discussed in Section 3.3. The constrained control formulation as an optimisation problem and the benefits of such a formulation are addressed in Section 3.4. Finally, the results of an initial assessment of constrained Receding Horizon Control for adaptive optics are presented in Section 3.5.

3.1 Dynamic models of Adaptive Optics components

An adaptive optics system can be considered as a Linear Time-Invariant (LTI) Multi-Input Multi-Output (MIMO) system that consists of a wavefront sensor, a controller, and a deformable mirror (DM) for the real-time compensation of an output disturbance (atmospheric turbulence). The system is subject to both output disturbance and measurement noise from the photosensor inside the wavefront sensor. The goal of the controller is to track a zero reference, which is a flat wavefront.

3.1.1 The model of a wavefront sensor

The dynamics of the wavefront sensor (WFS) is described by the integration time T_f of the photosensor, since the output of the sensor is an average of the signal from t to $t + T_f$. An additional delay for data processing and reconstruction is denoted by τ_{wfs}. In
the discrete-time equivalent, the dynamics of the WFS are usually represented by sensor delays proportional to $T_f + \tau_{wfs}$.

3.1.2 Dynamic Models of Deformable mirrors

The dynamics of the actuators in a deformable mirror (DM) is considered to be a first-order transfer function (TF) with a fast pole [50, 137], which agrees with experimental data obtained via system identification from the hardware optical test-bench [138]. The dynamics of DM actuators usually differ between actuators. To account for this variation, the continuous Transfer Matrix (TM) is generated in this work taking the values of the poles from a Normal Distribution $p_N \sim N(p, \sigma_p^2)$ with mean p and standard deviation $\sigma_p = \alpha \cdot p$ to make each actuator’s TF slightly different (α is considered as $\alpha = 0.01$). The continuous TF for the (i, i)-th actuator is therefore:

$$G(s)_{plant}^{ii} = \frac{1}{s + p_N},$$

where the mean value of the poles is $p = 1500$. This kind of dynamical model, with coupling between the four nearest actuators, was found adequate [138, 139] for the target hardware, which was a Xinetics deformable mirror (see Fig. 3.1) with 37 actuators arranged in a 7×7 square grid, spaced at 5 mm intervals between each actuator. The mirror’s surface is ø30 mm, made of an ultra-low-expansion (ULE) glass.

3.1.3 Coupling models for actuators in Deformable Mirrors

Actuators are arranged in a square grid and attached underneath the reflective surface of a deformable mirror. The faceplate of the mirror is made from a low-expansion material such as quartz of Corning ULE. When an actuator is energised (pushed up or pulled down), it displaces neighbour actuators due to the sturdiness of the mirror’s surface. Therefore, one energised actuator affects its neighbouring actuators to some extent, increasing the complexity of dynamics of a deformable mirror. This is called inter-actuator coupling. In this study, three cases of coupling between the actuators in a deformable mirror are considered, as shown in Fig. 3.2:

1. **no coupling** between the actuators, when the energised actuator has no effect on its neighbours (Fig. 3.2(a));
2. **coupling between nearest neighbour actuators**, when the energised actuator affects only its four nearest neighbours (see Fig. 3.2(b));

3. **coupling between nearest neighbours and diagonally adjacent actuators**, when the energised actuator affects its four nearest neighbours and four diagonally adjacent actuators (see Fig. 3.2(c)).

![Figure 3.2: Coupling cases for the DM models: (a) decoupled case; (b) coupling between nearest neighbours; (c) coupling between nearest neighbour and diagonally adjacent actuators.](image)

The coupling between neighbouring actuators in a deformable mirror is modelled as follows. Denote \(\gamma \in (0, 1) \) the value of the *coupling degree* between their neighbour actuators. The strength of influence of one actuator on its neighbours depends on the mechanical properties of the mirror’s surface, inter-actuators spacing and number of actuators: the closer the actuators are to each other, the more an energised actuator affects its neighbours. Actuators coupling can be described as a proportional relationship between the actuators’ transfer functions and described by a coupling degree \(\gamma \). The transfer matrix therefore contains off-diagonal elements \(G_{i,j} \):

\[
G_{TM}^{TM}(s) = \begin{bmatrix}
G_{1,1} & G_{1,2} & 0 & G_{1,4} & 0 & \cdots \\
G_{2,1} & G_{2,2} & G_{2,3} & G_{2,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.
\]

(3.2)

For this example of a \(3 \times 3 \) actuators grid (9 actuators), the coupling transfer function \(G_{5,2}(s) \) between actuator 5 and actuator 2 is obtained as \(G_{5,2}(s) = \gamma \cdot G_{5,5}(s) \), where \(\gamma \) is the coupling degree. Continuous-faceplate DMs usually have a relatively strong coupling [6] between the nearest neighbour actuators such as 20-30\% (i.e., \(\gamma = 0.2 \text{–} 0.3 \)) with inter-actuator spacing 0.2–1 mm and strokes of up to 10\mu m.

3.1.3.1 No coupling between the actuators

The decoupled case corresponds to segmented mirrors, where the segments move independently from each other and do not interact. The tip-tilt mirror is mounted on a piezo-driven tilting stage. The stage tilts horizontally and vertically according to voltages applied to two piezo-devices [140]. When the actuators do not influence each other, the Transfer Matrix (TM) contains only diagonal terms and all off-diagonal transfer functions are zeros.
(e.g., $G_{1,2}(s) = 0$, which describes the interaction between actuator 1 and 2). The TM is as follows:

$$G_1(s) = \begin{bmatrix}
G_{1,1} & 0 & \ldots & 0 \\
0 & G_{2,2} & \ddots & \\
\vdots & \vdots & \ddots &
\end{bmatrix} \quad (3.3)$$

Early AO systems seemed to ignore the coupling [43] between the actuators, leading to decreased performance in terms of atmospheric turbulence compensation. Therefore, models of the deformable mirrors that are more realistic need to be considered.

3.1.3.2 Coupling between nearest neighbour actuators

A more realistic model of the continuous-faceplate DMs includes the coupling between nearest neighbour actuators, as shown in Fig. 3.2(b). Here the energised actuator 5 affects actuators 2, 4, 6 and 8. Continuous-facesheet deformable mirrors usually have relatively strong coupling only between nearest neighbour actuators (i.e., the four closest actuators to the energised one). When the coupling is between nearest actuators, the transfer matrix becomes denser (below, the bold font shows the activated, or energised, actuator’s TF, for a 3×3 actuator grid):

$$\Upsilon_2 = \begin{bmatrix}
0 & \gamma & 0 \\
\gamma & 1 & \gamma \\
0 & \gamma & 0
\end{bmatrix}, \quad G_2(s) = \begin{bmatrix}
G_{1,1} & G_{1,2} & 0 & G_{1,4} & 0 & 0 & \ldots & 0 \\
G_{2,1} & G_{2,2} & G_{2,3} & 0 & G_{2,5} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots &
\end{bmatrix} \quad (3.4)$$

where $\gamma \in (0, 1)$ is the value of the coupling degree between the nearest neighbour actuators only, as seen in the coupling matrix Υ_2.

3.1.3.3 Coupling between nearest and diagonally adjacent actuators

When the actuators are spaced closely to each other in a continuous-faceplate deformable mirror, the coupling between the actuators also includes the diagonal adjacent actuators, making the DM’s dynamics more complex. When the coupling is between nearest actuators and diagonally adjacent actuators, the TM becomes denser:

$$\Upsilon_3 = \begin{bmatrix}
\gamma_2 & \gamma_1 & \gamma_2 \\
\gamma_1 & 1 & \gamma_1 \\
\gamma_2 & \gamma_1 & \gamma_2
\end{bmatrix}, \quad G_3(s) = \begin{bmatrix}
G_{1,1} & G_{1,2} & 0 & G_{1,4} & G_{1,5} & 0 & \ldots & 0 \\
G_{2,1} & G_{2,2} & G_{2,3} & 0 & G_{2,5} & G_{2,6} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots &
\end{bmatrix} \quad (3.5)$$

where $\gamma \in (0, 1)$ is the value of the coupling degree between the actuators. These matrices are presented for an example of a 3×3 actuators grid. The activated (energised) actuator’s transfer function in (3.5) is emphasised by a bold font. In this case, the coupling matrix Υ_3 contains the coupling degree γ_1 for the nearest neighbours (four closest actuators affected by the energised one) and γ_2 for the diagonally adjacent actuators. The coupling degree
for the diagonally adjacent actuators is usually lower (depending on the type of mirror used).

3.1.4 Typical sampling rate of an Adaptive Optics system

Wavefront sensor integration times may be shorter than 1 millisecond [141] due to high bandwidth requirements for the control loop [142] in astronomical adaptive optics systems. Therefore, choosing the sampling frequency results in trade-offs [143], including:

1. Atmospheric turbulence to correct for. The system bandwidth has to be larger than the turbulence temporal evolution of the faster mode to be corrected.

2. The system parameters, including detector technologies, correcting devices, and real time computer performance.

A consequence of this, which is important for constrained control, is that the turbulence does not change much from one sampling instance to the next in the case of fast sampling rates.

3.1.5 Output disturbance dynamics

The output disturbance in adaptive optics systems is caused by atmospheric turbulence. It was shown in [144] that an autoregressive model AR(1) provides limited performance due to the nature of the approximate model. An AR(5) model leads to a loss of performance because of the increased sensitivity to variations of temporal characteristics of the atmospheric turbulence. An AR(2) model provides a reasonable agreement with the Kolmogorov model [145] in good seeing conditions and is used in this work in the following form (before time discretisation):

\[G(s)_{\text{atm}} = \frac{1}{s^2 + s \cdot \kappa_1 + \kappa_2}. \] (3.6)

The poles of the output disturbance model are usually slower than the poles of the DM. In this study we used \(\kappa_1 = 2 \) and \(\kappa_2 = 30 \) as values for the coefficients for (3.6).

3.1.6 The complete model of an Adaptive Optics system

The complete model of the system consists of WFS dynamics, actuators of the DM, and a time delay of the wavefront sensor. The continuous transfer matrices of the plant, \(G_{\text{plant}}^{TM}(s) \), and the disturbance, \(G_{\text{atm}}(s) \), were formed using (3.1) and (3.6). These transfer matrices were converted to the state space formulation, discretised using a zero-order hold (ZOH) on the inputs with a sample time of \(T_s = 10^{-3} \) seconds to obtain the state space matrices of the overall model.
3.2 Formulation of Linear Quadratic Gaussian control for Adaptive Optics

This section provides the formulation of the Linear Quadratic Regulator (LQR) for Adaptive optics. The Kalman filter is used in this work as a state estimator, comprising a complete Linear Quadratic Gaussian (the Regulator and the Kalman filter) controller. The system model considered is a Linear Time Invariant system subject to output disturbances.

3.2.1 Linear Quadratic Gaussian control for Adaptive Optics

The system is assumed LTI with states $x[k]$, inputs $u[k]$, and measurements $y[k]$ as:

$$x[k + 1] = Ax[k] + Bu[k] + G\xi[k] \quad y[k] = Cx[k] + Du[k] + \eta[k] \quad (3.7)$$

here $\xi[k]$ is the process noise and $\eta[k]$ is the measurement noise. The matrices A, B, and C must be augmented to account for the plant dynamics and the output disturbance:

$$A = \begin{bmatrix} A_{\text{plant}} & 0 \\ 0 & A_{\text{atm}} \end{bmatrix}, \quad B = \begin{bmatrix} B_{\text{plant}} \\ 0 \end{bmatrix}, \quad G = \begin{bmatrix} 0 \\ B_{\text{atm}} \end{bmatrix}, \quad C = [C_{\text{plant}} C_{\text{atm}}], \quad D = 0 \quad (3.8)$$

These matrices are obtained from the Transfer Matrices of the plant, $G_{\text{plant}}(s)$, and the disturbance, $G_{\text{atm}}(s)$, from (3.1) and (3.6).

The Strehl ratio is typically used to derive a performance criterion for the controller. The Strehl ratio is the ratio of the peak intensity of a measured point spread function (PSF) to the peak intensity of a perfect diffraction-limited PSF for the same optical system. The Strehl ratio values are $S \in [0, 1]$, and the closer S is to 1, the better (sharper) is the image.

The objective of the controller is to minimise the wavefront phase variance (i.e., to keep the wavefront flat), which is equivalent to the maximisation of the Strehl ratio. The cost function for the infinite-horizon control problem can be formulated as:

$$J = \sum_{k=0}^{\infty} \left(\frac{1}{2} x^T Q x + \frac{1}{2} u^T R u \right) \quad (3.9)$$

The matrix Q can be chosen as $Q = C^T C$, and the matrix R can be set as $R = 10^{-12} I$ to meet the performance requirements of an AO system. In the time-invariant infinite horizon problem, it is well-known that the solution stabilises the system.

3.2.1.1 State feedback gain evaluation

The feedback gain can be found using the solution of the discrete-time algebraic Riccati equations (DARE):

$$A^T \Omega_K A - A^T \Omega_K B (B^T \Omega_K B + R)^{-1} B^T \Omega_K A + Q = \Omega_K \quad (3.10)$$
The solution of the DARE in (3.10) is the matrix Ω_K, which is used for the state feedback gain calculation:

$$K_{gain} = (B^T \Omega_K B + R)^{-1} B^T \Omega_K A$$

(3.11)

where $Q = C^T C = [C_{plant} \ C_{atm}]^T [C_{plant} \ C_{atm}]$ and $R = 10^{-12} I$. The matrix Q contains zeros on the main diagonal, which may cause problems with finite precision computations for the DARE solvers (see Subsection 3.2.3 for a discussion of this issue).

3.2.1.2 State observer gain evaluation

The observer gain (the Kalman filter) is found from the dual DARE:

$$A \Omega_L A^T - A \Omega_L C^T (C \Omega_L C^T + W)^{-1} C \Omega_L A^T + V = \Omega_L, \tag{3.12}$$

where $V = GG^T$ and $G = [0, B_{atm}]^T$, as indicated in (3.8). Using the solution Ω_L of the DARE in (3.12), the observer gain can be evaluated:

$$L_{gain} = A \Omega_L C^T (C \Omega_L C^T + W)^{-1} \tag{3.13}$$

where W is the covariance matrix of the measurement noise.

3.2.2 Formulation of Linear Quadratic Gaussian control

By combining the solutions for the feedback and the observer from the previous subsections, the controller can be formulated as:

$$u[k] = -K_{gain} \hat{x}[k]$$

$$\hat{x}[k] = A \hat{x}[k-1] + Bu[k-1] + L_{gain}(y[k-1] - C \hat{x}[k-1]). \tag{3.14}$$

In numerical experiments, the LQR/LQG controller is used in the form of (3.14).

3.2.3 Numerical issues of the optimal control for Adaptive Optics systems

A typical DM for the AO system may consist of thousands of actuators, such that the matrices of the LQR controller can be very large. Although most of the calculations are performed off-line, the evaluation of the control matrices can be difficult due to the finite precision of the computations. There may be numerical problems in solving the corresponding DARE for the LQR due to augmentation of the state matrices to account for delays and/or atmospheric turbulence. This may explain many of the problems that authors [146] have encountered in trying to solve the Riccati equations for ELT-size telescopes. This issue is considered in the subsections below.

In the standard LQR formulation, the weight matrix $Q = [C_{plant} C_{atm}]^T [C_{plant} C_{atm}]$, which is used in the cost function in (3.9), may become ill-conditioned. This may cause problems with finite precision computations for the DARE solvers. The matrix elements that correspond to the output disturbance can be small compared to the plant elements.
(see Fig. 3.3(a)). The determinant of the matrix Q for the solution of Riccati equation can be close to zero and in turn leads to numerical problems in solving the Riccati equations.

Figure 3.3: The structure of the LQR matrices: (a) matrix Q from (3.9); (b) matrix $V = GG^T$ from (3.12).

Consider the singular value decomposition (SVD) of the matrix Q as $Q = U \Sigma V^H$, where Σ is the diagonal matrix of singular values σ_i. Define the condition number $[147]$ as $\kappa(Q) = \sigma_{\text{max}} / \sigma_{\text{min}}$. Even in the case of no time delays, the condition number for the matrix Q is of order $\kappa(Q) \approx 5 \cdot 10^{15}$ for the 5×5 actuator model (this value is obtained with diagonal loading of 1 eps, see Subsection 3.2.3.1). This is not a surprise since the matrix Q contains many zeros (or very small numbers) on the main diagonal.

A similar problem occurs with the matrix $V = GG^T$, where $G = [0, B_{\text{atm}}]^T$. The matrix V is used for the calculation of the steady-state Kalman estimator. The condition number for the matrix V is of order $\kappa(V) \approx 1 \cdot 10^9$ for the 5×5 actuator model (see Fig. 3.3(b)). As before, the value is obtained with diagonal loading of 1 eps, otherwise $\kappa(V) = +\infty$ since the smallest eigenvalue is zero.

The solver implemented in MATLAB’s DARE routine uses the QZ algorithm $[148]$ to deflate the extended symplectic pencil and compute its stable invariant subspace. In case of poor conditioning, as described above, the algorithm often terminates with errors: evaluation of eigenvalues is numerically unstable because the spectrum is too close to the imaginary axis. Augmentation of the state matrices to account for time-delays of two cycles (typical for adaptive optics systems) does not noticeably change the numerical properties of the matrices Q_{aug} and V. However, the numerical problems with the conditioning still present: $\kappa(Q_{\text{aug}}) \approx 1 \cdot 10^9$ and $\kappa(V) \approx 1 \cdot 10^9$.

3.2.3.1 Using a diagonal loading to circumvent numerical problems

Since the condition number $\kappa(Q)$ can be large, indicating possible numerical problems, regularisation of the weighting matrix Q is required. One can use the diagonal loading technique for the regularisation that is similar to Tikhonov regularisation $[149]$:

$$ Q = Q + \delta I, \quad (3.15) $$
where δ is the regularisation term $\delta = \epsilon/T_f$, T_f is the sampling period, ϵ is the floating-point relative accuracy, and I is an identity matrix. By increasing the regularisation term in (3.15) to $10^7\delta I$, the condition number $\kappa(Q)$ is reduced to 10^9. Reasonable values of the regularisation term δ are found to be within the range of $\epsilon \ldots 10^3\epsilon$.

3.2.3.2 Typical algorithm for Discrete Riccati Equation Equations

The actual implementation of a DARE solver can be quite complicated and not always numerically stable. As an example of the DARE solver [148] implementation in MATLAB, DARE:

$$A^TXA - X - A^TXB(B^TXB + R)^{-1}B^TXA + Q = 0$$

is solved as a case of the general discrete-time algebraic Riccati equation (GDARE):

$$A^TXA - E^TXE - (A^TXB + S)(B^TXB + R)^{-1}(B^TXA + S^T) + Q = 0$$

The actual Riccati equation is solved by the `gdare` function, a generalised solver for DARE. The `gdare` function computes the unique stabilising solution of the discrete-time algebraic Riccati equation associated with an extended symplectic pencil of the form:

$$H - tJ = \begin{bmatrix} A & 0 & B \\ -Q & E^T & -S \\ S^T & 0 & R \end{bmatrix} - t \begin{bmatrix} E & 0 & 0 \\ 0 & A^T & 0 \\ 0 & -B^T & 0 \end{bmatrix},$$ (3.16)

where, $S = 0$ and $E = I$. For the evaluation of the eigenvalues, the DARE function calls `qz.m`, which is a QZ factorisation for generalised eigenvalues.

The limitations of the algorithm used in MATLAB’s DARE is that the pair (A, B) must be stabilisable (all eigenvalues of A that are outside the unit disk must be controllable). A sufficient condition for (Q, A) to be detectable is:

$$\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} > 0,$$ (3.17)

Therefore, when the matrix Q has small/zero diagonal elements, the sufficient condition does not hold. Furthermore, one of the assumptions is that the associated symplectic pencil (matrices in (3.16)) has no eigenvalues on the unit circle. However, due to the models of the adaptive optics system and the augmentations, both H and J matrices do have eigenvalues that are very close to the unit circle (e.g., $\lambda = 0.9884 + 0.0568i$). This leads to the numerical problems in solving the DARE for adaptive optics.

3.2.4 Summary for Linear Quadratic Regulator control

The discussions of previous sections allow to conclude that, although a Linear Quadratic Regulator seems to be attractive and a relatively straightforward control technique, its implementation for a typical adaptive optics system is not free of numerical problems.
This is because the numerical algorithms for solving a Discrete Algebraic Riccati Equation can be unstable in the case of fast discretisation and finite precision computations. A short summary of the properties of LQR is provided in Table 3.1.

Table 3.1: Summary of the properties of Linear Quadratic Regulator for Adaptive Optics applications.

<table>
<thead>
<tr>
<th>Advantages:</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Most computations (DARE solution) are done off-line;</td>
<td>✗ Q and V matrices can be poorly conditioned;</td>
</tr>
<tr>
<td>✓ LQR can handle coupled actuators dynamics.</td>
<td>✗ DARE solvers can fail to find a numerical solution;</td>
</tr>
<tr>
<td></td>
<td>✗ LQR cannot efficiently handle constraints;</td>
</tr>
<tr>
<td></td>
<td>✗ System identification needed for models of DM and turbulence;</td>
</tr>
</tbody>
</table>

To summarise, the numerical properties of the augmented matrices Q and V (used for the state feedback and the state estimator, respectively) are prone to numerical problems. Even if these numerical problems can be alleviated by numerical tricks such as diagonal loading, a better solution could be to use an alternative formulation of the optimal control, such as Receding Horizon Control.

3.3 From Infinite to Receding Horizon control

The main disadvantages of Linear Quadratic Regulator are the potential numerical problems and the complexity of the algorithms for numerically solving Riccati equations. This section starts with a motivation for constrained control and provides the formulation of Receding Horizon Control as a quadratic optimisation problem.

3.3.1 Motivation for constrained optimal control in Adaptive Optics

An adaptive optics system represents a significant challenge from the control point of view. Matrices for the state space formulation are large (DMs can have more than 100 × 100 actuators), and usually augmented with at least two sample delays. The specific challenges are:

1. the control signal has hard constraints that cannot be violated or softened (or the mirror’s surface might be damaged);
2. specific additional constraints may be required (e.g., maximum actuators movement, waffle\(^1\) mode [40]);

\(^{1}\)Waffle mode is the movement of two adjacent actuators in opposite directions, which can be hazardous for a mirror’s surface. While RHC can be used for waffle mode mitigation, our preliminary simulations [150] show that it takes too long even for small adaptive optics systems.
3. limited time for computation of a control input: the QP must be solved within 1 msec or faster.

However, firstly, it is worth asking: Why do we need optimal control in adaptive optics? Indeed, there were several reasons [5] for not using optimal control in adaptive optics:

1. In good seeing conditions a PI control law seems to work well enough.
2. A PI control law is easy to implement.
3. Optimal control usually requires a state estimator (Kalman filter) and system identification for models of a DM and atmospheric turbulence.
4. A large number of sensors and actuators have made the computational burden infeasible within 1 msec duty cycle necessary for adaptive optics.

However, the RHC has its own benefits that cannot be underestimated. The main feature of the RHC that it respects hard constraints and generates a control signal that is optimal within these constraints. This allows for addressing the following unsolved problems in adaptive optics control:

1. need to respect hard constraints on the control signal to prevent surface damage to the deformable mirror;
2. avoid numerical problems in the commonly used LQR method, and to make it easier to implement;
3. need to mitigate specific modes, such as waffle mode [40].

Although saturation in adaptive optics systems is rare, constrained RHC is considered a safeguard against potential mirror’s surface damage. Moreover, the ability of RHC to generate control inputs within arbitrary constraints allows the full compensational potential of a deformable mirror to be utilised. The next section provides the formulation of Receding Horizon Control in terms of the quadratic optimisation problem.

3.3.2 The main idea behind Receding Horizon Control

The basic idea of Receding Horizon Control is to make a plan of the future control signals N steps forward. This involves three steps:

1. Compute the control inputs that are optimal within constraints N steps ahead;
2. Execute the first control move;
3. Shift the prediction horizon one step further and re-plan.

The optimisation therefore yields a control sequence and the first control in this sequence is applied to the plant. Only the first control input is applied: on the next sampling instance, the control signal is then recalculated, as RHC constantly adjusts the control
moves based on the most recent information [151]. The scheme of Receding Horizon Control is illustrated in Fig. 3.4.

An important advantage of RHC is its ability to handle hard constraints on controls and states [152]. The central idea is to propagate the states and predict the control moves to minimise the finite horizon objective function J_{N_p,N_c}:

$$J_{N_p,N_c} = \frac{1}{2} x^T N_p P x_{N_p} + \frac{1}{2} \sum_{k=0}^{N_p-1} e_k^T Q e_k + \frac{1}{2} \sum_{k=0}^{N_c-1} u_k^T R u_k$$

(3.18)

where P, Q and R are weight matrices, u_k is the control input, x is the state vector, N_p is the state prediction horizon, N_c is the control prediction horizon, and the output error e_k must be regulated to zero.

3.3.3 Formulation of Receding Horizon Control for Adaptive Optics

Consider the state space model of a linear time-invariant (LTI) system:

$$x_{k+1} = A x_k + B u_k, \quad y_k = C x_k + d_k,$$

(3.19)

where x_k is the state, u_k is the control input, and y_k is the output. The d_k is a time-varying output disturbance. The goal for the controller is that the output error $e_k = y_k - y_d = C x_k + d_k - y_d$ must be regulated to zero. Using a standard state space formulation (see Chapter 5 in [128] for more details), the cost function in vector notation can be expressed as:

$$V_{N_p,N_c} = \frac{1}{2} x^T C^T C x + \frac{1}{2} x^T Q x + \frac{1}{2} u^T R u,$$

(3.20)

for a state prediction horizon N_p and control prediction horizon N_c. Here, $X = [x_1^T, \ldots, x_{N_p}^T]^T$ and x denotes the current state, and $U = [u_0^T, u_1^T, \ldots, u_{N_c}^T]^T$ is a vector of future control
inputs. The matrices Q and R are formed as:

$$Q = \text{diag}\{C^TQC, \ldots P\} \quad \text{and} \quad R = \text{diag}\{R, \ldots R\}. \quad (3.21)$$

The state weight matrix is $Q = I$, the penalty matrix for control energy is chosen as $R = 10^{-12}I$, and the matrix P is chosen as $P = 10^{-2}I$ to match\footnote{We use both P and R matrices as parameters for RHC, and the values $P = 10^{-2}I$ and $R = 10^{-12}I$ provide desired performance in terms of disturbance rejection in our case.} the desired performance of RHC. We define matrices Γ and Ω as:

$$\Gamma = \begin{bmatrix} B & 0 & \ldots & 0 \\ AB & B & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{N_p-1}B & A^{N_p-2}B & \ldots & A^{N_p-N_c}B \end{bmatrix} \quad \Omega = \begin{bmatrix} A \\ A^2 \\ \vdots \\ A^{N_p} \end{bmatrix} \quad (3.22)$$

The dynamics in (3.19) can be expressed over the prediction horizon in vector form as:

$$X = \Gamma U + \Omega x. \quad (3.23)$$

Substituting (3.23) into the cost function (3.20) gives:

$$V_{N_p,N_c} = \bar{V} + \frac{1}{2}U^T\mathbb{H}U + U^T\mathbb{F}x, \quad (3.24)$$

where the term \bar{V} is independent of U, and the Hessian matrix \mathbb{H} and matrix \mathbb{F} are defined as follows:

$$\mathbb{H} \triangleq \Gamma^T\Omega \Gamma + R, \quad \mathbb{F} \triangleq \Omega \Gamma. \quad (3.25)$$

The optimisation problem:

$$\min_U \frac{1}{2}U^T\mathbb{H}U + U^T\mathbb{F}x \quad (3.26)$$

can be unconstrained (which is the usual mode of an adaptive optics system) or constrained.

3.3.3.1 The unconstrained solution

The cost function in (3.24) is minimised when:

$$U^{opt} = -\mathbb{H}^{-1}\mathbb{F}x, \quad (3.27)$$

where x is typically replaced by the vector of estimated states \hat{x}, which is usually obtained using a Kalman filter. The expression in (3.27) is the unconstrained solution. The unconstrained control inputs U^{opt} can be rewritten as a feedback law as:

$$U^{opt} = -K x, \quad \text{where} \quad K = \mathbb{H}^{-1}\mathbb{F}. \quad (3.28)$$

The matrix K can be pre-computed and used as a look-up table.
3.3.3.2 On feasible lengths of prediction horizons for adaptive optics

In adaptive optics systems the control signal must be computed as fast as possible, preferably within 1 msec or faster. This poses the following question: “What length of the prediction horizon is computationally feasible for adaptive optics?”. It is well known that long prediction horizons are generally advantageous. However, one has to keep in mind that the control signal is optimal with respect to the cost function and constraints over the finite prediction horizons under the assumption of perfect model match and no disturbances. It is not guaranteed to be optimal over the infinite horizon or with unpredicted disturbances. Indeed, we have found in numerical simulations that long prediction horizons can make the closed-loop cost worse.

Moreover, computational deadlines in adaptive optics applications are typically very tight, while the plants are very large (plants with 50...100 states and coupling are considered small). Hence, it is not feasible to solve a constrained optimisation problem online for long prediction horizons, since the computational burden grows quickly (polynomial in the best case) with the size of the problem. Therefore, the shortest prediction horizon $N_p = 2, N_c = 1$ was chosen for this work. We note in passing that by using $N_p \neq N_c$ (including the shortest horizon prediction $N_p = 2, N_c = 1$) we make certain assumptions about the input for the remainder of the prediction horizon. We set the input to zero ($u_1 = 0$ is constant) for the remainder of the prediction horizon. This means that we will optimise the control inputs with respect to u_0, and that u_1 is set to $u_1 = 0$, since zero value corresponds to the equilibrium related to the desired control value [128].

3.4 Accounting for hard constraints: Constrained Receding Horizon Control

In the presence of linear constraints on the variables, the optimisation problem is typically formulated as a Quadratic Programming (QP) problem of minimising the cost function (3.26). Considering only the constraints for the control inputs, the optimisation problem has the following constraints:

$$M \cdot U \leq \Lambda,$$

where $M = \begin{bmatrix} I_{N_c \cdot m} & -I_{N_c \cdot m} \end{bmatrix}$ and $\Lambda = \begin{bmatrix} U_{\text{max}} \\ -U_{\text{min}} \end{bmatrix}$, \hspace{1cm} (3.29)

where $I_{N_c \cdot m}$ is the $N_c \cdot m \times N_c \cdot m$ identity matrix (here N_c is the control horizon and m is the number of inputs). The matrix U_{max} contains the maximum allowable control inputs and is defined as $U_{\text{max}} = [u_{\text{max},1}, u_{\text{max},2}, \ldots, u_{\text{max},n}]$, and the matrix U_{min} contains the minimal allowable control inputs $U_{\text{min}} = [u_{\text{min},1}, u_{\text{min},2}, \ldots, u_{\text{min},n}]$. The constrained solution for the RHC is found by solving a QP at each sample instant of the form:

$$\min_U \frac{1}{2} U^T \mathbb{H} U + U^T \mathbb{F} x, \hspace{1cm} \text{subject to } M \cdot U \leq \Lambda$$

where U is a vector of the control inputs, and x is a measurement or estimate of the state of the system at the current sample instant [153]. When the Hessian matrix \mathbb{H} is positive
definite (which is true in the case of AO systems), the underlying optimisation problem is convex. The convexity of the optimisation problem in turn means that the constrained solution does exist and is unique [38].

3.4.1 Motivational example: Waffle mode mitigation in Adaptive Optics using the Constrained Control approach

The wavefront sensors that are used in adaptive optics to sense atmospheric turbulence have blind modes. These are wavefront functions that can yield zero or very small response in the Shack-Hartmann WFS output [40]. One of these unseen modes, a waffle mode, occurs as a wavefront perturbation that produces a null or very small measurement on the wavefront sensor [155].

The commonly-used wavefront reconstruction method called Fried geometry [103] is insensitive to this chequerboard-like pattern of phase errors called waffle. The waffle mode resembles a breakfast waffle: equal magnitude alternating variations of the wavefront over the mirror actuator locations [4], as seen in Fig. 3.5. That is, if one regards the square WFS lenslets as a chequerboard, the mean phase over the black squares will not equal the mean phase over the white squares [156]. The waffle mode can accumulate within the closed-loop operation of an adaptive optics system [154], leading to closed-loop instability and degrading the correction (or even damaging the mirror’s surface). Hence, it is very important to eliminate (or at least to mitigate) the waffle mode. In this subsection, a means of waffle mode mitigation by setting additional constraints in the RHC is discussed.

Efforts have been made to mitigate waffle and other “blind” reconstructor modes [155–158]. Various weighting schemes for least squares wavefront reconstructors have been proposed [40]. Modifications of the Hudgin reconstruction geometry were proposed [159] along with a spatially filtered wave-front sensor [160]. Another proposed option is modal removal in an FFT-based wavefront reconstruction method can be used as well [161]. Filtering out waffle mode from control signals [154] or modifying the reconstruction matrix [162] are possible means of attenuating the waffle mode.

It is envisaged that more advanced control techniques such as RHC will produce substantial improvements in waffle mitigation. By adding specific constraints on actuator movement, one can efficiently reduce the waffle-like behaviour of actuators in a DM via the RHC approach. The simulations show [150] that the computational burden is lower...
than one might expect, although the on-line QP solution limits the use of RHC to small or medium-size AO systems. The main feature of RHC is that one can incorporate specific constraints to mitigate the waffle mode in addition to the constraints on the amplitude of the control signal. It was previously reported in [35, 37] that the RHC is feasible for adaptive optics systems of a moderate size.

![Diagram of a 5x5 actuators deformable mirror](image)

Figure 3.6: Waffle mode in control signals for a 5×5 actuators deformable mirror. Note that the waffle pattern in the lower right part affecting actuators 13, 15, 19, 23 and 25.

3.4.1.1 Spatial waffle mode reduction

In the case of spatial waffle mode, additional constraints can be placed on the control signal difference between adjacent actuators in the same sampling time instant. This is especially important since some deformable mirrors already have hardware constraints of this kind, and therefore one has to incorporate these constraints in the controller design.

The spatial waffle pattern occurs between the nearest actuators that move in opposite directions, as seen in Fig. 3.6. Hence, the constraints can be formulated to penalise the opposite control signals using the waffle matrix. For example, the constraints associated with actuator 1 in a 3×3 DM are:

\[
|u_1 - u_2| < U_{sw, max} \tag{3.31}
\]

\[
|u_1 - u_4| < U_{sw, max} \tag{3.32}
\]

\[
|u_1 + u_5| < U_{sw, max}, \tag{3.33}
\]

where $U_{sw, max}$ is the maximal allowable difference between nearest control signals for the spatial waffle pattern. For a waffle matrix of size $a \times b$, there will be $(a + b - 1)$ rules as in (3.31). Converting those rules to the matrix M_0 for the DM with k actuators, gives a matrix of size $N_c \cdot k \cdot (a + b - 1) \times N_c \cdot k$ and

\[
L = \begin{bmatrix} M_0 & \end{bmatrix}, \quad A = \begin{bmatrix} U_{sw, max} \end{bmatrix}, \tag{3.34}
\]

\[
\begin{bmatrix} -M_0 \end{bmatrix},
\]

\[
\begin{bmatrix} -U_{sw, max} \end{bmatrix},
\]
In this work, the constraints for spatial waffle are assumed symmetrical and only for the closest neighbours. The main purpose of the spatial constraints is to prevent uncontrollable growth of waffle modes and to slow down their spread across the mirror’s commands.

3.4.1.2 Temporal waffle mode reduction

Unlike spatial waffle, which is the movement of nearest neighbour actuators in opposite directions, temporal waffle is considered the movement that forces the same actuator to move in opposite directions from one time instant to the next. This can damage the surface of a deformable mirror and therefore such control commands should be penalised. With Receding Horizon Control one can add constraints $u_{t,k} - u_{t-1,k} \leq \delta U_{tw,max}$ between the current control signal $u_{t,k}$ in the k-th channel and the previous signal $u_{t-1,k}$ to reduce the magnitude of the temporal waffle mode in control signals for a deformable mirror.

The constraints on the temporal control signal increments can be formulated as:

$$
\delta U_{tw:max} = \begin{bmatrix} u_{t-1,1} + \delta U_{max} \\ u_{t-1,2} + \delta U_{max} \\ \vdots \\ u_{t-1,k} + \delta U_{max} \end{bmatrix}, \quad \delta U_{tw:min} = \begin{bmatrix} u_{t-1,1} + \delta U_{min} \\ u_{t-1,2} + \delta U_{min} \\ \vdots \\ u_{t-1,k} + \delta U_{min} \end{bmatrix}
$$

where $\delta U_{tw:max}$ and $\delta U_{tw:min}$ are the maximal and minimal increment for the temporal waffle in a control signal, and u_{t-1} is the previous value of the control signal at the time instance $t - 1$. Maximal and minimal constraints from (3.35) can be merged into matrices:

$$
L = \begin{bmatrix} M_0 \\ -M_0 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \delta U_{tw:max} \\ -\delta U_{tw:min} \end{bmatrix},
$$

where the matrix M_0 contains the constraints for the control signal increments, that is $M_0 U \leq \delta U_{tw:max}$.

3.4.2 Discussion of waffle modes mitigation via constrained control

Deformable mirrors usually have hardware limitations on the maximum allowable movement of neighbour actuators to prevent mirror’s surface damage. The RHC approach can account for and optimally handle such constraints. The benefit of applying RHC compared to other methods is that the waffle mode is handled by adding more constraints to the constraint set. That is, waffle mode is mitigated as a part of normal RHC operation without any additional filters or decompositions.

Numerical simulations in [150] suggest that the RHC approach can be applied to mitigate the waffle mode in AO. However, the computational burden limits the use of RHC for small or medium-size systems. One should also note that the results reported in [150] are not the fastest possible: at least 4x acceleration of the constrained control calculation is attainable using more efficient QP solvers. Although real adaptive optics systems rarely operate in a saturated mode, a proper and optimal handling of saturated operation can be regarded as a useful safeguard.
3.4.3 Summary for constrained Receding Horizon Control

Deformable mirrors (DM) in astronomical adaptive optics systems are obviously constrained on the maximum stroke produced by the actuators. To account for the constraints, a Receding Horizon Control (RHC) based on a constrained quadratic programming (QP) is considered. A constrained QP problem is solved at every sampling instance and a sequence of optimal control updates for the process is obtained. However, a traditionally perceived drawback of RHC is that the QP requires long computation times to solve the optimization problem [163] at each sample point. This usually restricts the use of RHC in systems with slow dynamics and large sampling intervals.

Table 3.2: Comparison of Receding Horizon Control and Linear Quadratic Regulator.

<table>
<thead>
<tr>
<th>Receding Horizon Control (RHC)</th>
<th>Infinite Horizon Control (Linear Quadratic Regulator, LQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{N_p,N_c} = \frac{1}{2} \sum_{k=0}^{N_p-1} x_k^T P x_k + \frac{1}{2} \sum_{k=0}^{N_c-1} u_k^T R u_k$</td>
<td>$J_{LQR} = \sum_{k=0}^{\infty} (x_k^T Q x_k + u_k^T R u_k)$</td>
</tr>
<tr>
<td>$K_{RHC} = (\Gamma^T \Gamma + R)^{-1} \Gamma^T Q \Omega$</td>
<td>$K_{LQR} = (B^T \Omega K B + R)^{-1} B^T \Omega K A$</td>
</tr>
<tr>
<td>$u_{opt}^{RHC} = -K_{RHC} \hat{x}$</td>
<td>$u_{opt}^{LQR} = -K_{LQR} \hat{x}$</td>
</tr>
<tr>
<td>min $\frac{1}{2} u^T \hat{H} u + u^T \hat{F}$</td>
<td>Suboptimal / Saturation</td>
</tr>
<tr>
<td>subject to: $M \cdot u \leq \eta$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: Summary of properties of Receding Horizon Control for AO applications.

<table>
<thead>
<tr>
<th>Advantages:</th>
<th>Disadvantages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ RHC respects hard constraints, unlike LQR;</td>
<td>✗ on-line constrained QP solution is time-consuming and is a major problem.</td>
</tr>
<tr>
<td>✔ RHC can handle actuators and atmosphere dynamics.</td>
<td>✔ QP for large systems must be split and paralleled;</td>
</tr>
<tr>
<td>✔ RHC generates control inputs that are optimal within constraints on each step;</td>
<td>✗ system identification and states estimator are needed, like for LQR.</td>
</tr>
<tr>
<td>✔ RHC has fewer numerical problems (unlike LQR);</td>
<td></td>
</tr>
</tbody>
</table>

The ever-increasing computational power provided by new technologies [164] such as GPU [165], combined with the development of fast [166] and efficient optimisation algorithms [167], is increasingly making RHC suitable for fast applications [168]. Recently discussed interior-point [169-171] QP algorithms, in which the algorithm works with matrices of a fixed structure, can be used for acceleration of the QP algorithms. Another possibility is to use a single (rather than a double precision) precision arithmetic, which gives a substantial performance improvement [153].
The main benefit in using Receding Horizon Control in adaptive optics is in accounting for the hardware constraints of deformable mirrors. The controller must generate the optimum control input within prescribed constraints because actuators are constrained by a maximal allowable movement. While the RHC may look very different, it shares many similarities with the LQR control, as is apparent from the comparison in Table 3.2.

The main problem of RHC, as mentioned in Table 3.3, is the prohibitive computational complexity of solving online optimisation problems within the millisecond time-frame, typically required in adaptive optics. Section 3.5 discusses whether an online constrained QP is feasible for an adaptive optics system of any meaningful size.

3.5 Initial assessment of applicability of Receding Horizon Control in Adaptive Optics using general-purpose Quadratic Programming algorithms

The goal of these numerical simulations is to analyse the initial applicability of RHC for adaptive optics systems. The coupling models were described in Subsection 3.1.3. Here, the feasibility of constrained online QP using the Dantzig-Wolfe algorithm from the MATLAB MPC Toolbox is illustrated. As already mentioned, three cases of coupling were considered:

1. A decoupled case: see Subsection 3.5.1;
2. Coupling between nearest neighbour actuators only: see Subsection 3.5.2;
3. Coupling between nearest neighbour actuators and diagonally adjacent actuators: see Subsection 3.5.3;

![Figure 3.7](image-url)

Figure 3.7: Constraints subcases: a) no constraints, b) loose constraints, and c) tight constraints.

For each case of coupling, three additional subcases of constraints (see Fig. 3.7) were considered:
• Weak turbulence / no constraints: the controller output never reaches the constraints (control signal limits are $U_{\text{lim}1} = \pm 60000$);

• Moderate turbulence / loose constraints: the limits ($U_{\text{lim}2} = \pm 230$) on the control input are such that the controller output reaches 5% of the constraints (realistic case);

• Strong turbulence / tight constraints: the limits ($U_{\text{lim}3} = \pm 100$) on the control input are such that the controller output reaches the 20% of the constraints (pessimistic case).

The MATLAB’s Dantzig-Wolfe algorithm uses the direction of the largest gradient [172], with the optimum usually found after $n + q$ iterations [173] (n is the number of optimisation variables and q is the number of constraints). The solver `qp_dantz.m` calculates all the necessary matrices and then calls the compiled routine `qpsolver.mexglx` to actually solve the QP problem\(^3\). We use the shortest prediction horizon $N_p = 2$, $N_c = 1$ in these simulations to assess the feasibility of Receding Horizon Control with online constrained QP Dantzig-Wolfe solver. The constraints are applied only for the control inputs, and the maximal size of the deformable mirror considered in these simulations is 10×10 actuators.

3.5.1 Results for the decoupled case

The unconstrained case ($-\Delta-$) is expectedly the fastest. However, the bigger the problem, the more rapidly the computation time grows: an 8×8 actuator DM can be considered as a practical limit for this implementation of the Dantzig-Wolfe QP algorithm in case of loose constraints, when only 5% constraints are active. The computation time is not spread out and grows linearly with the number of activated constraints when there is no coupling between the actuators (see Fig. 3.8).

![Figure 3.8: Distribution of computational time for decoupled case for Dantzig-Wolfe active-set (qp_dantz) algorithm.](image)

\(^3\)Notice that the particular optimisation algorithm, namely MATLAB’s Dantzig-Wolfe, does not explicitly exploit the sparsity of the matrices.
3.5.2 Results for the case of coupling between nearest neighbour actuators

The coupling between actuators makes the dynamics of the system more complex and increases the computation time, as seen in Fig. 3.9. Similarly to the decoupled case above, the unconstrained case is the fastest, as seen from Fig. 3.9. It takes about 360\mu s for the 7 \times 7 actuators problem and about 950\mu s for the 10 \times 10 actuators problem.

Constrained cases take more computational time: the case of moderate turbulence (5% of constraints are active) takes 600\mu s for the 7 \times 7 actuators DM and about 3.2 msec for the 10 \times 10 actuators DM. The case of strong turbulence takes more than 1.3 msec to compute via Dantzig-Wolfe even for the 7 \times 7 DM, which is unacceptably long time for adaptive optics.

![Figure 3.9: Distribution of computational time for the case of coupling between nearest neighbour actuators for the Dantzig-Wolfe active-set (qpdantz) algorithm.](image)

The spread of the computation time is also quite significant. From Fig. 3.9 it is evident that the variance in the computation time increases with the number of active constraints: from negligible in the case of 1-3% of active constraints, to 1-1.5 msec for 25-30% active constraints in the case of relatively a large model of DM with 8 \times 8 actuators. At least for the Dantzig-Wolfe algorithm, the computational time grows slowly until the 7 \times 7 case, after which point the computational demand increases quickly.

3.5.3 Results for the case of coupling between nearest neighbour and diagonally adjacent actuators

As before, the unconstrained case is the fastest as seen in Fig. 3.10: it takes about 370\mu s for the 7 \times 7 actuators case and 960\mu s for the case of 10 \times 10 actuators DM.

The distribution of the computation time for the case of loose constraints has more variance due to the increased dynamics, as shown in Fig. 3.10. The spread in computation time is considerable, especially for large DMs with 8 \times 8 actuators and more. In moderate turbulence (5% of active constraints) the computational time for 7 \times 7 actuators case is 580\mu s, and the largest considered case of 10 \times 10 actuators DM takes 3.1 msec to compute.
One can see from Fig. 3.10 that it is not feasible to solve constrained problems with more than 9×9 actuators.

![Distribution of the computation time, milliseconds](image1)

Figure 3.10: Distribution of computational time for the case of coupling between nearest neighbour and adjacent actuators for Dantzig-Wolfe (qpdantz) algorithm.

In the worst-case scenario of tight constraints, when the controller output reaches the 20% constraints, the computational load is the largest with respect to the other cases. It takes 1.2 msec for the target 7×7 actuators DM, and about 13 msec for the case of 10×10 actuators DM, which would be unacceptable in astronomical adaptive optics applications. The computational time also varies greatly. Thus, it is difficult to use the RHC controller with QP in the case of such complicated DM actuators dynamics.

3.5.4 Discussion of simulations results

A comparison of the impact of different coupling types with the same types of constraints (unconstrained, loose and tight constraints) and a brief discussion of RHC feasibility is provided below. Note that the plots have different scales on the vertical axis.

![Mean computation time, milliseconds](image2)

Figure 3.11: Computation speed of the RHC with QP for the case of no constraints (weak turbulence).
The unconstrained case is the fastest: even for the largest case of a DM with 10×10 actuators, the computational speed is below 1 msec and grows almost linearly with the size of the problem. As evident from Fig. 3.11, when there are no constraints, the speed is the same for all coupling cases.

The case of loose constraints, when 5% of constraints are active (moderate turbulence), assumes that the controller works most of the time in the unconstrained mode. From Fig. 3.12 it is clear that the computation burden for the case of nearest neighbour actuators coupling marked by $-\triangle-$ and the case of nearest and diagonally adjacent coupling marked by $-\Box-$ are similar for a moderate number of actuators (less than 8×8). It takes about 1 msec to solve the QP for this size of problem, with this time able to be further decreased by using more advanced algorithms that can exploit sparsity patterns in the Hessian matrix.

![Figure 3.12: Computation speed of the RHC with QP for the case of loose constraints (moderate turbulence).](image)

The case of tight constraints is a pessimistic scenario, when the controller output reaches 20% constraints. However, one can conclude from Fig. 3.13 that the decoupled case (marked by $-\square-$) and the case of coupling between nearest neighbour actuators (marked by $-\triangle-$) are almost the same in terms of computational time. The case of coupling between diagonally adjacent actuators (marked by $-\Box-$) is the most difficult: as can be seen from Fig. 3.13, computational time accelerates quickly with number of the actuators.

3.5.5 Summary of initial assessment of Receding Horizon Control

Deformable mirrors in adaptive optics are constrained in the maximum actuators stroke, yet traditional controllers do not account for these constraints. Unconstrained control inputs are usually clipped to prevent too large control signals and consequent mirror damage. However, such a control strategy is suboptimal. A better solution for the constrained problem is the use of constrained Receding Horizon Control (RHC).
Figure 3.13: Computation speed of the RHC with QP for the case of tight constraints (strong turbulence).

The initial assessment of the applicability of Receding Horizon Control with a constrained QP problem was performed using the Dantzig-Wolfe optimisation algorithm. In the unconstrained case, the computational speed was below 1 msec (for up to 10×10 actuators), growing almost linearly with the size of the problem. In the more realistic case of the controller reaching 5% constraints, the computation burden for the nearest neighbour and the case of nearest and diagonally adjacent actuators coupling types was similar (the QP takes about 1–1.4 msec for up to 8×8 actuators). In the worst-case scenario, when the controller reaches 20% constraints, it took about 1–1.5 msec to solve the optimisation problem for a 7×7 DM model. The computational time for QP increases quickly with the number of actuators of the DM.

The results presented in this chapter are not the fastest achievable: methods exist for further acceleration of a QP for RHC, including structure-exploiting and hot-started QP algorithms, and parallelisation on multi-core or GPU architectures.

3.6 Chapter Summary

This chapter provided the formulations of Linear Quadratic Regulator and Receding Horizon Control, discussed advantages and drawbacks of both types of control, and presented a preliminary assessment of the computational feasibility for RHC. The results of the chapter can be summarised as follows:

1. LQR was formulated in Section 3.2. The main disadvantages of LQR were discussed in Section 3.3, which also provided the motivation for a transition to Receding Horizon Control.

2. Deformable mirrors in adaptive optics are constrained by the maximum actuator stroke, yet traditional controllers do not account for these constraints. This further encourages a shift to constrained Receding Horizon Control, as formulated in Section 3.4.
3. Section 3.5 presented the results of the initial assessment of the feasibility of Receding Horizon Control using a general-purpose Dantzig-Wolfe QP algorithm.

- In the unconstrained case, the computational speed was below 1 msec (for up to 10 x 10 actuators), growing almost linearly with the size of the problem.
- In a more realistic case, when the controller reached 5% constraints, the computation burden for the nearest neighbours coupling and the case of nearest and diagonally adjacent actuators was similar (the QP took about 1–1.4 msec for up to 8 x 8 actuators).
- In the worst-case scenario, when the controller reached 20% constraints, it took about 1 to 1.5 msec to solve the optimisation problem for a 7 x 7 DM model.

4. The encouraging results of the initial assessment motivate further study of the structure of the optimisation problem in Chapter 4, and the structure-exploiting customised optimisation algorithms that are the subject of Chapter 5.

The results presented in this chapter are not the fastest achievable: methods are available for further accelerating a constrained QP for RHC, which is a subject of Chapter 4.
Chapter 4

Structure of the Hessian matrix in optimal control of Deformable Mirrors

The art of asking questions is more valuable than solving problems.

– Georg Cantor

Matrices of the optimisation problem for Receding Horizon Control of a deformable mirror in adaptive optics has a particular structure that can be exploited. Here, the structure of RHC matrices is analysed in this chapter for the decoupled case, the case of coupling between four nearest actuators, and the case when the nearest neighbours and diagonally adjacent actuators are coupled. It is shown that the structure of the Hessian matrix is banded because only the neighbour actuators are interacting with each other, as discussed in Section 4.1. The inter-actuator coupling makes the dynamics of the system more complicated, which is reflected in the matrix structure of an optimisation problem, as shown in Section 4.2. However, the matrices can be threshold and made sparser, thus accelerating the solution of the optimisation problem. The question is: How large can a threshold be and how many elements can be zeroed out before it starts to affect the performance of the RHC? This question is addressed in Section 4.4. Further analysis in Section 4.5 is concerned with the growth of the condition number of the Hessian matrix with the coupling between the actuators in a deformable mirror. The convergence properties of optimisation algorithms, and particularly gradient-based algorithms, depend on the condition number of the Hessian matrix. Finally, structure exploitation methods of banded matrices in the RHC are outlined in Section 4.6.
4.1 Structure of the Hessian matrix in constrained optimal control for Adaptive Optics

Actuators are arranged in a square grid and attached underneath the reflective surface of a deformable mirror, as shown in Fig. 4.1. The faceplate of the mirror is made from low-expansion material such as quartz of Corning ULE. When the actuator is energised (pushed up or pulled down), it displaces the neighbour actuators due to the sturdiness and continuousness of the mirror’s surface, as one can see in Fig. 4.1. Therefore, actuators move with each other to some extent, making the dynamics of a deformable mirror more complex. This cross-influence between actuators is called **inter-actuator coupling**: an influence of an energised actuator upon its neighbours. The strength of influence of one actuator on its neighbours depends on the mechanical properties of the mirror’s surface, the inter-actuator spacing and the number of actuators: the closer the actuators are to each other, the more an energised actuator affects its neighbours.

![Figure 4.1: The bending of the faceplate for a: small actuator’s bending stiffness (left) and large actuator’s bending stiffness (right).](image)

Actuator coupling can be described as a proportional relationship between actuators’ transfer functions (see (3.4)), characterised by the coupling degree γ. Continuous-faceplate DMs usually have relatively strong coupling only between the nearest neighbour actuators: coupling can be 20-30% (i.e., $\gamma = 0.2-0.3$) for DMs with more than 5000 actuators [6] with inter-actuator spacing 0.2–1 mm.

4.1.1 Considered cases of inter-actuators coupling

Three cases of coupling between the actuators in a deformable mirror were considered (see Fig. 4.2):

1. **no coupling** between actuators – when the energised actuator has no effect on its neighbours (Fig. 4.2(a));

2. **coupling between nearest neighbour actuators** – when the energised actuator affects its four nearest neighbours (see Fig. 4.2(b));

3. **coupling between nearest neighbour and diagonally adjacent actuators** – when the energised actuator affects both its four nearest neighbours and the four diagonally adjacent actuators (see Fig. 4.2(c)).
We analyse the effect of the different types of coupling in the matrices H and F of the optimal control problem (see (3.30)) repeated here for convenience:

$$\min_U \frac{1}{2} U^T H U + U^T F x, \quad \text{subject to : } M \cdot U \leq \Lambda,$$

(4.1)

where $H \triangleq \Gamma^T \Omega \Gamma + \mathcal{R}$ and $F \triangleq \Omega \Gamma \Gamma^T$ from (3.25).

The decoupled case, when the energised actuator does not affect its neighbours (see Fig. 4.2(a)), is trivial: the Hessian matrix is diagonal, as one can see in Fig. 4.3a, and the optimisation problem can be solved within minimal time.

![Figure 4.2: Coupling cases for the DM models: (a) decoupled case; (b) coupling between the nearest neighbours; (c) coupling between nearest neighbours and diagonally adjacent actuators.](image)

The coupling between the nearest neighbour actuators (see Fig. 3.2(b)) makes the dynamics of the system more complex, which is reflected in the structure of the Hessian matrix (see Fig. 4.3b). The Hessian is sparse, strictly positive definite, and has a banded structure that can be exploited by the QP solvers. Further, the Hessian matrix is numerically well conditioned (with a condition number of $\kappa(H) \sim 10^3$). Although the QP problem is convex and sparse, the main problem is that in AO applications it must be solved within fractions of a millisecond for large matrices.

![Figure 4.3: The Hessian matrices for different types of coupling between actuators in the deformable mirror: a) decoupled case, b) coupling between four nearest actuators only, c) coupling between four nearest and four diagonally adjacent actuators.](image)

When an actuator is coupled with its four nearest neighbours and four diagonally adjacent actuators, the Hessian matrix expectedly becomes more dense (see Fig. 4.3c).
However, it preserves the band structure and positive definiteness. Similarly to the nearest neighbours coupling case, the Hessian matrix is numerically well conditioned.

Table 4.1 summarises the dimensions of the optimisation problems (i.e., number of states, controls, optimisation variables and number of constraints) to facilitate the analysis of the structure of the optimisation problems for DM control. The table and the results are presented for the shortest control horizon $N_c = 1$, if not stated otherwise.

Table 4.1: Summary of dimensions of optimisation problems in constrained Receding Horizon Control for deformable mirrors in Adaptive Optics (shortest prediction horizon).

<table>
<thead>
<tr>
<th>Actuators grid $n \times n$</th>
<th>5 × 5</th>
<th>6 × 6</th>
<th>7 × 7</th>
<th>8 × 8</th>
<th>9 × 9</th>
<th>10 × 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling between four nearest neighbour actuators only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control inputs</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>Constraints</td>
<td>50</td>
<td>72</td>
<td>98</td>
<td>128</td>
<td>162</td>
<td>200</td>
</tr>
<tr>
<td>Number of states \hat{x}</td>
<td>75</td>
<td>108</td>
<td>147</td>
<td>192</td>
<td>243</td>
<td>300</td>
</tr>
<tr>
<td>Hessian \mathcal{H} sparsity, %</td>
<td>63%</td>
<td>73%</td>
<td>79%</td>
<td>83%</td>
<td>87%</td>
<td>89%</td>
</tr>
<tr>
<td>E-matrix sparsity, %</td>
<td>83%</td>
<td>88%</td>
<td>91%</td>
<td>93%</td>
<td>94%</td>
<td>95%</td>
</tr>
<tr>
<td>Coupling between four nearest and four adjacent actuators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control inputs</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>Constraints</td>
<td>50</td>
<td>72</td>
<td>98</td>
<td>128</td>
<td>162</td>
<td>200</td>
</tr>
<tr>
<td>Number of states \hat{x}</td>
<td>75</td>
<td>108</td>
<td>147</td>
<td>192</td>
<td>243</td>
<td>300</td>
</tr>
<tr>
<td>Hessian \mathcal{H} sparsity, %</td>
<td>42%</td>
<td>56%</td>
<td>65%</td>
<td>72%</td>
<td>77%</td>
<td>81%</td>
</tr>
<tr>
<td>E-matrix sparsity, %</td>
<td>73%</td>
<td>80%</td>
<td>85%</td>
<td>88%</td>
<td>90%</td>
<td>92%</td>
</tr>
</tbody>
</table>

4.1.2 The length of a prediction horizon and the matrices structure

As discussed in Subsection 3.3.3.2 of Chapter 3, a feasible length of the prediction horizon in Receding Horizon Control for Adaptive Optics appears to be the shortest, namely\(^1\) $N_p = 2, N_c = 1$ in (4.1). This is because the computational deadlines in adaptive optics are extremely demanding and the size of the matrices can be very large. Therefore, it may not be feasible to solve a constrained optimisation problem online for long prediction horizons.

This is why the detailed analysis of the matrices structure in the forthcoming sections is provided for the shortest prediction horizon only. Increasing the prediction horizon is not beneficial if the dynamics of the deformable mirror is fast (typical for the DM with piezoelectric actuators) and the atmospheric turbulence is relatively slow. It is worth noting that such assumptions may not be always true: if a DM has slow and complicated dynamics, the prediction horizon might need to be considerably longer. This can make the implementation of RHC with constrained online QP a particularly challenging problem. For example, if the adaptive optics system uses a membrane mirror [35, 36], the prediction horizon can be up to $N_c = 20$. However, note that in [35, 36] the control problem is

\(^1\)As we have already mentioned in Section 3.3.3.2, we set the input to zero ($u_0 = 0$) for the remainder of the prediction horizon when $N_p \neq N_c$ since the zero value corresponds to the equilibrium related to the desired control inputs. This means that we will optimise the cost function with respect to u_0.
unconstrained. The discussion of constrained control of AO systems with long prediction horizons is outside the scope of this thesis.

However, it is of interest to consider the structure of the Hessian matrix for the case of longer prediction horizons. When the actuators are decoupled and do not affect one another, the Hessian matrix has a simple structure, as seen in Fig. 4.4. That is, even when the horizon is relatively long, such as $N_p = 4, N_c = 4$ (see Fig. 4.4(c)), the structure of the Hessian matrix consists of simple diagonals and therefore can be easily exploited.

![Figure 4.4](image-url)

Figure 4.4: The structure of the Hessian matrix for different prediction horizons in the case of decoupled actuators in a 7×7 DM: (a) shortest horizon $N_p = 2, N_c = 1$; (b) prediction horizon $N_p = 2, N_c = 2$; (c) comparatively long prediction horizon $N_p = 4, N_c = 4$.

As it has been already mentioned before, the coupling between the actuators in a DM complicates the dynamics of the system. Longer prediction horizons make the dynamics and, consequently, the structure of the Hessian matrix even more complex, as one can observe in Fig. 4.5. For the shortest prediction horizon $N_p = 2, N_c = 1$ the structure of the Hessian matrix is shown in Fig. 4.5(a), which is banded and therefore exploitable. Moreover, the elements on lower diagonals can be thresholded because their value is small compared to the values on the main diagonal. This can be better seen in Fig. 4.3b, which depicts the same Hessian matrix as Fig. 4.5(a). Further Section 4.4 provides a more detailed discussion about matrices thresholding.

Expectedly, longer prediction horizons and inter-actuators coupling make the structure of the Hessian matrix more complex. While the percentage of sparsity remains the same, the structure for the longer prediction horizon $N_p = 4, N_c = 4$ (see Fig. 4.5(c)) is more complicated. Such a structure may be more difficult to exploit compared to rather simple (and more compact) matrix for the shortest horizon $N_p = 2, N_c = 1$ (see Fig. 4.5(a)). Furthermore, the use of long prediction horizons can lead to numerical problems due to the process of matrices evaluation in Receding Horizon Control formulation. That is, the matrix $\Omega = [A \ A^2 \ \ldots \ \ A^{N_p}]^T$ from (3.22) contains the matrices A in N_p-th power that corresponds to the prediction horizon, which can cause problems with floating point arithmetic when $N_p >> 1$.

The particular structure and the performance of RHC in AO will depend on the dynamics of a deformable mirror, parameters of actuators and a necessary length of the
prediction horizon. For this reason, only the shortest prediction horizon for the Receding Horizon Control is considered in this thesis for the piezoelectric actuators of continuous-faceplate deformable mirrors. This is a common case for the astronomical adaptive optics, and therefore is considered throughout the thesis if not stated otherwise.

4.2 Inter-actuators coupling and its influence on the matrices structure

The structure of the matrices for the constrained receding horizon control problem (more precisely, for the underlying quadratic programming problem formulated in (3.30)) are analysed in this section. The structures of the F matrix, the Hessian matrix H, and the inverse Hessian matrix H^{-1} are analysed and represented graphically. The matrices are normalised for illustrative purposes, and the zero elements are represented in white to emphasise the sparse structure of matrices.

4.2.1 No coupling between actuators

The Hessian and the inverse Hessian matrices are very sparse (98% of elements are zeros) in the case of decoupled actuators in a deformable mirror. The matrix F contains two diagonal parts. (see Fig. 4.6a).

Since there is no coupling, the Hessian matrix H (see Fig. 4.6b) is diagonal, similar to the inverse Hessian. (see Fig. 4.6c). In the absence of coupling the QP solvers run at maximal speed and can be efficiently paralleled. However, the completely decoupled case is not of practical interest because it does not adequately describe the dynamics of a deformable mirror.
4.2 Inter-actuators coupling and its influence on the matrices structure

Figure 4.6: Normalised matrices for the RHC/QP for the decoupled case of the DM with 7×7 actuators, modelled by first-order transfer functions: (a) the P matrix, (b) the Hessian matrix H, (c) the inverse Hessian matrix H^{-1}.

4.2.2 Coupling between four nearest neighbour actuators only

The coupling between nearest neighbour actuators makes the dynamics more complex, which is reflected in the structure of the RHC matrices (see Fig. 4.7).

Figure 4.7: Normalised matrices for the RHC/QP for the case when only the nearest neighbour actuators of the 7×7 DM are coupled: (a) the P matrix, (b) the Hessian matrix H, (c) the inverse Hessian matrix H^{-1}.

A particular banded structure of the matrices is observable, especially in the Hessian matrix. The banded structure arises from inter-actuators coupling, which is reflected in the structure of the Hessian matrix: the non-zero elements are clustered in a band along the main diagonal. A considerable increase in speed can be achieved if the banded elements can be extracted off-line and put into the band-type matrix. Furthermore, even the banded part of a matrix contains many zero elements, which allow for further speed-up for an optimisation algorithm. Table 4.2 provides an insight into the structure of a banded Hessian matrix. Subsection 4.6 discusses structure exploiting via banded matrices further.

4.2.3 Coupling between four nearest neighbours and four diagonally adjacent actuators

The case of an actuator being coupled to its four nearest and four diagonally adjacent actuators is also considered. For this case, as compared to the other cases, the RHC matrices are more dense, as reflected in the sparsity patterns shown in Fig. 4.8.

Similarly to the nearest actuators coupling case, Fig. 4.8b shows that the Hessian matrix has a specific banded structure that can be exploited in numerical computations.
Table 4.2: Banded structure of the Hessian matrix that corresponds to a DM with nearest actuators coupling only.

<table>
<thead>
<tr>
<th>Number of $n \times n$ actuators in the DM</th>
<th>5 \times 5</th>
<th>6 \times 6</th>
<th>7 \times 7</th>
<th>8 \times 8</th>
<th>9 \times 9</th>
<th>10 \times 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix bandwidth, elements</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>regular Hessian size, $n \times n$</td>
<td>25x25</td>
<td>36x36</td>
<td>47x47</td>
<td>64x64</td>
<td>81x81</td>
<td>100x100</td>
</tr>
<tr>
<td>banded Hessian size, $n \times n$</td>
<td>10x25</td>
<td>12x36</td>
<td>15x47</td>
<td>16x64</td>
<td>18x81</td>
<td>20x100</td>
</tr>
<tr>
<td>banded Hessian sparsity %</td>
<td>54 %</td>
<td>59 %</td>
<td>65 %</td>
<td>66 %</td>
<td>69 %</td>
<td>71 %</td>
</tr>
</tbody>
</table>

Figure 4.8: Normalised matrices for the RHC/QP for the case of a 7 \times 7 DM when the nearest and diagonally adjacent actuators are coupled: (a) matrix \mathcal{F}, (b) the Hessian matrix \mathcal{H}, (c) the inverse Hessian \mathcal{H}^{-1} matrix.

For the case of a 7 \times 7 DM, it is 16 elements off the main diagonal where all non-zero elements are located. In the case that actuators are coupled with their nearest neighbours and those actuators diagonally adjacent to them, the bandwidth of the Hessian is wider (16 elements), but still worth exploiting. A summary of the bandwidths and other properties of the Hessian matrices for various sizes of DM is given in Table 4.3.

Table 4.3: Banded structure of the Hessian matrix that corresponds to a DM with nearest and adjacent actuator coupling.

<table>
<thead>
<tr>
<th>Number of $n \times n$ actuators in the DM</th>
<th>5 \times 5</th>
<th>6 \times 6</th>
<th>7 \times 7</th>
<th>8 \times 8</th>
<th>9 \times 9</th>
<th>10 \times 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix bandwidth, elements</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>regular Hessian size, $n \times n$</td>
<td>25x25</td>
<td>36x36</td>
<td>47x47</td>
<td>64x64</td>
<td>81x81</td>
<td>100x100</td>
</tr>
<tr>
<td>banded Hessian size, $n \times n$</td>
<td>11x25</td>
<td>13x36</td>
<td>16x47</td>
<td>17x64</td>
<td>20x81</td>
<td>22x100</td>
</tr>
<tr>
<td>banded Hessian sparsity %</td>
<td>37 %</td>
<td>42 %</td>
<td>46 %</td>
<td>50 %</td>
<td>54 %</td>
<td>57 %</td>
</tr>
</tbody>
</table>
4.3 Time-delays augmentation of Receding Horizon Control matrices

Similarly to many other real-world control systems, adaptive optics systems have time-delays due to wavefront sensing, centroiding, reconstruction and control inputs calculations. Currently, this is considered in terms of a sensor delay. That is, the system cannot see the output disturbance for some time due to delays in sensors. However, the estimator can predict the delayed signal, although computational demand increases with system size.

4.3.1 Sources of delays in Adaptive Optics

An additional problem in adaptive optics systems is that the measurement of atmospheric distortions is delayed. There are many sources of time delays in adaptive optics systems including:

1. The biggest delay is due to a wavefront sensor, which needs enough time to sense the atmosphere (typically about 1 msec). The wavefront sensor introduces the following delays: exposure time, read-out time, and computation of centroids. To shorten WFS exposure time, intensified CCD sensors [174,175] can be used.

2. The image must be read from the sensor and processed via centroiding.

3. Wavefront reconstruction usually works in parallel mode, accepting gradients from the WFS, and can in some cases be the dominant function in terms of time-delays [50].

4. Controllers also add delays in the system

A typical time-delay in terms of control systems is considered a two-sample delay.

4.3.2 Augmentation of state space matrices for time delays

In adaptive optics systems there is at least a two-sample delay (sensor delay) due to images acquisition and processing in the wavefront sensor. Therefore, it is necessary to augment the state space matrices to account for this time delay. The model of one cycle delay [176] of an output y is:

$$y_{1d}(k + 1) = y(k)$$ \hspace{1cm} (4.2)

where y_{1d} is the delayed version of y and an additional state element that is added to the system model. If there is more than one cycle delay in the system, this can be expressed as:

$$y_{2d}(k + 1) = y_{1d}(k)$$ \hspace{1cm} (4.3)

To account for these delays, we augment the state space matrices of the system:

$$x_{aug}(k + 1) = A_{aug}x_{aug}(k) + B_{aug}u(k) \quad y_{d}(k) = C_{aug}x_{aug}(k),$$ \hspace{1cm} (4.4)
The state space augmentation for a two cycle delay [176] in output y is:

\[
A_{\text{aug}} = \begin{bmatrix}
A & 0 & 0 \\
C & 0 & 0 \\
0 & I & 0
\end{bmatrix}, \quad B_{\text{aug}} = \begin{bmatrix}
B \\
0 \\
0
\end{bmatrix},
\]

\[
C_{\text{aug}} = \begin{bmatrix}
0 & 0 & I
\end{bmatrix}, \quad x_{\text{aug}}(k + 1) = \begin{bmatrix}
x(k + 1) \\
y_{1d}(k + 1) \\
y_{2d}(k + 1)
\end{bmatrix}.
\]

The Hessian matrix \(\mathcal{H} = \Gamma^T \cdot Q \cdot \Gamma + R \) does not change the size as seen in Fig. 4.9, since the number of inputs (number of columns in the matrix \(B \)) and outputs (number of rows in the matrix \(C \)) remains the same. The matrix \(\mathcal{F} = \Gamma^T \cdot Q \cdot \Omega \) grows with the number of delays in the augmentation, as it depends on the length of the state vector.

Figure 4.9: Augmentation of the matrix \(\mathcal{F} \) for the time delays and its effect on sparsity.

For the example of the 7 × 7 actuators DM, the matrix \(\mathcal{F} = \Gamma^T \cdot Q \cdot \Omega \) grows with the number of delays in the augmentation:

- no delays: \(\mathcal{F} \) is 49 × 140 elements, 94% sparse;
- 2 samples delay: \(\mathcal{F} \) is 49 × 245 elements, 96% sparse;
- 10 samples delay: \(\mathcal{F} \) is 49 × 637 elements, 99% sparse;

That is, the augmentation for the time delays makes the matrix \(\mathcal{F} \) larger but more sparse. Therefore, there should be no noticeable computational overhead for the delayed RHC. And indeed, as seen in Fig. 4.10, the augmentation has little effect on the computational time for non-delayed system compared to the augmented systems for a 10-samples delay. Here, the Dual Active set QP solver is used for the 7 × 7 actuator model of a DM with coupling between nearest neighbour actuators.
4.4 Thresholding matrices in optimisation problem and sparsity patterns

The analysis of the Hessian and inverse Hessian matrices presented in Fig. 4.11 shows that off-diagonal matrix elements can be eliminated by a threshold\(^2\) to accelerate the solution of the constrained QP problem for Receding Horizon Control in Adaptive Optics.

4.4.1 Coupling between nearest neighbour actuators

To find a suitable threshold for the case of coupling between nearest neighbour actuators, the standard deviation of the residual uncompensated disturbance was measured as a function of the threshold value applied to the Hessian matrix and the matrix F. Sparsity increases with the amount of data eliminated from the RHC matrices. However, excessive thresholding of matrices brings them closer to the decoupled case, which leads to mismodelling (i.e., the coupled plant is controlled assuming a decoupled model). Such a mismodelling in turn causes inferior performance of the RHC controller. The goal is to find a “safe” threshold that can eliminate elements in the RHC matrices, but at the same time does not reduce the disturbance rejection performance of the controller.

First, the “safe” threshold value was determined for the Hessian matrix. Application of a threshold up to \(\tau_{H_{safe}} = max(diag(H)) \cdot 10^{-1}\) allows to increase the sparsity of the Hessian (marked by \(--\) -- in Fig. 4.11a) from 79% to 92%. Such a threshold does not influence the disturbance rejection performance, which is marked by \(\triangle\) on the right side in Fig. 4.11a: the output disturbance is rejected by 94%. However, starting from the threshold \(\tau_{H_{unsafe}} = max(diag(H)) \cdot 10^{-0.9}\), the performance of the RHC controller drops.

\(^2\)The value of the threshold was calculated as \(\tau = max(diag(X)) \cdot 10^{-n}\), where \(X\) is the matrix (e.g., the Hessian matrix), and \(n\) is a power of ten. Then the elements of matrix \(X\) that were smaller in magnitude than the threshold were zeroed.
Figure 4.11: The influence of the threshold value for the RHC matrices on sparsity and disturbance rejection performance: (a) the Hessian matrix \mathbb{H}, (b) matrix F. from 94% to 65%. This is because we try to control a coupled plant assuming a decoupled (excessive threshold) model.

Figure 4.12: The influence of the threshold of RHC matrices on the attainable sparsity versus the number of actuators (coupling between nearest neighbour actuators) in DM. The safe threshold is applied.

The “safe” threshold was determined for the F matrix in the same way as for the Hessian matrix above. From Fig. 4.11b, it can be seen that the threshold value $\tau_{F,\text{safe}} = \max(\text{diag}(F)) \cdot 10^{-2}$ increases the sparsity (marked by $-$) of the matrix F from 91% to 94% while preserving the performance of the RHC controller (output disturbance rejection is 94%, see Fig. 4.11b marked by $-$). The dependence of the sparsity, for both matrices \mathbb{H} and F, on the DM size can be seen in Fig. 4.12.

4.4.2 Coupling between nearest and diagonally adjacent actuators

The “safe” threshold value for the Hessian matrix was determined for the case of coupling with four nearest and four diagonally adjacent actuators as $\tau_{\mathbb{H},\text{safe}} = \max(\text{diag}(\mathbb{H})) \cdot 10^{-1.5}$,
which allows for an increase in the sparsity of the Hessian matrix (marked by $-\circ-$ in Fig. 4.13a) from 65% to 85%. Such a threshold negligibly influences the disturbance rejection performance (reduced from 95% to 94%, marked by $-\triangleright-$ on the right side in Fig. 4.13a). Starting from the threshold value of $\tau_{E,\text{unsafe}} = \max(\text{diag}([H])) \cdot 10^{-1}$, the performance of the RHC controller drops from 94% to 69%. This happens because we try to control a coupled plant with a decoupled (i.e., excessive threshold) model.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{thresholding_matrix_sparsity.png}
\caption{The influence of the threshold of RHC matrices on sparsity and disturbance rejection performance for the 7 x 7 DM case when nearest and diagonally adjacent actuators are coupled: a) the Hessian matrix \mathbb{H}, b) matrix F.}
\end{figure}

The “safe” threshold for the F matrix was determined as $\tau_{E,\text{safe}} = \max(\text{diag}(F)) \cdot 10^{-1.8}$, which increases the sparsity of the matrix F from 85% to 92% (see Fig. 4.13b, marked by $-\circ-$) while preserving the performance of the RHC controller performance.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sparsity_threshold.png}
\caption{The influence of the threshold of RHC matrices on attainable sparsity versus number of actuators (coupling between nearest neighbour and diagonally adjacent actuators) in DM. The safe threshold is applied.}
\end{figure}

However, from the threshold value $\tau_{E,\text{unsafe}} = \max(\text{diag}(F)) \cdot 10^{-1.5}$, elimination of the off-diagonal elements, which correspond to coupling, affects the performance of the
controller: the output disturbance rejection performance drops from 95% to 84% (marked by \rightarrow in Fig. 4.13b). The dependence of the sparsity, for both matrices \mathcal{H} and \mathcal{F}, on the DM size can be seen in Fig. 4.14.

4.5 Inter-actuators coupling and condition number of the Hessian matrix

Receding Horizon Control uses two composite matrices, the Hessian matrix $\mathcal{H} \triangleq \Gamma^T \mathcal{Q} \Gamma + \mathcal{R}$ and the $\mathcal{F} \triangleq \Gamma^T \mathcal{Q} \Omega$ matrix from (3.30), to solve the quadratic optimisation problem. Therefore, the numerical stability of the solution for the optimal control will depend on the properties of these matrices, the most important of which is conditioning.

4.5.1 Relationships between the condition number of the Hessian matrix and actuators properties

The condition number of a matrix A is $\kappa(A) = \frac{\sigma_{\text{max}}(A)}{\sigma_{\text{min}}(A)}$, where $\sigma_{\text{max}}(A)$ and $\sigma_{\text{min}}(A)$ are the maximal and minimal singular values [177] of the matrix A. The larger the condition number, the closer the matrix is to singular. A problem with a low condition number is said to be well-conditioned, while a problem with a high condition number is said to be ill-conditioned. In the problem of a deformable mirror control for adaptive optics systems, the condition number of the Hessian matrix can bring insights into the numerical stability of the problem.

As mentioned at the beginning of Section 4.1, actuators are constrained to move with each other to some extent because the faceplate of a deformable mirror is made from low-expansion material. Thus, when one of the actuators is pushed up or pulled down, it displaces its neighbouring actuators. This cross-influence between actuators is called inter-actuator coupling. Actuator coupling is considered as a proportional relationship between the actuators’ transfer functions described by a coupling degree γ. Continuous DMs usually have relatively strong coupling [6] between the nearest neighbour actuators up to 20-30%.

The coupling between actuators in a DM is reflected in the condition number of the Hessian matrix. This is important because some types of QP solvers, especially gradient-based, are sensitive to conditioning: the more ill-conditioned the Hessian matrix, the slower will be the convergence of an optimisation algorithm. Here, MATLAB’s `cond` command is used to calculate the l_2 norm-based condition number $\kappa(\mathcal{H})$ of the Hessian matrix depending on the problem size.

For the case of a DM with 7×7 actuators the dependency of coupling degree γ versus the condition number of the Hessian matrix is provided in Fig. 4.15. One can make the following observations from Fig. 4.15:

1. Up to the coupling degree γ of about $\gamma = 0.2$, the Hessian matrix is well-conditioned for all cases of coupling.
2. For the case of four nearest actuators coupling, starting from the coupling degree \(\gamma > 0.2 \), the condition number rapidly degrades, reaching \(\kappa \sim 10^5 \). This makes the application of gradient-based QP solvers problematic.

3. The conditioning for the case of nearest plus diagonally adjacent coupling is better (although the matrix in this case is more dense) than in the case of four nearest neighbour actuators coupling only.

These issues will be addressed in the further subsections, since they are important for the convergence analysis of the optimisation algorithms described in Chapter 5.

4.5.2 Condition number and coupling: case of four nearest actuator coupling

To understand the dependency of the condition number on the coupling degree in Fig. 4.15, it is worth determining what contributes to the condition number of the Hessian matrix.

If the deformable mirror is ideal with identical actuators, all of which have exactly the same dynamics, the only contributor to the condition number is the coupling degree \(\gamma \) between the actuators. In this case the condition number should not be large. As one can see from Fig. 4.16, even for a large coupling of \(\gamma = 0.35 \), the condition number of the Hessian matrix \(\kappa(\mathbf{H}) < 10^3 \), which is a relatively well-conditioned problem. This result seemingly contradicts with that shown in Fig. 4.15, where the condition number is much larger, \(\kappa \sim 10^5 \).

The reason that Fig. 4.15 and Fig. 4.16, which reflect the condition number of the Hessian matrix, are so different is that in a real DM, each actuator differs slightly in...
Figure 4.16: Condition number of the Hessian matrix versus the coupling degree for the case when all the actuators DM have the same dynamics (only four nearest actuators are coupled).

its mechanical and electrical properties. Moreover, system identification procedures are usually used for obtaining the model of a deformable mirror. Therefore, the poles of the transfer function that correspond to the actuators have different values. The effect of the pole variance between the actuators on the condition number of the Hessian matrix is negligible, until the coupling degree becomes large enough to “amplify” these small differences.

Consider a case in which the actuator is a first-order transfer function \(G(s) = \frac{1}{s+a} \), where \(a = 1500 \), which corresponds to a fast dynamics of the piezoelectric actuators. Assign the standard deviation of the poles of the transfer functions of actuators as \(\sigma_{act} = 0.01 \) (i.e., the dynamics of actuators differs 1% from each other) and generate the Hessian matrices again. The result will be very different, as seen in Fig 4.17.

Figure 4.17: Condition number versus the coupling degree between nearest neighbour actuators: (a) actuators dynamics have a variance of \(\sigma^2 = 0.01 \cdot a \) (i.e., 1% of pole value); (b) the dynamics of the actuators are all the same.
As above, the more realistic case, when the actuators’ dynamics are slightly different, significantly increases the condition number of the Hessian matrix, consequently making convergence more difficult for the gradient-based algorithms. Indeed, comparing Fig. 4.17(a) with 4.17(b) one can see that the condition number $\kappa(H)_{\text{same}} \sim 10^3$ for the case of equal actuator dynamics, whereas this number is $\kappa(H)_{\text{var}} \sim 10^6$ when the actuators have a variance of $\sigma^2 = 0.01 \cdot a$ in the pole values for the case of coupling degree $\gamma = 0.3$. Conversely, up to the coupling degree of $\gamma \leq 0.2$, the condition number of the Hessian matrix is almost the same for both cases. This cannot be attributed to discretisation: the results for the condition number are very close for 2 kHz, 1 kHz or 100 Hz sampling.

![Condition number of the Hessian matrix versus the coupling degree for the 7 × 7 actuators DM, depending on the variability of actuators dynamics.](image)

Figure 4.18: Condition number of the Hessian matrix versus the coupling degree for the 7 × 7 actuators DM, depending on the variability of actuators dynamics.

It is also worth comparing the impact of pole variability on the condition number of DMs of the same size. For the case of a 7×7 DM, Hessian matrices where generated for poles with no variance (the ideal case) and 1% poles variation, considering that the actuators can be described as a first-order systems with fast pole ($s = -1500$). The simulation results shown in Fig. 4.18 indicate that the variance of the poles dynamics affects the condition number for large coupling ($\gamma \geq 0.25$).

More important is the fact that even in the case of a small variance in dynamics between the actuators in a deformable mirror, which is inevitable in any real hardware, one is more likely to experience numerical problems as the coupling between actuators grows. As it has already been mentioned, the inter-actuator coupling [6] should be 20 to 30% for a smooth overall shape of the surface in DMs for large astronomical telescopes (see Table 2.1 in Chapter 2). This may explain many of the problems that authors [146] have encountered in trying to solve the Riccati equations for the 8 m telescope problem. In using RHC, these problems can be alleviated much more elegantly by using widely available numerical techniques (regularisation, preconditioning) and optimisation algorithms.
4.5.3 Condition number and coupling: case of four nearest and four diagonally adjacent actuators coupling

When the four nearest and four diagonally adjacent actuators are coupled, the dynamics become more complex, while the Hessian matrix becomes better conditioned, as seen in Fig. 4.19. The degree of coupling between the diagonally adjacent actuators is assumed to be two times lower than between the nearest neighbour actuators (i.e., \(\gamma_2 = 0.5\gamma_1 \)). The coupling matrix below for the nearest neighbour plus diagonally adjacent actuators coupling has been repeated from Section 3.1.3 Chapter 3 for convenience.

\[
\Upsilon_3 = \begin{bmatrix}
\gamma_2 & \gamma_1 & \gamma_2 \\
\gamma_1 & 1 & \gamma_1 \\
\gamma_2 & \gamma_1 & \gamma_2
\end{bmatrix}.
\]

Considering the case of \(\gamma_2 = 0.5\gamma_1 \), the numerical behaviour of the Hessian matrix is almost the same regardless of the pole variability of the actuator models. The results in Fig. 4.19 indicate that variability in actuator dynamics increases the condition number negligibly (from \(\kappa_1(\mathbb{H}) = 160 \) to \(\kappa_2(\mathbb{H}) = 200 \)), and that the Hessian matrix is well-conditioned. As in coupling with the four nearest neighbour actuators only, discretisation plays a minor role in the condition number.

![Figure 4.19](image)

Figure 4.19: Condition number versus coupling degree between four nearest neighbours and four diagonally adjacent actuators: (a) actuator dynamics have a variance of \(\sigma^2 = 0.01 \cdot a \) (i.e., 1% of pole value); (b) the actuator dynamics are all the same.

The behaviour of the conditioning number \(\kappa(\mathbb{H}) \) in Fig. 4.19 depends on the coefficient \(\gamma_2 \), which defines how much lower the diagonal coupling \(\gamma_2 \) is compared to coupling between nearest actuators \(\gamma_1 \), i.e., \(\gamma_2 = \beta\gamma_1 \), where \(\beta \in [0 \ldots 1] \). When the coefficient \(\beta = 0 \), diagonal coupling is absent and the behaviour of the condition number of the Hessian matrix reduces to the case of nearest coupling only (compare with Fig. 4.17(a)). In contrast, when the coupling between diagonally adjacent actuators is considerable (\(\beta \geq 0.3 \)), the condition number of the Hessian matrix tends to be lower and the problem is well-conditioned \(\kappa(\mathbb{H}) \sim 10^3 \).
4.5 Inter-actuators coupling and condition number of the Hessian matrix

Figure 4.20: Condition number of the Hessian matrix versus the adjacent diagonal coupling coefficient β that is $\gamma_2 = \beta \gamma_1$ for the 7×7 DM with nearest and diagonally coupled actuators: β varied from 0 to 0.7 for the 7×7 case.

The results of the numerical simulations in Fig. 4.20 suggest that the case in which both nearest and diagonally adjacent actuators are coupled is better conditioned, and, is consequently easier to solve numerically.

4.5.4 Results Discussion

Coupling between actuators in a deformable mirror influences the structure of the control matrices; in the case of strong coupling, the matrices can be poorly conditioned. This is especially true when the actuators have slightly different dynamics, as inevitably occurs in real-world systems. Moreover, DM models are often obtained using system identification techniques, which inevitably add the variance to the dynamics of the actuators. Poorly conditioned matrices can be a problem for DARE algorithms, as described in Section 3.2.3.2 in Chapter 3. In the case of Linear Quadratic Regulator, the matrices may lose positive semi-definiteness [146] and become ill-conditioned. Methods are available to circumvent these problems, including iterative LQR solution techniques [146] or Conjugate Gradients algorithms [178]. This makes the formulation of the RHC preferable over the LQR for practical implementation of optimal controllers in adaptive optics.

Conversely, RHC provides a convenient formulation of the optimal control problem, and the analysis of the conditioning and structure becomes far easier using RHC. The structure of the Hessian matrix and its condition number are the main concerns. The condition number of the Hessian matrix depends on coupling type and the differences in the dynamics between the actuators. For a relatively weak coupling $\gamma < 0.2$, the main contributor to the condition number is the coupling degree γ. When coupling is stronger $\gamma > 0.2$, the differences in the dynamics of the actuators start to have a greater effect, and lead to a poorly conditioned Hessian matrix with $\kappa(\mathbb{H}) \sim 10^6$. This poor conditioning is likely to be the main source of the numerical problems faced by the authors in [146],
leading to difficulties in solving DARE. As before, RHC in this case can be applied with either preconditioned gradient-based algorithms or with algorithms that use second-order information, such as Active Set QP solvers.

4.6 Structure exploiting in optimisation problems

The results of the analysis in the Subsection 4.2.2 and Subsection 4.2.3 indicate that the Hessian matrix in the DM control problem is sparse and, importantly, has a specific **banded** structure, as illustrated in Fig. 4.21.

A **banded** shape matrix is one in which non-zero matrix elements only appear within a “band” of a matrix. The bandwidth of a matrix is described by the number of diagonals in the band that are below the main diagonal, referred to as the subdiagonals, and the number of diagonals in the band above the main diagonal, referred to as the superdiagonals.

The banded structure arises from the actuator coupling, which is reflected in the structure of the Hessian matrix: the non-zero elements are clustered in a band along the main diagonal. A considerable increase in speed can be achieved if the banded elements can be extracted off-line and put into a band-type matrix. Standard libraries such as BLAS and LAPACK already support matrix operations with band matrices. More details of the implementation and the performance analysis of the routines for band matrices can be found in [179].

![Matrix Bandwidth](image)

![Selecting only superdiagonals of the matrix](image)

![The superdiagonals are stored column-by-column](image)

Figure 4.21: Transforming the Hessian matrix into a banded form: select a band of $K = 16$ non-zero superdiagonals in the upper-triangular 49×49 Hessian matrix (left), and put the non-zero superdiagonals into a 49×16 band matrix (right). The case of a 7×7 actuators DM with the corresponding 49×49 Hessian matrix is shown.

An $m \times n$ band matrix with K_l subdiagonals and K_u superdiagonals may be stored compactly in a two-dimensional array with $K_l + K_u + 1$ rows and n columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array [180]. By exploiting the symmetry of the Hessian matrix, we can further reduce it to an array of $K_u + 1$ rows and n columns and store as a banded matrix (see Fig. 4.21).

The Hessian matrix H, which is symmetrical and positive definite, can be replaced by a more compact **banded** matrix H_b (see Fig. 4.21). The leading $(k+1) \times n$ part of the banded Hessian H_b matrix must contain the upper triangular band part of the symmetric Hessian.
matrix H. The elements must be supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on.

The Hessian matrix in Fig. 4.21 for a 7×7 DM is of size 49×49 has the bandwidth of $K_u = 15$ superdiagonals. The bandwidth differs for a different size of a DM (see Table 4.2 and Table 4.3) and types of inter-actuators coupling. This can be done off-line and the band matrix H_b is then used for computations. Furthermore, the Cholesky factorisation $C^T C = H$ of the Hessian matrix H, which is used as a pre-conditioner can be converted in the same way, thus only the band matrix C_b can be used for computations.

Therefore, the following computations can be accelerated via structure exploitation:

- \textit{Gradient vector evaluation}: the structure of the Hessian matrix can be exploited by extracting the band H_b resulting in a compact matrix of Hessian values. Then, the BLAS $\text{dsbmv}_{_}$ routine can be used to perform multiplication in $g(x) = H_b x + F$.

- \textit{Objective function evaluation}: since the Hessian matrix H is symmetrical and positive definite, one can express the quadratic cost function $J(x) = x^T H x$ via banded matrices $J_b(x) = (C_b)^T (C_b)$, where (C_b) is computed once. This can be done using the $\text{dsbmv}_{_}$ routine in the BLAS library.

- \textit{Backward and forward subsection}: similarly, banded Cholesky factorisation C_b of the Hessian matrix $C_b^T C_b = H_b$ can be used to perform back and forward substitution via the $\text{dsbmv}_{_}$ and $\text{dtbsv}_{_}$ routines in the BLAS library.

These routines lead to a considerable increase in speed as well as memory savings in solving the optimisation problems. From the numerical experiments reported in [179], the performance of the band routines in BLAS are highly dependent on the bandwidth and the matrix size. Further discussion and performance evaluation results for the band matrices in optimisation algorithms are presented in Section 6.3 of Chapter 6.

\textbf{Specific challenges of optimisation problems in adaptive optics} Among other challenges in adaptive optics, there are extreme timing requirements: the QP must be solved on-line for a large problem within less than 1 msec. Thus, only the box-constrained convex QP problem is considered, where the only constraint type on variables is a bound for each variable. This special form of QP can be exploited for speeding up computation. Reducing the QP from general linear inequality constraints to box-constrained QP allows the computation speed to be increased by a factor of three to five [181].

Given the structure of the Hessian matrix, the QP solver should have the following properties:

1. Iterations should exploit the structure of the Hessian matrix and be as computationally inexpensive as possible;

2. Warm-start should be very efficient, as the optimisation problem does not change much from one sampling instance to the next.
Based on this analysis of the optimisation problem structure, the choice of optimisation algorithm is narrowed. This is discussed further in Chapter 5.

4.7 Chapter Summary

The results of this chapter allow to make the following conclusions:

1. Based on the analysis of the structure of the optimisation problem, including sparsity, convexity and condition number of optimisation matrices, the optimisation problem appears to be simple (strictly convex and relatively well-conditioned). However, it represents a significant problem from an engineering point of view, as large-scale AO control problems must be solved online within 1 msec deadline.

2. The banded structure of RHC matrices arises from inter-actuator coupling. This structure can be efficiently exploited, considerably accelerating matrix operations such as gradient vector evaluation, objective function evaluation, and backward and forward subsection.

3. QP matrices \mathbf{H} and \mathbf{F} can be thresholded for more sparsity without any noticeable deterioration in performance:

 (a) The “safe” threshold applied to the Hessian matrix allows sparsity to be increased from 79% to 92% and from 65% to 85% for nearest only and nearest plus diagonal coupling, respectively.

 (b) Using a simple threshold on matrix elements, additional 14%-20% sparsity can be achieved for the Hessian matrix \mathbf{H} and 2-7% more for the \mathbf{F} matrix.

4. The condition number of the Hessian matrix depends both on coupling and the difference in the dynamics between the actuators. The conditioning for the case of nearest plus diagonally adjacent coupling is better than for four nearest neighbour actuators coupling only.

5. The main problem limiting the use of constrained RHC is the prohibitive computational time for solving the optimisation problems online. Given the results of the structure analysis of the optimisation problem performed in this chapter, the two families of optimisation algorithms are likely to be favourable, namely the Gradient-based (see Section 5.2) and Active Set (see Section 5.3) methods.

The mathematical background for the optimisation algorithms, their strong and weak points and their implementation details are the subject of the following chapter.
Chapter 5

Advanced Optimisation Algorithms for Adaptive Optics Control

I did not fail two thousand times to invent a light bulb. I found two thousand ways of making a light bulb, and only one way - to make it work.

— Thomas Edison

A huge variety of optimisation methods created over a long history of optimisation theory makes the choice among algorithms a difficult task. Each family of optimisation algorithms has its own strengths and weaknesses, which depend on the properties of the Hessian matrix for the particular application. This chapter provides the mathematical background of the optimisation algorithms that have been considered and implemented, as part of this research project, for solving optimisation problems in constrained control for adaptive optics.

The outline of ideas behind the optimisation algorithms along their pros and cons is the subject of Section 5.1. Further sections provide a mathematical background of particular families of optimisation algorithms for convex quadratic programming. The Gradient-based algorithms are described in Section 5.2. Active set algorithms are described in Section 5.3. The Branch and Bound method is described in Section 5.4. A summary of the algorithms is given in Section 5.5.

5.1 Choosing Algorithms for Constrained Convex Quadratic Optimisation

A Quadratic Programming (QP) problem for the constrained control of adaptive optics systems, was formulated in Chapter 3 and repeated here with a slightly different (more general) notation for convenience. Find $x \in \mathbb{R}^n$ that satisfies:
\[
\begin{align*}
\text{minimise} & \quad \frac{1}{2} x^T H x + x^T F \\
\text{subject to} & \quad M \cdot x \leq \Lambda,
\end{align*}
\]

(5.1)

where \(M \) is the matrix of constraints, and \(\Lambda \) is the vector of maximum and minimum allowed values of the control input. The Hessian matrix \(H \):

\[
H \triangleq \Gamma^T \Gamma + R,
\]

(5.2)

is positive definite and hence the constrained solution is unique. While the Hessian matrix is sparse and banded, the main difficulty is that the QP must be solved within at most 1 msec. Such requirements demand a careful comparison of QP strategies.

The convex Quadratic Programming (QP) problem has been extensively studied in the literature [38]. There are numerous algorithms for the convex quadratic problems, each with its own strengths and weaknesses, and the choice of a QP algorithm is far from obvious. A common difficulty when using online optimisation algorithms is the uncertainty over solution time. Some methods offer better theoretical complexity limits than others. However, in practice the efficiency of an algorithm often depends on the particular problem. The algorithms for convex quadratic programming that are suitable for constrained Receding Horizon Control in adaptive optics systems are briefly outlined. Both strengths and weakness of the algorithms will be discussed. Estimations of algorithms’ complexity are provided.

5.1.1 Active Set QP methods

The Active Set methods can be categorized as either modified simplex type methods or projection methods. The modified simplex type methods perform simplex type pivots on basis matrices or tableaux derived from the KKT optimality conditions. The projection methods are based upon projections onto active sets of constraints. Consequently, the projection methods are usually more efficient and require less storage than methods of the modified simplex type. Active set methods come in two variants, namely primal [182,183] and dual [184,185] active set methods.

5.1.1.1 Primal Active Set QP methods

Primal active-set methods usually start by computing a feasible initial iteration \(x_0 \), and then ensure that all subsequent iterates remain feasible. The Active set method then tries to find a step from one iteration to the next by searching for a solution along the edges and faces of the feasible set. They repeatedly use gradients and Lagrange multipliers to drop or add one constraint from the current estimate of an active set \(\mathcal{A}(x^*) \). Each time, the Active Set method solves a sequence of equality-constrained quadratic programming sub-problem.

Active set QP methods can be classified as either range-space or null-space methods. This terminology [182] arises because the working set can be viewed as defining two complementary subspaces: the range space of vectors that can be expressed as linear
combinations of the rows of the matrix of constraints gradients A, and the null space of vectors orthogonal to the rows of the matrix A. However, some methods cannot be categorized as either range-space methods or null-space methods [184, 186–188].

The methods in [189–191] are null-space methods, and are most efficient when there are many active constraints, since the dimension of the null space is then relatively small. Contrary, the methods in [182, 192] are range-space methods, and are most efficient when there are few active constraints.

The distinctive feature of Primal methods is that they generate iterations that remain feasible with respect to the primal problem while steadily decreasing the primal objective function. Primal strategies ensure that all the constraints are satisfied on each iteration. An important implication of this feature is that if there is a limit on computation time, the iterative process can be interrupted and still produce at any moment a feasible motion, satisfying all the constraints on the control problem [193].

Computational time complexity A naive application of Active Set algorithms will give poor results [169], with typical computational complexity $O(N^3(m+m_e)^3)$ operations, where N is the prediction horizon, n is the number of optimisation variables and m_e is the number of constraints. On the other hand, Active Set algorithms are very effective in general since each iteration can be performed in $O(n^2)$ flops when the updates of the factors are used [194]. However, many iterations are required when the active set changes a lot. An effective implementation of the active set method is discussed in [195], which uses the piecewise affine structure of the explicit MPC solution.

Active Set methods can display exponential-time behaviour on certain contrived problems [196]: Victor Klee and George Minty have constructed pathological cases for which the computational time could grow exponentially with the number of optimisation variables n. These pathological cases, however, are rarely encountered in practice.

Strengths of the algorithm Active Set methods are generally the most effective methods for small- to medium-scale problems [197]. Hot start is possible [198] and very efficient, and can accelerate the computation times considerably [193]. Such a warm start can save the Phase I and significantly reduce the number of iterations. Furthermore, Active Set methods typically gain more from hot starting than do interior-point methods [170].

Box-constrained problems of QP can be exploited for speeding up computations: reducing the QP from general linear inequality constraints to box-constrained QP allows to gain a speed-up by a factor of three to five [181].

Weaknesses of the algorithm The main drawback with the primal Active Set methods is that a primal feasible starting point has to be obtained before the actual factorisation can start. Active set methods are efficient for small or moderate-size optimisation problems [199]. The Active Set algorithms usually add or remove only one constraint per iteration. As a result, this method may require many iterations to converge on large-scale problems. The computational complexity of Active Set algorithms in the worst-case scenario can be exponential [196].
Summary for Primal Active Set QP methods

+ **Strengths**: on the problems where the number of active constraints remains small, Active Set algorithms can identify them quickly with little computational effort. Hot start is possible and very efficient. Active Set methods are more effective for small or medium-scale problems. They typically gain more from hot starting than Interior point methods.

- **Weaknesses**: Active Set methods may require many iterations in severely constrained problems. Active set changes by only one constraint per iteration. Speed decreases with the percentage of activated constraints. No polynomial bound on the runtime for the Active Set methods can be given, computational time complexity is typically $O(n^2)$ flops, can be $O(N^3(n + m^c)^3)$ in naive implementation, and exponential in the worst case.

✓ **Bottom line**: Active Set methods represent a good trade-off between speed and robustness. They are suitable for medium-sized problems where reliability and robustness are more important than pure speed. The hot-start is relatively simple and very efficient.

5.1.1.2 Dual Active Set QP methods

An efficient and numerically stable dual algorithm for positive definite quadratic programming is described in [184] which takes advantage of the fact that the unconstrained minimum of the objective function can be used as a starting point. Its implementation utilizes the Cholesky and QR factorisations and procedures for updating them. The Dual Active Set algorithm is superior to primal algorithms when a primal feasible point is not readily available [184].

There are many efficient Dual Active Set algorithms that are tailored to control-type problems, such as QPKWIK [200] algorithm and QPSchur [185] dual-feasible Schur-complement method. The method of Goldfarb and Idnani [184] was recently used in MPC applications with sampling rates below 100μs [201].

Computational time complexity A naive application of a QP based on dual active set will give poor results [169], typically $O(N^3(m + n + m^c)^3)$ operations, where N is the prediction horizon, n is the number of states, m is the number of control inputs, and m^c is the number of constraints. When the efficient factorisation updates are used [194], the computational complexity can be lowered to $O(n^2)$ flops.

Strengths of the algorithm Dual Active Set methods do not require an initial feasible point, which can save considerable computational efforts [193]. The dual problem only involves bound-type inequality constraints, which considerably simplify the computations. Dual active set solvers are preferable in applications where warm starts are used [184, 202]. Typical primal Active Set algorithms may require approximately 50% and 75% more basis changes than do the dual algorithm. The dual algorithm proved to be superior to the
Choosing Algorithms for Constrained Convex Quadratic Optimisation

primal algorithms in the work reported in [184]. The less constraints that are active at the
optimal solution and the closer this solution is to the unconstrained minimum, the more
favourable it is for the dual algorithm compared to primal algorithms.

Weaknesses of the algorithm Dual methods satisfy all the constraints only at the last
iteration [193]. A drawback with the dual algorithm is that if the Hessian is ill-conditioned,
umerical problems might occur since the dual algorithm starts from the unconstrained
optimum. Other disadvantage of the dual-space algorithm is that the Hessian matrix is re-
quired to be positive definite, so the method as a whole lacks generality. The computational
complexity in the worst-case can be exponential.

Summary for Dual Active Set method

- **Strengths**: the Dual Active Set methods do not require a feasible starting point (and
are thus at least 30% faster). The dual problem only involves bound-type inequality
constraints which considerably simplify the computations. The less constraints that
are active at the optimal solution and the closer this solution is to the unconstrained
minimum, the more favourable it is for the dual algorithm in comparison to primal
algorithms.

- **Weaknesses**: Dual methods satisfy all the constraints only at the last iteration,
therefore it cannot be terminated on any intermediate iteration. If the Hessian
matrix is ill-conditioned, numerical problems might occur since the dual algorithm
starts from the unconstrained optimum. The Hessian matrix is required to be positive
definite. The worst-case computational complexity can be exponential.

- **Bottom line**: Dual Active Set methods are advantageous when the number of con-
straints is small, and the closer the solution is to the unconstrained minimum, the
more advantageous the active set algorithms are. However, they satisfy all the con-
straints only at the last iteration, and therefore cannot be stopped prematurely.

5.1.2 Interior point QP methods

Primal-dual interior point methods [203,204] can be classified into two categories: feasible
and infeasible. The first category requires the starting point as well as all subsequent
iterations of the algorithm to strictly satisfy all the inequality constraints. The second
category relaxes those requirements: the intermediate iterations may violate some or all of
the inequality constraints during the course of the minimisation procedure.

Interior point methods solve the optimisation problem by applying Newton’s method
to a sequence of equality constrained problems, or to a sequence of modified versions of
the KKT conditions [38]. The step length is determined through a line-search that ensures
sufficient decrease of a cost function based on the augmented Lagrangian function of the
barrier problem. The basic difference between interior-point and active-set methods for
convex QP is that active-set methods generally require a large number of steps in which
each search direction is relatively inexpensive to compute, while interior-point methods take a smaller number of more expensive steps [197].

5.1.2.1 Predictor-Corrector Primal-Dual Interior point QP algorithm

Each interior-point iteration is expensive to compute and can make significant progress towards the solution. Interior point methods approach the boundary of the feasible set only in the limit. They may approach the solution either from the interior or from the exterior of the feasible region, but they never actually lie on the boundary of this region.

In this work we use QPC’s implementation of Mehrotra’s Predictor-Corrector Primal-Dual QP algorithm, originally presented in [171]. At each iteration, Mehrotra’s predictor-corrector algorithm uses the Cholesky decomposition to find two different directions: a predictor and a corrector. The implementation of the Mehrotra’s algorithm uses Gondzio’s higher order terms [205].

The main idea of the algorithm is to compute an optimising search direction based on a first-order term (this is a predictor). The step size that can be taken in this direction is used to evaluate how much centrality correction is needed. A corrector term is then computed, which contains both a centrality term and a second-order term.

Computational time complexity The Interior point methods [206] have emerged as a strong competitor to Active Set methods, and have also been proposed for use in MPC [169]. A polynomial runtime guarantee [169] can be given for Interior point methods. The computational time is almost independent from the number of active constraints.

Interior point methods involve a relatively small number of iterations, but at each iteration the linear system of equations must be solved in \(O(n^3)\) flops. Thus, each iteration is relatively expensive [194] with typical requirements [207] of \(O(\sqrt{n}L)\) iterations of \(O(n^{3.5}L)\) arithmetic operations per iteration.

Strengths of the algorithm The Interior point approach is attractive when the problems are large. In addition, since the matrices at each iteration have the same dimension and structure, it is possible to exploit the structure inherent in the problem. The most widely used interior-point algorithms do not require a feasible starting point to be specified [169].

The speed of Interior point algorithms is almost independent of the number of active constraints. In the case of interior point methods, one pays a “fixed price” regardless of the number of active constraint [208]. Interior point methods work best when second derivatives are provided and solve a sequence of systems with fixed structure. Interior point algorithms handle large, sparse problems, as well as small dense problems.

The structure of the KKT matrix (e.g., quadratic programs that arise in optimal control and model predictive control have banded matrices [209]) is more easily exploited in the interior-point case, because the matrix can be reordered to have block-banded structure, for which efficient algorithms are available.
Weaknesses of the algorithm The drawback of Interior point methods is that they need to solve linear equations and this operation has (in the general dense case) an $O(n^3)$ computational complexity, although by a relatively small number of iterations [169]. Furthermore, the factorisation must be recomputed at each iteration. Interior point methods have a major drawback: no efficient warm start techniques exist [206]. There are several attempts [210–214] to bring the hot-start capabilities into Interior-Point algorithms. A shift strategy has been proposed in [212], where the relative complementary slackness is used as the index for choosing the starting point.

Summary for Interior point methods

+ **Strengths:** Guaranteed polynomial runtime, and the time is almost independent of the number of active constraints. Only a few iterations are needed to solve the optimisation problem. Structure of matrices can be exploited easily and efficiently. Interior point methods work best for large problems and when the second derivatives are provided.

– **Weaknesses:** Very expensive iterations requiring $O(n^3)$ flops, and the factorisations of matrices must be recomputed at each iteration. No efficient warm start technique exists. Interior point methods usually generate infeasible iterations, attaining feasibility only in the limit, which is not beneficial for adaptive optics problems.

✓ **Bottom line:** Interior point methods are reliable and sophisticated, but are slow (each iteration costs $O(n^3)$ flops) and difficult to hot-start efficiently. They are suitable for very large problems.

5.1.3 Branch and Bound QP methods

Branch and bound (BaB) algorithms are methods for global optimisation [215, 216]. The BaB methods considered in this work are non-heuristic, that is, they maintain a provable upper and lower bound on the optimal objective value. The branch and bound algorithm [217] finds the global minimum of a function f over an m-dimensional rectangle Q_{init} within some prescribed accuracy ϵ.

The algorithm relies on two subroutines that efficiently compute a lower and an upper bound on the optimal value over a given region. The upper bound can be found by choosing any point in the region, or by a local factorisation method. The lower bound can be found from convex relaxation, duality, or the Lipschitz bound. At each step, we have a partially developed binary tree; children correspond to the sub-rectangles formed by splitting the parent rectangle. Leaves give the current partition of Q_{init}. At each step, we need rules for choosing which rectangle to split, which edge (variable) to split, and where to split (what value of variable).

Computational time complexity Branch and bound algorithms can be (and often are) slow. In the worst case, the required effort grows exponentially with the problem size [218].
Strengths of the algorithm The Branch-and-Bound algorithm maintains a provable upper and lower bound on the optimal objective value, terminating with a certificate proving that the solution is ϵ-suboptimal. The method can be used for non-convex problems, or Integer programming. The branch-and-bound method converges faster when there are many active constraints.

Weaknesses of the algorithm Branch and bound algorithms can be (and often are) slow. In the worst case they require computational efforts that grow exponentially with the problem size [218]. If the lower bound is not accurate, the algorithm may converge to a suboptimal solution.

Summary for Branch-and-Bound algorithm

+ **Strengths**: monotone and predictable, gives certificate of optimality (provable upper and lower bound), extensible (different strategies for lower/upper bound), useful in non-convex cases, fast in severely constrained cases.

- **Weaknesses**: generally slow (worst case - exponential computational complexity), hard to find reliable and fast lower bound estimation. A warm start is non-trivial (and is not very effective).

✓ **Bottom line**: suitable in a case when a lot of constraints are active, tweakable, predictable behaviour, but slow and hard to accelerate.

5.1.4 Gradient-based QP methods

The gradient projection (GP) method appears to be a very promising approach for the bound-constrained Quadratic Programming (QP) and specifically for fast Receding Horizon Control. Low memory requirements and simplicity of implementation makes the GP algorithms attractive for large-scale problems. On the other hand, it is well known that these algorithms may exhibit very slow convergence if not combined with appropriate step-length selection methods. The GP algorithms are based on successive projections on the feasible region, which are inexpensive operations when the constraints are simple.

In this research project, we consider the Projected Alternating Barzilai-Borwein [219] algorithm (PABB), the Gradient Projection [220] algorithm, the Conjugate Gradients algorithm [221], constrained GPCG (Gradient Projection Conjugate Gradients) by Moré and Toraldo [222], and the Spectral Projected Gradient method [223, 224]. All of those algorithms share similar properties (low storage, ease of implementation, $O(n)$ computational complexity). Therefore, the strengths and weaknesses will be considered on an example of the PABB algorithm.

Computational time complexity Gradient based algorithms, and the PABB for example, have low storage requirements, are easy to implement and have very inexpensive computations [225]. Every iteration of the PABB algorithm requires only $O(n)$ floating point operations and a gradient evaluation. The choice of the step-length requires less
computational work and considerably accelerates the convergence of the gradient method for quadratic programming [225]. As a rule, the gradient-based QP algorithms have superlinear convergence [226].

Strengths of the algorithm The gradient-based algorithms are suitable for problems with many active constraints in the optimum [227]. The gradient-based algorithms have low storage requirements, are easy to implement and have very inexpensive computations [225]. For some of the algorithms, such as PABB algorithm, the computational speed *increases* with the percentage of activated constraints, which is expected since the termination conditions are satisfied earlier. Warm start for PABB algorithm is possible and efficient: one can expect 2x reduction of the number of iterations.

Weaknesses of the algorithm The main drawback of gradient-based optimisation algorithms is the use of first-order information (i.e., gradients). The convergence rate therefore depends on the condition number of the Hessian matrix: the more ill-conditioned the Hessian matrix is, the slower the convergence of gradient-based algorithms. Some of the algorithms such as PABB are *non-monotone*, which means that the value of the cost function is *not guaranteed to decrease on each step* [219].

Summary for Gradient-based QP

+ **Strengths**: Low storage requirements, easy to implement and very inexpensive computations (each iteration requires only $O(n)$ floating point operations and a gradient evaluation), and there is no need for a matrix factorisation. Warm start is possible and efficient. The gradient-based methods are the most efficient on box-constrained problems. Can be used as part of Active Set algorithms with the advantage that many constraints can be added or deleted from the working set on each iteration.

- **Weaknesses**: non-monotone (difficult to predict the convergence), not reliable (performance depends on the condition number of the Hessian matrix), line-search may significantly degrade the performance for some methods. The PABB algorithm may cycle even on strictly convex QP problems (may fail to converge).

✔ **Bottom line**: simple and very fast algorithm for box-constrained problems with $O(n)$ computational time complexity and low storage requirements, but not reliable (performance degrades in case of a poor-conditioned Hessian matrix). Gradient-based methods are suitable for well-conditioned box-constrained problems where speed is more important than robustness.

5.1.5 Summary of optimisation algorithms

The QP algorithms described in the preceding Sections were chosen for their trade-offs between strengths and weaknesses. A summary of the optimisation solvers considered and implemented in this research is presented in Table 5.1. The reasoning behind the choice of algorithms in this work is as follows:
<table>
<thead>
<tr>
<th>GP-GLH</th>
<th>Direct ML</th>
<th>Direct ML</th>
<th>Direct ML</th>
<th>Direct ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MATLAB</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Direct ML</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GP-GLH</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PDPO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MATLAB</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Direct ML</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GP-GLH</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PDPO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MATLAB</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Direct ML</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GP-GLH</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PDPO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MATLAB</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Direct ML</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GP-GLH</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PDPO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MATLAB</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Direct ML</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 3.1: OP solvers for constrained convex optimization problems.
• **Primal Active Set** algorithm was chosen for its efficiency in solving small and medium-size problems. The iterations of the Primal Active Set method are always feasible. Hot-start in Active Set algorithms is possible and efficient. Additional acceleration by a factor of three to five is expected for simple bound-constrained problems.

• **Dual Active Set** algorithm was chosen for preliminary study because it is typically faster than primal algorithms, especially when few constraints are active. However, the fact that Dual methods satisfy all the constraints only at the last iteration was the reason of not choosing it for final tests.

• **Interior point** algorithm is attractive because it can efficiently exploit the block-structure of the Hessian, it does not require a feasible starting point, and the computational time is almost independent of the number of active constraints.

• **Branch-and-Bound** algorithm was chosen because it is monotone and predictable, and can be fast in severely constrained cases.

• **Gradient-based** algorithms, and especially the PABB algorithm, were chosen for their simplicity and very inexpensive computations. These algorithms can be efficiently and simply hot-started along with the fact that their speed *increases* with the percentage of activated constraints.

The following sections provide the mathematical background and the implementation details of the quadratic optimisation algorithms for online Receding Horizon Control. Given the structure of the Hessian matrix (see Chapter 4), which arises from the coupling between the actuators, one should seek a QP solver with the following properties:

1. Iterations should exploit the structure of the Hessian and be computationally inexpensive;

2. Warm-start should be very efficient, as the optimisation problem generally does not change much from one sampling instance to the next.

5.2 Gradient-based optimisation algorithms

Historically, one of the first algorithms for QP problems was the Steepest Descent (SD) method proposed by Cauchy [228]. The steepest descent method moves along the direction $p_k = -\nabla f_k$ at every step. The objective function values f_k converge to the minimum at a linear rate. In general, as the condition number $\kappa(Q) = \sigma_{\text{max}}/\sigma_{\text{min}}$ increases\(^1\), the contours of the quadratic become more elongated, the zigzagging behaviour becomes more pronounced, and the convergence degrades \cite{197}. Therefore, the Steepest Descent method can have an unacceptably slow rate of convergence, even when the Hessian matrix is relatively well conditioned \cite{197}.

\(^1\text{Here } \sigma_{\text{max}}(A) \text{ and } \sigma_{\text{min}}(A) \text{ are the maximal and minimal singular values of the matrix } A.\)
An alternative development for improving the effectiveness of projected gradient methods has been to make use of the Conjugate Gradients (CG) method for finding the minimiser on a face of a convex set. There have been many Conjugate Gradients-type projection algorithms for the positive definite case. Polyak [229] first proposed an algorithm that uses the negative projected gradient to leave a face and Conjugate Gradients to explore a face. Dembo and Tulowitzki [230] proposed algorithms that can drop and add many constraints from the working face at each iteration, and do not require the accurate solution of the working face. Subsequently, Yang and Tolle [231] and Wright [232] proposed two algorithms that are able to drop and add many constraints on each iteration, and they show that the algorithms terminate in a finite number of iterations.

The GPCG algorithm [222] uses the Gradient Projection (GP) method until either a suitable face is identified, or the GP method fails to make reasonable progress. The current face is explored by using the CG method. Once the CG method fails to make significant progress, a decision is made whether or not to switch back to the GP method. This strategy avoids the excessive exploration of non-optimal faces by the CG method. Good numerical results were reported for problems of up to 15000 variables [222].

We discuss gradient-based methods that exploit the two spectral step lengths introduced by Barzilai and Borwein [219] for the unconstrained case. We consider a non-monotone spectral projected gradient method developed in [233] and the variable projection methods introduced in [234, 235]. Even if the two approaches can exploit the same step-length selections and can be described within the same gradient projection scheme, they present considerable differences. In fact, the method in [233] uses a non-monotone line-search technique [236], while the variable projection methods use a limited minimisation rule as (monotone) line-search procedure [237].

5.2.1 Barzilai-Borwein optimisation algorithm

The Barzilai and Borwein (BB) gradient method [219] uses ideas from both steepest descent [228, 238] and Quasi-Newton methods [239, 240]. We consider a box-constrained strictly convex optimisation problem posed in (5.1). Define the feasible set as:

\[
\Omega = \{ x \in \mathbb{R}^n : l \leq x \leq u \}
\]

(5.3)

where the inequalities are interpreted element-wise. Denote \(P_\Omega \) the projection operator onto the feasible set \(\Omega \) in (5.3) as:

\[
P_\Omega(x) = \begin{cases}
 l_i & \text{if } x_i < l_i \\
 x_i & \text{if } x_i \in [l_i, u_i] \\
 u_i & \text{if } x_i > u_i
\end{cases}
\]

(5.4)

where \(l \) and \(u \) are the lower and upper bounds of the variables defined in (5.1), and \(i = 1, \ldots, n \). The Projected Barzilai-Borwein (PBB) gradient method computes \(x_{k+1} \) as:

\[
x_{k+1} = P_\Omega[x_k - \alpha_k^{BB} g_k],
\]

(5.5)
where $\alpha_{k}^{BB} > 0$ is a step-length, the vector $g_{k} = (F + \mathcal{H}_k x_k)$ is the gradient at current value of x_k. The step-length α_{k}^{BB} in the BB algorithm can be computed as:

$$
\alpha_{k}^{BB} = \frac{s_{k-1}^T s_{k-1}}{s_{k-1}^T y_{k-1}} \quad \text{or} \quad \alpha_{k}^{BB} = \frac{y_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}} \tag{5.6}
$$

where

$$s_{k-1} = x_k - x_{k-1} \quad \text{and} \quad y_{k-1} = g_k - g_{k-1} \tag{5.7}$$

The relations in (5.7) have been used in practical quasi-Newton methods to define the initial matrices [241].

Numerical tests on random positive definite box-constrained QP problems show [199] that alternating the BB formulae in (5.6):

$$
\alpha_{k}^{ABB} = \begin{cases}
\alpha_{k}^{BB1} & \text{if } k \text{ is odd} \\
\alpha_{k}^{BB2} & \text{if } k \text{ is even}
\end{cases} \tag{5.8}
$$

provides better convergence and overall performs more efficiently than the usual PBB method in (5.5).

The projected gradient method (5.5) with the step-length given by (5.6) is referred to as the projected BB (PBB). The method with the step-length described in (5.8) is referred to as the projected alternating BB (PABB) method. The details of the implementation are given in Subsection 5.2.1.3.

The algorithm has low storage requirements, easy to implement and very inexpensive computations [225]: every iteration of the BB algorithm requires only $O(n)$ floating point operations and a gradient evaluation. The BB algorithm is shown to be far more efficient than the Steepest Descent algorithm and comparable with the Conjugate Gradients method for quadratic programming problems [242].

5.2.1.1 Non-monotone behaviour

Despite its simplicity and similarity to the conventional Steepest Descent method, the PABB algorithm has an important feature: it is non-monotone, which means that the value of the cost functions is not guaranteed to decrease on each step [219]. Attempts to make the behaviour of the PABB algorithm more monotone using variants of non-monotone line search [243] may degrade the performance of the PBB and PABB methods [199]. This can be circumvented by an adaptive non-monotone line search [199].

5.2.1.2 Convergence of Projected Barzilai-Borwein method

Barzilai and Borwein proved an R-superlinear convergence when applied to two-dimensional strictly convex quadratics. Also, Raydan [225] has shown that the BB method (with either step-length formula) is globally convergent in the strictly convex quadratic case. A recent study of Dai and Fletcher [226] has shown that the BB method with either (5.6) or any alternate use of the formulae is likely to be asymptotically R-superlinearly convergent in
the three-dimensional case. However, it was shown [199] in the strictly convex QP case that the PABB methods may cycle between several points, and hence fail to converge.

Despite aforementioned issues with the PABB algorithm, our experience shows that if the condition number of strictly convex QP is $\kappa(\mathcal{H}) < 10^4$, then the PABB algorithm tends to converge quickly (typically within 10-50 iterations) to the optimal value. Moreover, unlike other QP algorithms, in the constrained case the convergence rate of the PABB is improving. This can be advantageous in applications where many constraints are active during the typical operation.

5.2.1.3 Details of Barzilai-Borwein QP algorithm

The dynamics model of an adaptive optics system appears to have a well-conditioned Hessian matrix ($\kappa \sim 10^3$) and therefore the convergence of the PABB algorithm should be fast. More importantly, the PABB algorithm can be easily hot-started. The pseudo-code of the PABB algorithm used in this work is provided as Algorithm 1 on page 90.

Algorithm 1: Scheme of the Projected Alternating Barzilai-Borwein algorithm

Data: starting point x_0, gradient $g = \nabla f(x)$, tolerance ε_{tol}

$k = 1$; $g_k = \nabla f(x_{old})$;

// initialisation and computation of first values
$x_1 = x_0 - g_k$;

// An arbitrary large initial termination value τ_{norm} to prevent the algorithm
// checking the exit condition within first few iterations.
$\tau_{norm} = 10^{10}$;

while $\tau_{norm} > \varepsilon_{tol}$ do

$s_{k-1} \leftarrow x_k - x_{k-1}$;

$y_{k-1} \leftarrow g_k - g_{k-1}$;

// Step-length computation:

if k is even then

$\alpha_k^{ABB} = \frac{s_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}}$

else

$\alpha_k^{ABB} = \frac{s_{k-1}^T s_{k-1}}{s_{k-1}^T y_{k-1}}$

end

// Computing the next value:

$x_{k+1} = P_\Omega(x_k - \alpha_k^{ABB} g_k)$;

// Here $P_\Omega(x)$ is the projection on the feasible set Ω

if $k > 4$ then

$\tau_{norm} = \text{abs}(||x_k||_2 - ||x_{k-1}||_2)$

// to prevent a premature termination of the algorithm

end

$k \leftarrow k + 1$;

end

Hot start of PABB algorithm Due to simplicity of the PABB algorithm, hot start can be done by feeding the optimal value x_{k-1} from the previous sampling instance t_{k-1} as a starting point x_0 for the next sampling instance t_k. We also use the gradient vector g_k
from the previous iteration for the next one in order to save computation time. One should note that in [244], it was shown that the warm-start strategy yields faster computation in general.

Termination conditions The termination condition for the PABB algorithm can be based on the norms of the vector \(x \), gradients values, or evaluation of the objective function at each iteration (slow but reliable).

Evaluation of the objective function is the slowest but most reliable way to estimate the progress of PABB iterations. Define the tolerance value \(\tau_{\text{obj}} \) as a modulus of the difference between the objective function \(V \) of the current and previous step:

\[
\tau_{\text{obj}} = |V(x_{k-1}) - V(x_k)|
\]
(5.9)

One should note that since the PABB method is non-monotone, the value of the objective function \(V \) can actually increase during the iterations. Ignoring this fact will lead to a premature termination of the algorithm and to a wrong solution. In order to speed-up the computations and simplify the termination condition, we considered the following criterion:

\[
\tau_{\text{norm}} = | \| x_k \| - \| x_{k-1} \| |
\]
(5.10)

That is, the difference of norms of the previous computed vector and current one. The reason we use the absolute value is again due to the non-monotone nature of the PABB algorithm.

5.2.2 Gradient Projection algorithm

Following [245], consider the gradient projection [220] algorithm as an extension of the steepest descent algorithm [228] for the bound constrained problems. The next iteration \(x_{k+1} \) is given as follows:

\[
x_{k+1} = P_{\Omega}(x_k - \alpha \nabla V(x_k))
\]
(5.11)

where \(\alpha \) is a step-length parameter given by the Armijo rule [246], and \(V \) is the objective function. The sufficient descent of the line search for a bound constrained problem is:

\[
V(x(\alpha)) - V(x) \leq -\frac{\mu}{\alpha} \| x - x(\alpha) \|^2.
\]
(5.12)

where \(\mu \) is typically set to \(10^{-4} \) according to [247]. The steepest descent method is known to be Q-linearly convergent, but the rate of convergence can be very slow if the Hessian matrix \(\mathcal{H} \) is poorly conditioned [238].

The gradient projection method was originally developed by Rosen [248], and the scheme is provided in Algorithm 2. Bertsekas [220] considered some aspects of a gradient projection method [249]. It should be noted that in order for the Gradient Projection method to be effective, the set must be such that the projection operation \(P_{\Omega} \) can be easily carried out.
Algorithm 2: Scheme of the Gradient Projection algorithm

Data: starting point \(x_0 \), tolerance \(\varepsilon_{tol} \), maximum number of iterations \(maxiter \)
gradient \(g = \nabla f(x) \), objective function value \(J(x_k) \), iteration \(k = 1 \); \(g_k = \nabla f(x_{old}) \)
\(c_1 = 10^{-4} \) // Armijo line search condition constant, should be small like \(10^{-4} \)
\(c_2 = 0.2 \) // line search parameters - contraction parameter
// initialisation and computation of first values
\(x_0 = P_\Omega(x_0) \) // Here \(P_\Omega(x) \) is the projection on the feasible set \(\Omega \)

while \(\|\tau\|_2 \geq \varepsilon_{tol} \) or \(k > maxiter \) do
\(\alpha = 1 \)
\(f_c = J(x_c) \) // current value of the objective function
\(x_{new} = P_\Omega(x_c - \alpha \cdot g_c) \)
\(f_{new} = J(x_{new}) \)
\(pl = x_c - x_{new} \)
// START simple line search
\(f_{goal} = f_c - \frac{c_1}{\alpha} \cdot (pl^T pl) \)
while \(f_{new} > f_{goal} \) do
\(\alpha = \alpha \cdot c_2 \)
\(x_{new} = P_\Omega(x_c - \alpha \cdot g_c) \)
\(pl = x_c - x_{new} \)
\(f_{goal} = f_c - \frac{c_1}{\alpha} \cdot (pl^T pl) \) // desired decrease of the objective function.
\(f_{new} = J(x_{new}) \)
end
// END simple line search
\(x_c \leftarrow x_{new} \)
\(g_c \leftarrow g(x_c) \)
\(\tau = x_c - P_\Omega(x_c - g_c) \) // \(\tau \) is the stopping criterion for the projected gradient
\(k \leftarrow k + 1; \)
end

5.2.3 Conjugate Gradients methods for Quadratic Programming

The Conjugate Gradients (CG) algorithm is one of the most useful techniques for solving large linear systems of equations [197]. The Conjugate Gradients method was developed in the 1950s by Hestenes and Stiefel [221] as an alternative to optimisation methods for symmetric positive definite problems. It was not until some years later, in one of the most important developments in sparse linear algebra, that this method came to be viewed as an iterative method that could give good approximate solutions to systems in considerably fewer than \(n \) steps.

Our presentation of the linear CG method follows that of Luenberger [250]. The CG method is an iterative method for solving a linear system of equations:

\[
Ax = b
\]

(5.13)

where \(A \) in (5.13) is an \(n \times n \) matrix that is symmetric and positive definite. The problem can be stated equivalently as the following minimisation problem:

\[
\phi(x) = \frac{1}{2} x^T Ax - b^T x
\]

(5.14)
Conjugate gradient (CG) methods comprise a class of unconstrained optimisation algorithms which are characterized by low memory requirements and strong local and global convergence properties [251]. The CG method can be used as an iterative method as it provides monotonically improving approximations x_k to the exact solution. The improvement is typically linear and its speed is determined by the condition number $\kappa(A)$ of the system matrix A: the larger $\kappa(A)$ is, the slower the improvement [252].

If $\kappa(A)$ is large, preconditioning techniques can be used to replace the original system $Ax - b = 0$ with $M^{-1}(Ax - b) = 0$ so that $\kappa(M^{-1}A)$ gets smaller than $\kappa(A)$. More about preconditioning techniques can be found in the forthcoming Subsection 5.2.4.

The Conjugate Gradients method can be used either as an algorithm for solving linear systems (5.13) or as a technique for minimisation of convex quadratic functions (5.14). The scheme of the CG algorithm for solving $Ax = b$ is described in Algorithm 3.

The importance of conjugacy lies in the fact that we can minimise $\phi(\cdot)$ in n steps by successively minimising it along the individual directions in a conjugate set. If the matrix A in (5.14) is diagonal, the contours of the function $\phi(\cdot)$ are ellipses whose axes are aligned with the coordinate directions. When A is not diagonal, its contours are still elliptical, but they are usually no longer aligned with the coordinate directions. The strategy of successive minimisation along these directions in turn no longer leads to the solution in n iterations.

Algorithm 3: Scheme of the Conjugate Gradients algorithm

Data: using starting points for residuals $r_0 := b - Ax_0$, step directions $p_0 := r_0$, tolerance ε_{tol}

while $\|r_k\|_2 \geq \varepsilon_{tol}$ **do**

\[\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k} \]

\[x_{k+1} = x_k + \alpha_k p_k \]

\[r_{k+1} = r_k - \alpha_k A p_k \]

\[\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \]

\[p_{k+1} = r_{k+1} + \beta_k p_k \]

end

5.2.4 Pre-Conditioned Conjugate Gradients

In general, as the condition number $\kappa(Q) = \lambda_{\max}/\lambda_{\min} \geq 2$, the contours of the quadratic become more elongated, the zigzagging behaviour becomes more pronounced, and the convergence degrades [197]. The Conjugate Gradients method can be accelerated by transforming the linear system $Ax = b$ to improve the eigenvalue distribution of the matrix A. The key to this process, which is known as preconditioning, is a change of variables from x to \hat{x} via a non-singular matrix C:

\[\hat{x} = C x \] \hspace{1cm} (5.15)

\(^2\)Here it is more convenient to define the condition number in terms of the minimal λ_{\min} and maximal λ_{\max} eigenvalues rather than singular values.
The matrix $M = C^TC$ cannot change from iteration to iteration, otherwise the preconditioned Conjugate Gradients (PCG) method may become unpredictable.

The convergence rate of the PCG will depend on the eigenvalues of the matrix $C^{-T}AC^{-1}$ rather than eigenvalues of A. Therefore, the goal is to choose C such that the eigenvalues of $C^{-T}AC^{-1}$ become a well-conditioned matrix or a matrix with clustered eigenvalues. The scheme of the PCG is provided in Algorithm 4. Note that the PCG is very similar to the CG, except that now we use y_k and the matrix $M = C^TC$. The key difference of the Preconditioned CG from the standard CG algorithm is highlighted in red font.

Algorithm 4: Scheme of the Preconditioned Conjugate Gradients algorithm

Data: using starting points for residuals $r_0 = b - Ax_0$, $M = C^TC$, where C is the preconditioning matrix, tolerance ε_{tol}

Compute $y_0 = M^{-1}r_0$

Compute step directions $p_0 = y_0$

while $\|r_k\| \geq \varepsilon_{tol}$ do

\[\alpha_k = \frac{r_k^T y_k}{p_k^T A p_k}, \]

\[x_{k+1} = x_k + \alpha_k p_k, \]

\[r_{k+1} = r_k - \alpha_k A p_k, \]

\[y_{k+1} = M^{-1} r_{k+1}, \]

\[\beta_k = \frac{r_{k+1}^T y_{k+1}}{r_k^T y_k}, \]

\[p_{k+1} = y_{k+1} + \beta_k p_k, \]

\[k \leftarrow k + 1 \]

end

The preconditioning matrix C depends on the specific optimisation problem, so there generally is no “best” strategy. The choice of the preconditioner is a trade-off between effectiveness of M, inexpensive computation and storage of M, inexpensive solution of $My_k = r$ that varies from problem to problem. The most popular choice of preconditioners includes symmetric successive over-relaxation (SSOR), incomplete Cholesky factorisation, and banded preconditioners [252–254].

Jacobi preconditioner The Jacobi preconditioner is the simplest form of preconditioning, when the preconditioner is the diagonal of the matrix:

\[D = \text{diag}(A), \quad A_{ii} \neq 0, \forall i \]

and we have $D^{-1}_{ij} = \frac{\delta_{ij}}{A_{ii}}$. Therefore, the simplest approach is to use a Jacobi or a block Jacobi approach [252]. In the simplest case, a Jacobi preconditioner may consist of the diagonal or a block-diagonal elements of A.

Incomplete Cholesky factorisation Given a symmetric matrix A and a symmetric sparsity pattern S, an incomplete Cholesky factor [255] of A is a lower triangular matrix L such that:

\[A = LL^T + R, \quad l_{ij} = 0 \text{ if } (i, j) \notin S, \quad r_{ij} = 0 \text{ if } (i, j) \in S. \]

(5.16)
The clustering properties of the incomplete Cholesky factorisation depend in part on the sparsity pattern S of the incomplete Cholesky factor L.

However, a major problem is that the Incomplete Cholesky factorisation is not guaranteed to exist for an arbitrary symmetric positive definite matrix. All the results that guarantee existence rely on some form of diagonal dominance [252]. For an extensive discussion of other forms of the Cholesky factorisation for dense matrices, see [256].

Symmetric Successive Over-relaxation (SSOR) Given the standard equation $Ax = b$, consider the decomposition:

$$A = D + L + U,$$ \hspace{1cm} (5.18)

where the matrix D is the diagonal of matrix A, matrix L is the strict lower part of A, and U is the strict upper part of A. It is assumed that the diagonal entries of A are all nonzero [252]. The iterative procedure is:

$$Mx_{k+1} = Nx_k + b = (M - A)x_k + b,$$ \hspace{1cm} (5.19)

where:

$$A = M - N$$ \hspace{1cm} (5.20)

is a *splitting* of the matrix A. The preconditioning matrix M can be of many forms, for example:

$$M_{\text{Jacobi}} = D$$ \hspace{1cm} (5.21)

is the Jacobi preconditioner, and:

$$M_{\text{GS}} = D + L$$ \hspace{1cm} (5.22)

is the Gauss-Seidel preconditioner. An iterative method of the form (5.19) can be defined for any splitting of the form (5.20), where M is non-singular. The *Overrelaxation* is based [252] on the following splitting:

$$\omega A = (D + \omega L) + (\omega U + (\omega - 1)D),$$ \hspace{1cm} (5.23)

where $\omega \in [0, 2]$ is the relaxation parameter. The corresponding *Successive Over Relaxation* (SOR) method is a variant of the Gauss-Seidel method for solving a linear system of equations and is given by the recursion:

$$(D + \omega L)x_{k+1} = \omega F(1 - \omega)Dx_k + \omega b,$$ \hspace{1cm} (5.24)

and therefore the preconditioning matrix M_{SOR} is:

$$M_{\text{SOR}} = \frac{1}{\omega}(D + \omega L),$$ \hspace{1cm} (5.25)
The SOR method for symmetric matrices A is referred to as Symmetric Successive Over-Relaxation [257], or (SSOR), in which the preconditioning matrix is given by:

$$M_{SSOR} = \left(\frac{D}{\omega} + L \right) \frac{\omega}{2 - \omega} D^{-1} \left(\frac{D}{\omega} + U \right).$$ (5.26)

5.2.5 Constrained Gradient Projection Conjugate Gradients

The Gradient Projection (GP) algorithm is notoriously slow, but can deal with constraints, while the Conjugate Gradients (CG) algorithm is fast, but can solve only unconstrained problems. The GPCG algorithm proposed by Moré and Toraldo [222] combines GP and CG algorithms with switching rules between the two. The GPCG algorithm uses the Conjugate Gradients method to explore the face of the feasible region defined by the current iteration, and the gradient projection method to move to a different face. A somewhat similar approach, called “Projection-Proportion”, was proposed in [258]. An algorithm that uses the Conjugate Gradients method to explore the face of the region defined by the current iteration until a disproportional iteration is generated.

The idea of the GPCG algorithm can be extended to non-linear problems as well. The active set algorithm (ASA) [259] consists of a non-monotone gradient projection step, an unconstrained optimisation step, and a set of rules for branching between the steps. The active set algorithm (ASA) has two phases, namely a gradient projection phase and an unconstrained optimisation phase. For the unconstrained optimization phase, ASA exploits the box structure of the constraints, while the gradient projection phase can be applied to any problem with a closed, convex feasible set [260]. The ASA [259] algorithm exploits the cyclic Barzilai-Borwein (CBB) [261] algorithm for the gradient projection step and the recently developed Conjugate Gradients algorithm called CG DESCENT [251, 262, 263] for unconstrained optimisation.

The GPCG algorithm with preconditioning of the CG part has been successfully used in [264] and shown very promising results. The applications of the GPCG in automatic control were discussed in [265]. Although the GPCG had been originally designed for large-scale problems, implementations of the GPCG on a parallel architecture presented significant obstacles that are typical of a large class of optimisation algorithms. The most significant obstacle arises from the method used to compute the step between iterations [266]. However, results in [266] indicate that up to 16 processors can be used for efficient parallelising of the GPCG.

5.2.5.1 Formulation of Convex Quadratic Problem

Given a quadratic function $\Phi(x)$ and vectors l and u from \mathbb{R}^n that specify bounds on the variables, the bound constrained quadratic programming (QP) problem is:

$$\begin{align*}
\text{minimise} \quad & \Phi(x) = \frac{1}{2} x^T H x + F^T x \\
\text{subject to} \quad & l \leq x \leq u
\end{align*}$$ (5.27)
We consider the case when the quadratic $\Phi(x)$ is strictly convex and the number of variables n is large. Denote P_{Ω}, the projection operator on to the feasible set Ω in (5.27) as:

$$P_{\Omega}(x) = \begin{cases}
 l_i & \text{if } x_i < l_i \\
 x_i & \text{if } x_i \in [l_i, u_i] \\
 u_i & \text{if } x_i > u_i
\end{cases} \quad (5.28)$$

where l and u are the lower and upper bounds of the variables defined in (5.27), and Ω is the feasible region:

$$\Omega = x \in \mathbb{R}^n : l \leq x \leq u. \quad (5.29)$$

We consider a face of a convex set (5.29) that contains x as:

$$y \in \Omega : y_i = x_i \text{ if } x_i \in \{l_i, u_i\}. \quad (5.30)$$

Standard algorithms for the solution of (5.27) usually generate a sequence x_k that terminates at a solution of (5.27) in a finite number of iterations. Finite termination is typically achieved by solving a sequence of sub-problems of the form:

$$\min \{ \Phi(x_k + d_k) : d_i = 0, i \in \mathcal{W}_k \} \quad (5.31)$$

for some active set \mathcal{W}_k (that is, the set of active constraints) and the step direction d_k. However, in this type of strategy, only one constraint is usually added or dropped at each iteration, which leads to an inefficient algorithm.

The GPCG algorithm, on the other hand, uses a projected search for both CG and GP parts. The projected search chooses an $\alpha_k > 0$ such that $\Phi(x_{k+1}) < \Phi(x_k)$, and therefore more than one constraint may be added to the active set. The Conjugate Gradients (CG) part explores the face of the feasible region defined by the current k-th iteration and uses the gradient projection method to move to a different face. The face of the feasible set, which contains the current iteration, can be defined in terms of the active set $\mathcal{A}(x)$:

$$\mathcal{A}(x) = \{ i : x_i = l_i \text{ or } x_i = u_i \} \quad (5.32)$$

Given the current iteration x_k and the active set $\mathcal{A}(x_k)$, the Conjugate Gradients method is used to compute an approximate minimiser of the sub-problem:

$$\min \{ \Phi(x_k + d) : d_i = 0 \text{ if } i \in \mathcal{A}(x_k) \} \quad (5.33)$$

This is an unconstrained quadratic programming problem in the free variables.

5.2.5.2 The core idea of the GPCG algorithm

The GPCG algorithm [222] consists of two algorithms, namely the Gradient Projection (GP) and the Conjugate Gradients (CG), and the ruleset of switching between these two parts. The GP part attempts to solve the problem (5.27) until either a suitable active set \mathcal{W}_k is identified or when the GP method fails to make reasonable progress. The CG part is
used to obtain an approximate solution of (5.31) on the current face. That is, the idea of GPCG is to solve the bound constrained problem (5.27) using the CG method to explore the face of the feasible region defined by the current iteration and then use the GP method to move to a different face.

The GPCG algorithm can be outlined as follows. For \(k = 0 \ldots k_{\text{max}} \), start with the GP part to generate an approximation \(x_k \) of the solution of the optimisation problem:

GP part: For \(j = 0 \ldots j_k \), generate gradient projection (GP) iterate \(y_0, y_1, \ldots y_{j_k} \) with starting point \(y_0 \leftarrow x_k \). Whenever (5.38) or (5.39) conditions are satisfied, set \(x_k \leftarrow y_{j_k} \), where \(j_k \) is the first index \(j \) that satisfies aforementioned conditions, and \(y_j \) is found by (5.34). Switch to the CG part.

CG part: For \(j = 0 \ldots j_k \), generate Conjugate Gradients iterate \(w_0, w_1, \ldots w_{j_k} \) setting \(w_0 = 0 \) to a zero vector. Set \(d_k = z_k w_j \), where \(j_k \) is the first index \(j \) that satisfies (5.42). Use a projected search to define \(x_{k+1} \) via (5.43). If \(B(x_{k+1}) = A(x_{k+1}) \), continue the Conjugate Gradients part.

Here \(B(x_{k+1}) \) is a binding set (see Subsection 5.2.5.4 for further discussions) for the vector \(x_{k+1} \).

The GPCG algorithm consists of an outer iteration, which runs either GP or CG algorithms, and inner iterations, which generate approximations of the solution of the optimisation problem. We keep the index \(j \) for inner iterations, either for \(y_j \) (for the GP part) or for \(w_j \) (for the CG part), and the index \(k \) for the outer iterations \(x_k \). The decision of whenever the solution is found is based on the norm of a difference between the previous approximate solution and the current solution. Comparison of such a difference with the prescribed tolerance allows the algorithm to stop and give the answer, or terminate the algorithm if a maximum allowed number of iterations is encountered in any part of the algorithm (GP, CG, or outer iterations).

5.2.5.3 The Gradient Projection part

The gradient projection method generates a sequence \(\{y_j\} \) of approximate solutions of the quadratic programming problem (5.27) as follows:

\[
y_{j+1} = P_{\Omega}[y_j - \alpha_j \nabla \Phi(y_j)],
\]

where \(P_{\Omega} \) is the projection on the feasible set \(\Omega \) defined in (5.27) and \(\alpha_j > 0 \) is chosen by a projected search so that we have a decrease in the cost function (5.27), i.e. \(\Phi(y_{j+1}) < \Phi(y_j) \).

Projected search for the GP part The goal of the projected search is to find a suitable constant \(\alpha_j > 0 \) that produces a sufficient decrease in the cost function \(\phi_j \):

\[
\phi_j(\alpha_j, y_j) \leq \phi_j(\alpha_0, y_{j-1}) + \mu(\nabla \Phi(y_j))^T(P_{\Omega}[y_j - \alpha_j \nabla \Phi(y_j)] - y_j),
\]

(5.35)
where \(P_{\Omega} \) is the projection from (5.28) into the bound constrained set (5.29), \(\mu \in (0, \frac{1}{2}) \) is a constant, and the cost function \(\phi_j \) is defined by:

\[
\phi_j(\alpha_j, y_j) = \Phi(P_{\Omega}[y_j - \alpha_j \nabla \Phi(y_j)]),
\]

(5.36)

where \(\phi_j(\alpha_0, y_{j-1}) \) is the value of the cost function \(\Phi \) from (5.27) when \(\alpha_j = \alpha_0 \) and the previous value of \(y \) that is \(y_{j-1} \).

The initial trial value \(\alpha_0 \) in case of the GP part is computed as follows:

\[
\alpha_0 = \frac{\nabla \Phi(y_j)^T \nabla \Phi(y_j)}{\nabla \Phi(y_j)^T \mathbb{H} \nabla \Phi(y_j)}
\]

(5.37)

This is important, as it computes the \(\alpha_0 \) that is already acceptable, reducing the unwanted possibility of preliminary termination of the Armijo rule [246]. When the coefficient \(\alpha_j \) is found, we use it to compute the updated approximation \(y_j \) in (5.34).

Exploring faces of the convex set via the GP part The gradient projection method is used to select a new face as follows. Given \(x_k \) as an initial step, the GP part generates iterates with \(y_0 = x_k \) and uses the projected search as described above to compute \(\alpha_k \) (and consequently \(y_j \)). This process is repeated until either of two conditions is satisfied:

\[
\mathcal{A}(y_j) = \mathcal{A}(y_{j-1})
\]

(5.38)

\[
\Phi(y_{j-1}) - \Phi(y_j) \leq \eta_2 \cdot \max\{\Phi(y_{l-1}) - \Phi(y_l) : l \in [1, j]\}
\]

(5.39)

where \(\eta_2 \) is typically set to \(\eta_2 = 0.25 \).

The condition (5.38) means that the set of active constraints is the same as on the previous iteration, and we have to switch to the CG part (otherwise, the GP part will proceed with slow convergence rate). Moreover, convergence properties of the gradient projection method discussed in [220, 267, 268] show that there is a neighbourhood of the solution such that (5.38) holds whenever \(x_k \) belongs to such a neighbourhood.

The condition (5.39) is the sufficient progress test of the gradient projection method. In case of either conditions are satisfied, we switch from the GP part to the CG part described in Subsection 5.2.5.4.

Termination conditions for the GP part The process of the projected search (5.35) produces the next approximation of the solution \(y_j \). In order to prevent the algorithm from cycling, there are several precautions:

1. The line-search is restricted to have finite number of steps, and if the line-search attempts to take more steps, we interrupt the GP part and start the CG part.

2. Unlike the original algorithm [222], we allow the GP part to terminate the whole algorithm if \(||y_{new} - y_{old}||_2 \leq \tau \), where \(\tau \) is the prescribed tolerance. This allows preventing the algorithm wasting time on CG iterations with negligible improvements in the subspace optimisation.
The major cases of stopping the GP part are due to an insufficient progress in minimising the cost function.

5.2.5.4 The Conjugate Gradients part

The Conjugate Gradients (CG) algorithm for the solution of the sub-problem (5.33) is implemented by expressing this sub-problem in terms of an equivalent problem in free variables. Consider the case when we have \(m_k \) free (i.e., unconstrained) variables. Denote \(i_1 \ldots i_{m_k} \) the indices of the free variables, and construct the matrix \(Z_k \) of size \(\mathbb{R}^{n \times m_k} \) whose \(j \)-th column is the \(i_j \)-th column of the identity matrix of size \(\mathbb{R}^{n \times n} \). Then the sub-problem (5.33) is equivalent to the unconstrained problem:

\[
\min \{ \Phi_{Z_k}(w_j) : w_j \in \mathbb{R}^{m_k} \} \tag{5.40}
\]

where:

\[
\Phi_{Z_k}(w_j) = \frac{1}{2} w_j^T H_k w_j + r_k^T w_j. \tag{5.41}
\]

Here \(H_k \) is the projected (reduced) Hessian matrix \(H_k = Z_k^T H Z_k \) and vector \(r_k \) is the projected gradient \(r_k = Z_k^T \nabla \Phi(x_k) \).

Given a starting point \(w_0 \in \mathbb{R}^{m_k} \), the Conjugate Gradients algorithm generates a sequence of iterates \(w_0, w_1, \ldots \) that terminates at a solution of sub-problem (5.40) in at most \(m_k \) iterations. We use the Conjugate Gradients algorithm until it generates \(w_j \) such that:

\[
\Phi_{Z_k}(w_{j-1}) - \Phi_{Z_k}(w_j) \leq \eta_1 \cdot \max \{ \Phi_{Z_k}(w_{l-1}) - \Phi_{Z_k}(w_l) : l \in [1, j] \} \tag{5.42}
\]

where \(\eta_1 \) is typically set to \(\eta_1 = 0.1 \), and the reduced (projected) cost function \(\Phi_{Z_k} \) is given by (5.41). At each inner \(j \)-th iteration, the CG algorithm checks the condition (5.42), which is the sufficient progress test of the Conjugate Gradients method. When the condition (5.42) is satisfied, we convert this subspace solution \(w_{j_k} \) into step direction \(d_k = Z_k w_{j_k} \), where \(j_k \) is the first index \(j \) that satisfies (5.42). Then the projected search is used to find the next approximate solution \(x_k \) of the optimisation problem (5.27) as:

\[
x_{k+1} = P_{\Omega}(x_k + \alpha_k d_k) \tag{5.43}
\]

where \(P_{\Omega} \) is the projection into the feasible set from (5.28) and \(d_k = Z_k w_{j_k} \) is the step direction found by the CG part. The projected search chooses an \(\alpha_k > 0 \) such that \(\Phi(x_{k+1}) < \Phi(x_k) \).

Projected search for the CG part Similar to subsection 5.2.5.3, the projected search attempts to find a suitable constant \(\alpha_j > 0 \) that produces a *sufficient decrease* in the cost function \(\phi_j \):

\[
\phi_j(\alpha_j, x_{k+1}) \leq \phi_j(\alpha_0, x_k) + \mu \, d_k^T (P_{\Omega}[x_k + \alpha_j d_k] - x_k) \tag{5.44}
\]
Algorithm 5: Decision making scheme for the GPCG algorithm

```matlab
if B(x_k) ≠ A(x_k) then /* that is, Active set != Binding set */
    cg_flag = 1; /* Stop CG iterations. */
    gp_flag = 0; /* Resume GP iterations. */
else if A(x_k) = A(x_{k-1}) then /* that is, when current Active set is the same as Binding set */
    y_k ← x_k;
    gp_flag = 1; /* Skip GP iterations. */
    cg_flag = 1; /* Restart CG iterations. */
else if flag_armijo_cg_error == 1 then /* Armijo rule for CG part failed */
    y_k ← x_k;
    gp_flag = 0;
    cg_flag = 1;
else /* Active set same as Binding set same as old Active set - continue CG part. */
    x_{k-1} ← x_k;
    J_{diffmax} = 0;
    cg_flag = 1; /* Restart CG iterations. */
    gp_flag = 0;
end
```

where P_Ω is the projection from (5.28) into the bound constrained set (5.29), an initial guess of α_0 is $\alpha_0 = 1$, the parameter $\mu \in (0, \frac{1}{2})$ is a constant, and the cost function Φ_j is:

$$\phi_j(\alpha_j, x_k) = \Phi(P_\Omega[x_j + \alpha_j d_k])$$

(5.45)

where $\phi_j(\alpha_0, x_k)$ is the value of the cost function Φ from (5.27). When the coefficient α_j is found, we use it to compute the updated approximation x_{k+1} in (5.34).

Exploring faces of the convex set via the CG part and the termination conditions If the iterate x_{k+1} generated by the Conjugate Gradients method appears to be in the face which contains the solution, then this face is explored further. The decision to continue the Conjugate Gradients method is based on the observation that if x_k is on the face that contains the solution, then the binding set $B(x_k)$ agrees with the active set $A(x_k)$:

$$B(x_k) = A(x_k), \text{ where}$$

$$B = \{ i : x_i = l_i \text{ and } \Delta_i \Phi(x) \geq 0 \text{ or } x_i = u_i \text{ and } \Delta_i \Phi(x) \leq 0 \}$$

(5.47)

Thus, if the Conjugate Gradients method produces an iterate x_k such that $B(x_k) = A(x_k)$, then we continue exploring this face with the Conjugate Gradients method. The switching rules for the GPCG are provided in Algorithm 5.
Termination conditions for the CG part

Similarly to the GP part, the projected search (5.44) in CG part produces the next approximation of the solution \(x_k \). The termination criteria are as follows:

1. the line-search is restricted to have a finite number of steps, and if the line-search attempts to take more steps, we interrupt the CG part and start the GP part;

2. the maximal number of iterations for GP, CG and outer iterations is checked. If any of the iterations exceeds the limit, the GPCG algorithm is terminated with \(x_k \) as an answer;

3. CG part to termination occurs is \(||x_{new} - x_{old}||_2 \leq \tau \), where \(\tau \) is the prescribed tolerance.

According to [266], at least 70% of the GPCG computing time is due to the Conjugate Gradients method. Therefore, it is advantageous to use the \textit{preconditioned} form of the Conjugate Gradients algorithm.

5.3 Active Set Quadratic Programming Algorithms

Active Set methods can be divided into primal, dual, and parametric methods. This section outlines a mathematical background of the Range-Space Primal Active Set [192], Dual Active Set, and the Parametric Active Set algorithms for convex Quadratic Programming (QP). Consider box-constrained convex quadratic problem in the form:

\[
\begin{align*}
\text{minimise} \quad & q(x) = \frac{1}{2} x^T H x + x^T F \\
\text{subject to} \quad & l_i \leq x_i \leq u_i.
\end{align*}
\]

where \(H \) is a symmetric \(n \times n \) Hessian matrix, and \(i = 1, \ldots, n \). Vectors of lower and upper bounds \(l \) and \(u \) can be stored as follows:

\[
A = \begin{bmatrix} -I & I \end{bmatrix}, \quad b = [-l_1, \ldots, -l_n, u_1, \ldots, u_n]^T
\]

where \(I \) is an \(n \times n \) identity matrix, and the inequality constraints can be expressed as \(Ax \leq b \).

5.3.1 Primal Range-Space Active Set QP algorithm

At the \(k \)-th iteration, the Active-Set algorithm builds the current set of active constraints \(W_k \) stored in the matrix \(A_k \), which contains corresponding rows of the constraint matrix \(A \) from (5.49). The current solution \(x_k \) is computed as:

\[
x_{k+1} = x_k + \alpha_k p_k
\]
where \(\alpha_k \in (0, 1] \) is a step-length parameter and \(p_k \) is the step direction at \(k \)-th iteration. The step-length \(\alpha_k \) is computed as:

\[
\alpha_k = \min \left(1, \min_{i \in \mathcal{W}_k, a_ip_k < 0} \left(\frac{b_i - a_ix_k}{a_ip_k} \right) \right)
\]

(5.51)

where \(a_i \) is the \(i \)-th row of the constraint matrix \(A_k \). The step direction \(p_k \) for the variable \(x_k \) can be found by solving the equality constrained sub-problem:

\[
\min_{p_k} \quad \frac{1}{2} p_k^T \mathbb{H} p_k + g_k^T p_k
\]

subject to \(A_k^T p_k = 0, \forall i \in \mathcal{W}_k. \)

(5.52)

where \(g_k = (F + \mathbb{H} x_k) \) is the gradient at the current value \(x_k \). The solution of the problem (5.52) can be expressed as:

\[
\begin{bmatrix}
\mathbb{H} & -A_k^T \\
A_k & 0
\end{bmatrix}
\begin{bmatrix}
p_k \\
\lambda_k
\end{bmatrix}
= \begin{bmatrix}
-g_k \\
0
\end{bmatrix}
\]

(5.53)

where \(\lambda_k \) are the Lagrange multipliers associated with the solution \(x_k \). Assuming the matrix \(A_k \) has a full row rank, the solution of (5.53) is given by:

\[
\lambda_k = (A_k \mathbb{H}^{-1} A_k^T)^{-1} A_k \mathbb{H}^{-1} g_k, \quad p_k = \mathbb{H}^{-1} (A_k^T \lambda_k - g_k)
\]

(5.54)

Efficient computations of \(p_k \) and \(\lambda_k \) are crucially important in terms of speed of Active Set methods. An efficient computation method is based on \([182,192]\) and uses the following factorisations:

\[
C^T C = \mathbb{H}, \quad LY^T = A_k C^{-1}
\]

(5.55)

where \(C \) is the Cholesky factorisation of the Hessian matrix \(\mathbb{H} \), and \(LY^T \) is the LQ factorisation of \(A_k C^{-1} \) with \(L \) being a lower-triangular matrix and \(Y \) being an orthogonal matrix. Substituting the factorisations (5.55) into (5.54), we obtain:

\[
\lambda_k = L^{-T} Y^T C^{-T} g_k, \quad p_k = C^{-1} (Y L^T \lambda_k - C^{-T} g_k)
\]

(5.56)

In order to efficiently solve the equations in (5.56) using triangular matrices and forward/backward substitution, we define the vectors \(v \), \(u \), and \(w \) as follows:

\[
u_k = C^{-T} g_k
\]

(5.57)

\[
v_k = Y^T u_k
\]

(5.58)

\[
w_k = u_k - Y v_k
\]

(5.59)

Using the vectors \(v \), \(u \) and \(w \) from (5.57)-(5.59), we express equations in (5.56) as follows:

\[
L^T \lambda_k = v_k
\]

(5.60)

\[
C p_k = w_k.
\]

(5.61)
That is, equations (5.60) and (5.61), as well as (5.57), can be efficiently solved via backward and forward substitution [269]. For future reference in Subsection 5.3.1.1, we note that from (5.55) and (5.61), along with \(A_k p_k = 0 \), we have:

\[
Y^T w_k = 0
\]

(5.62)

One can note that at each iteration of a Primal Active Set algorithm, only one constraint is added or dropped. Therefore, there is no need to recompute the matrices \(L \) and \(Y \) of the LQ factorisation; they can be efficiently updated [270, 271] to save the computation time. Although the procedure of LQ updates is classical [270, 271], we nonetheless provide a short outline of it for convenience. In the outline below, we use a hat sign (\(\hat{\cdot} \)) for the updated quantities of corresponding vectors and matrices.

5.3.1.1 Updating the factorisation in the case of a constraint addition

When the algorithm cannot make a full step \(\alpha_k = 1 \), therefore encountering a blocking constraint, the \(i \)-th row from the matrix \(A_k \) is added to the active set \(\mathcal{W}_k \). This corresponds to adding the \(i \)-th constraint to the active set. The resulting LQ factorisation therefore differs from the previous iteration by one row/column and can be efficiently updated.

Update of LQ factorisation in case of a constraint addition To calculate the updated LQ factorisation, first we update the lower-triangular matrix \(L \). Denote by \(a = A^i_k \) the \(i \)-th row from the matrix \(A_k \) that corresponds to the \(i \)-th constraint. Solve \(C^T q = a^T \) via forward substitution to find the vector \(q \). Next find the projection of the vector \(q \) that is orthogonal to the range space of \(A_k C^{-1} \) as follows:

\[
z = \tau (I - YY^T) q
\]

(5.63)

where the scalar \(\tau = ||I - YY^T||_2 \) is used for normalisation of the vector \(z \) (i.e., \(||z|| = 1 \)). The updated lower-triangular matrix \(\hat{L} \) is formed as follows:

\[
\hat{L} = \begin{bmatrix}
L & 0 \\
\xi & \xi_0
\end{bmatrix}
\]

(5.64)

where \(\xi = q^TY \) and \(\xi_0 = z^T q \). The orthogonal matrix \(Y \) is updated by adding a vector \(z \) as follows:

\[
\hat{Y} = [Y, z]
\]

(5.65)

The updated matrices \(\hat{Y} \) and \(\hat{L} \) are used further for updating vectors \(v \), \(u \), and \(w \), as described below.

Update of vectors in case of a constraint addition It is easy to show that \(g_{k+1}(x_{k+1}) = g_k + \alpha_k \bar{H} p_k \). Considering this along with equations (5.57)-(5.59) and (5.61), we have:

\[
\hat{u}_k = u_k - \alpha_k w_k
\]

(5.66)
Considering \(\hat{v}_k = \hat{Y}^T \hat{u}_k \) from (5.58) along with (5.62), (5.66), and (5.65) we have:

\[
\hat{v}_k = \begin{bmatrix}
v_k \\
Z^T \hat{u}_k
\end{bmatrix}
\]

(5.67)

The update for the vector \(w_k \) can be found using \(\hat{w}_k = \hat{u}_k - \hat{Y} \hat{v}_k \) from (5.59), (5.65) and (5.66) as:

\[
\hat{w}_k = (1 - \alpha_k) w_k - z^T \hat{u}_k z
\]

(5.68)

Using the updated vectors \(v, u, \) and \(w \), we can calculate the new step direction \(p_k \) via \(Cp_k = \hat{w}_k \) from (5.61) and the new Lagrangians \(\lambda_k \) via \(\hat{L}^T \lambda_k = \hat{v}_k \) from (5.60) via backward substitution.

5.3.1.2 Updating the factorisation in the case of a constraint deletion

Updating the LQ factorisation requires deletion of rows and columns from matrices \(L \) and \(Y \) and can be efficiently performed via Givens rotations [272]. An attractive feature of Givens rotations is their numerical robustness [273]. Furthermore, there exist fast [274] and parallel [275] implementations of Givens rotations.

Update of LQ factorisation in case of a constraint deletion

Dropping the \(i \)-th constraint from the active set means that we have to delete the \(i \)-th row from the lower-triangular matrix \(L \) and the last column from the orthogonal matrix \(Y \) from the LQ factorisation of \(A_k C^{-1} \). This can be done efficiently by recursive application of Givens rotations [253,269,272], which are rotations in the plane spanned by two coordinate axes:

\[
G(i,j,\theta) = \begin{bmatrix}
1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & c & \cdots & -s & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & s & \cdots & c & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{bmatrix},
\]

(5.69)

where \(c = \cos(\theta) \) and \(s = \sin(\theta) \) appear at the intersections \(i \)-th and \(j \)-th rows and columns. The goal is to zero out the elements in the matrix \(L \) that are located above the main diagonal. Given the elements \(a \) and \(b \) of the matrix \(L \), we can find the transform:

\[
\begin{bmatrix}
c & -s \\
s & c
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
= \begin{bmatrix}
r \\
0
\end{bmatrix},
\]

(5.70)

where the values \(c, s, \) and \(r \) can be computed as:

\[
r \leftarrow \sqrt{a^2 + b^2}; \quad c \leftarrow a/r; \quad s \leftarrow -b/r.
\]

(5.71)
To simplify the explanations, we consider the transposed matrix \(L^T \), which is an upper-triangular matrix. Therefore we use column-oriented Givens rotations, which are easier to implement and can be applied to transposed matrices without a computational overhead, although row-oriented Givens rotations also exist and are discussed in [276].

Dropping the \(i \)-th constraint means that we have to delete the \(i \)-th column and the last row in the triangular matrix \(L^T \). For example, assume \(i = 3 \), that is, we need to drop the 3-rd constraint. We cannot remove the last row since it contains \(b \) (i.e., the row is non-empty). To zero the element \((4, 4)\) in the matrix \(L^T \), we form the matrix \(G_1 \) by computing \(c \) and \(s \) according to (5.70) and (5.71). Therefore, we multiply the matrix \(L^T \) by the Givens rotation matrix \(G_1 \) to zero out the last element in the column 4 that contains \([x \ x \ a \ b]^T\) as shown in Fig. 5.1 Step 1.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & -s \\
0 & 0 & s & c
\end{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & 0 & x & a \\
0 & 0 & 0 & b
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & x & r \\
0 & 0 & 0 & r
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & x & r \\
0 & 0 & 0 & r
\end{bmatrix}
\]

Figure 5.1: Updating scheme for a triangular matrix in case of dropping one constraint (here the 3-rd constraint is dropped).

The application of the Givens matrix on Step 1 in Fig. 5.1 results in zeroed element \((4, 4)\). As one can see in Fig. 5.1 Step 2, the last column therefore contains \([x \ x \ r \ 0]^T\), the last row is empty, and therefore we can delete row 3 to drop 3-rd constraint. The last step is to drop the \(i \)-th column (\(i = 3 \) in our example) and the last row, thus obtaining a reduced triangular matrix (see Step 3 in Fig. 5.1).

If the triangular matrix is larger and we need to drop the \(i \)-th constraint, we can proceed from the last column to the \((i+1)\)-th column that way, we gradually zero out all the elements in the triangular matrix \(L^T_{i+1} \). Each iteration produces the Givens matrix \(G_i \) of the form (5.69) that we accumulate for further use:

\[
G_{all} \leftarrow G_{all} G_i^T.
\] \hspace{1cm} (5.72)

This procedure saved a considerable time: instead of recomputing the QR decomposition from scratch, we applied limited number of Givens rotations and restored the triangularity of the matrix \(L^T \).

We use the matrix of accumulated Givens rotations \(G_{all} \) to update the orthogonal matrix \(Y \) as follows:

\[
Y_{new} \leftarrow Y G_{all},
\] \hspace{1cm} (5.73)

which contains the updated matrix \(\hat{Y} \) and the vector \(\hat{z} \) as:

\[
[\hat{Y}, \hat{z}] \leftarrow Y_{new}
\] \hspace{1cm} (5.74)

The vector \(\hat{z} \) is needed for the further update of vector \(w \), as stated further in (5.77).
5.3 Active Set Quadratic Programming Algorithms

Update of vectors in case of a constraint deletion The updated vectors v, u and w can be computed as follows:

\[\hat{u}_k = u_k - \alpha_k w_k. \]

Similarly to Subsection 5.3.1.1, we have $\hat{v}_k = \hat{Y}^T \hat{u}_k$, and therefore:

\[G_{all}^{T} v_k \rightarrow \begin{bmatrix} \hat{v}_k \\ \eta \end{bmatrix}, \]

where $\eta = \hat{z}^T \hat{u}_k$. That is, after applying the matrix of accumulated Givens rotations G_{all}^{T} to the vector v_k, the resulting vector contains the updated \hat{v}_k and an additional element η. The update for the vector w_k is found using the vector \hat{z} from (5.74) and a scalar η from (5.76) as:

\[\hat{w}_k = \eta \hat{z} - (1 - \alpha_k) w_k \]

Similarly to the case of constraints addition, we use the updated matrices and vectors for efficient calculations of the new step direction p_k via $Cp_k = \hat{w}_k$ from (5.61) and the new Lagrangian vector λ_k via $\hat{L}^T \lambda_k = \hat{v}_k$ from (5.60) via backward substitution.

5.3.1.3 Evaluation of a Feasible Starting point

The Primal Active Set QP algorithm requires a feasible (i.e., satisfying all the constraints) starting point to begin the iterations. When the QP solver is hot-started, the starting point is the solution of the optimisation problem on the previous sampling instance. In the case of cold start, the usual way to evaluate a feasible starting point is to invoke a Linear Programming algorithm. This is commonly referred as Phase I, which takes from one-third to one-half of the total time to solve the QP [184].

One way to reduce the computation time of the starting point is to use a near-optimal feasible point, such as $x_0 = P[\Omega^{-1} \mathbb{H}^{-1} \mathbb{F}]$, where \mathbb{H} is the Hessian matrix, \mathbb{F} is the matrix from (5.2), and $P[\Omega]$ is a projection onto the feasible set Ω defined in (5.4).

Since the optimisation problem, in the case of AO systems, arises from a class of problems where the Hessian matrix is relatively well conditioned ($\kappa(\mathbb{H}) \sim 10^2 \ldots 10^4$), such a guess is reasonable. Furthermore, since the unconstrained operation is the main mode of an adaptive optics system, in many cases this starting point will be the optimal point as well.

5.3.1.4 The outline of the Range-Space QP Algorithm

The control problem in adaptive optics systems remains the same for a long time, and therefore the inverted Hessian matrix \mathbb{H}^{-1}, the Cholesky decomposition $C^T C \leftarrow \mathbb{H}$ and the inverse Cholesky C^{-1} matrices can be computed off-line to reduce online computation burden. The scheme of the algorithm is outlined in Algorithm 6.
Algorithm 6: The scheme of Range-space primal Active Set QP algorithm

Initialization: Compute a feasible starting point \(x_0 = P\Omega[-H^{-1}F] \), where \(P\Omega \) is a projection onto \(\Omega \).
Check the constraints are active and add them to the matrix \(A_0 \) of the initial active set.
Compute the \(LY^T \) factorisation of \(A_0C^{-1} \).
Compute the gradient \(g_0(x_0) = -(F + Hx_0) \).
Calculate the initial values for \(u, v, \) and \(w \) using (5.57-5.59).

Begin the iterations: Define maximum number of iterations \(k_{max} \) and start iterate.

for \(k = 1 \ldots k_{max} \) do
 Compute the \(p_k \) using (5.61).
 Then calculate \(\alpha_k \) using (5.51).
 Set \(x_{k+1} \leftarrow x_k + \alpha_k p_k \).
 if \(\alpha_k = 1 \) then
 Test for Optimality: compute the Lagrange multipliers \(\lambda_k \) using (5.60).
 if \(\lambda_k \geq 0 \) then
 | TERMINATE with the optimal solution \(x_k \).
 else // that is, if \(\lambda_k < 0 \) then drop a constraint
 find the smallest negative Lagrange multiplier: \(j = \arg \min_{j \in \mathcal{W}_k \cap \Omega} \hat{\lambda}_j \)
 Drop this \(j \)-th constraint \(\mathcal{W}_{k+1} \leftarrow \mathcal{W}_k \setminus \{j\} \) by updating the LQ factorisation according to Subsection 5.3.1.2. Use Givens rotations from (5.69) to update the matrix \(L \). Update the matrix \(Y \) using (5.74).
 Update \(u, v, \) and \(w \) using (5.75-5.77).
 end
 else // that is, if \(\alpha_k < 1 \) then add a constraint
 Add the constraint to the active set by updating the LQ factorisation according to Subsection 5.3.1.1: update \(L \) using (5.64) and the matrix \(Y \) using (5.65). Update \(u, v, \) and \(w \) using (5.66-5.68).
 end
end

5.3.1.5 Cold-start operation

During the cold-start, the Active set QP solver computes the initial starting point \(x_0 = -P\Omega[-H^{-1}F] \) as described in Subsection 5.3.1.3, checks if the constraints are active and forms the initial active set \(\mathcal{W}_k \). Then the initial LQ factorisation of \(A_kC^{-1} \) is calculated via the modified Gram-Schmidt process, the initial gradient \(g_0(x_0) \) is evaluated and the vectors \(v, u, \) and \(w \) are computed.

5.3.1.6 Hot-start strategy

The optimisation problems for many control problems, including adaptive optics, are not isolated but rather a series of QPs that change slightly from one sampling instant to the next [193]. When the constraints are reached the first time, the cold-start routine identifies the initial active set \(\mathcal{W}_k \) and computes the constrained optimal solution. On the next sampling instance, the optimisation problem will be similar, especially if the sampling rate is fast. Therefore we can use the previous solution \(x_{k-1} \) computed at sampling instance
5.3 Active Set Quadratic Programming Algorithms

5.3.2 Dual Active Set QP Algorithm

The Dual Active Set QP algorithm [184, 188, 277, 278] starts by making a guess of the optimal active set \(\mathcal{A} \) in an optimisation problem:

\[
\begin{align*}
\text{minimise} & \quad \frac{1}{2} x^T \mathbb{H} x + x^T \mathbb{F} \\
\text{subject to} & \quad \Gamma x \leq b.
\end{align*}
\]

(5.78)

If the guess turns out to be incorrect, it repeatedly uses Lagrange multipliers to drop one index from the current estimate of the active set \(\mathcal{A} \) and add a new index. This is a set of positive integers that indicates which constraints are currently active, i.e., the integers \(i \) such that \(\Gamma_i x = b_i \). The non-negative integer \(n_a \) is used to denote the number of active constraints. The notation \(\Gamma_a \in \mathbb{R}^{n_a \times Nm} \) is used to refer to the matrix whose \(j \)-th row is given by \(\Gamma_j = \Gamma_{A_j} \), where \(A_j \) denotes the \(j \)-th element in the set \(\mathcal{A} \).

The algorithm starts with the unconstrained minimum \(x_0 = -\mathbb{H}^{-1} \mathbb{F} \) of the quadratic cost function in (5.78). Let the \(i \)-th constraint in \(\Gamma x \leq b \) be active. The Dual Active Set algorithm computes a new vector \(x_1 = x_0 + p_0 \) which satisfies the \(i \)-th equality constraint \(\Gamma_i x_1 = b_i \), and \(p_0 \) is found by solving an equality-constrained QP problem:

\[
\begin{align*}
p_0 &= \arg \min_{p} (x_0 + p)^T \mathbb{H} (x_0 + p) + \mathbb{F}^T \cdot x_0 + p \\
\text{subject to} & \quad \Gamma_i (x_0 + p) = b_i
\end{align*}
\]

(5.79)

The algorithm finds the maximum step length such that the Lagrange multipliers remain strictly positive \(\lambda > 0 \), and records the corresponding index \(i \) for which this occurs [278]. Then the \(i \)-th constraint is dropped from the active-set, so that \(\mathcal{A} \leftarrow \mathcal{A} \setminus \mathcal{A}(i) \) and remove the \(i \)-th Lagrange multiplier \(\lambda(i) \). Finally, the algorithm reduces the number of active constraints by one and goes to the next active constraint. The algorithm terminates when there are no more constraints in violation, or when the problem is infeasible.

The Dual Active Set algorithm, which is implemented similar to [278], can be outlined as follows. Given the matrices \(\mathbb{H} \) and \(\Gamma \), perform the following steps:

1. Set the initial solution \(x_0 = -\mathbb{H}^{-1} \mathbb{F} \).
2. Set the number of active constraints \(n_a = 0 \), let \(\mathcal{A} = \emptyset \) denote the set of active constraint indices, and let \(\mathcal{I} = \{1 \ldots M\} \) denote the set of possible constraint indices;

3. If there are no violated constraints then the algorithm has terminated successfully;

4. Otherwise, choose a violated constraint index \(p \) from the set of inactive constraints \(\mathcal{I} \setminus \mathcal{A} \) and set the column vector \(\gamma = \Gamma_p^T \);

5. Set the variable \(\sigma = 0 \) to accumulate the Lagrange multipliers for the violated constraint;

6. If \(n_a < Nm \) then
 \[
 \eta = \frac{b_p - \gamma^T x}{\gamma^T \left(\mathbb{H}^{-1} - \mathbb{H}^{-1} \Gamma_p^T (\Gamma_p \mathbb{H}^{-1} \Gamma_p^T)^{-1} \Gamma_p \mathbb{H}^{-1} \right) \gamma},
 \]
 \[
 d_x = -\mathbb{H}^{-1} (\Gamma_p^T d_\lambda + \gamma \eta) \quad \text{and} \quad d_\lambda = -(\Gamma_p \mathbb{H}^{-1} \Gamma_p^T)^{-1} (\Gamma_p \mathbb{H}^{-1} \gamma \eta)
 \]
 Otherwise,
 \[
 \eta = 1.0, \quad d_\lambda = -(\Gamma_p^T)^2 \gamma, \quad \text{and} \quad d_x = 0
 \]

7. Find the maximum step length \(\beta \) such that Lagrange multipliers remain positive, and record the index \(i \) for which this occurs (if it does), via
 \[
 \beta = \begin{cases}
 1 & : n_a = 0 \\
 \max_i \{1, \frac{-\lambda(i)}{d_\lambda(i)} : d_\lambda(i) < 0\} & : 0 < n_a < Nm \\
 \max_i \{\frac{-\lambda(i)}{d_\lambda(i)} : d_\lambda(i) < 0\} & : n_a = Nm
 \end{cases}
 \]

8. If \(n_a = Nm \) and \(\beta \) is not defined from the above step (i.e., there are no entries for any \(d_\lambda(i) < 0 \forall i \)), then the problem is \textbf{INFEASIBLE};

9. If \(0 < n_a < Nm \) and \(\beta = 1 \) then go to Step 11; otherwise set
 \[
 \lambda = \lambda + \beta d_\lambda \quad \text{and} \quad \sigma = \sigma + \beta \eta
 \]
 and if \(n_a < Nm \) then update the control sequence
 \[
 x = x + \beta d_x
 \]

10. Drop the \(i \)-th constraint from the active-set so that \(\mathcal{A} \leftarrow \mathcal{A} \setminus \mathcal{A}(i) \) and remove the \(i \)-th Lagrange multiplier \(\lambda(i) \). Finally, reduce by one the number of active constraints \(n_a \leftarrow n_a - 1 \) and go to Step 6;

11. Update the control action sequence and the Lagrange multipliers via
 \[
 x = x + \beta d_x, \quad \lambda = \lambda + \beta d_\lambda, \quad \text{and} \quad \lambda(n_a + 1) = \sigma + \eta
 \]

12. Add the index \(p \) (from Step 3) to the active-set so that \(\mathcal{A} \leftarrow \{\mathcal{A}, p\} \), and increase the number of active constraints by one \(n_a \leftarrow n_a + 1 \);

13. Go to Step 3.

Further details can be found in [184,188,278].
5.3.3 Parametric Active Set algorithm

A relatively new variant of an Active Set method are the Parametric Active Set Methods (PASM), e.g., the Parametric Quadratic Programming (PQP) method in [279]. The general form of PQP can be written [280] as:

$$\min_x \quad QP(w_0) = \frac{1}{2}x^T\mathbb{H}x + x^Tg(w_0)$$

subject to \(Gx \geq b(w_0). \)

with a positive definite Hessian matrix \(\mathbb{H} \) and a constraint matrix \(G \). The gradient and the constraint vector depend on the initial value \(w_0 : g(w_0) = \bar{g} + F^Tw_0 \) and \(b(w_0) = \bar{b} + Ew_0 \) for some matrices \(E, F \) and vectors \(g, b \) (see [281]).

The transition from the previous optimisation problem to the next is a move on a straight line in the parameter space [198], i.e. in the set \(\mathbb{P} = \{ w_0 \in \mathbb{R}^{n_{w0}} | QP(w_0) \text{ is feasible} \} \). As this set is convex, we can be sure that all QPs on this line remain feasible and can be solved. The basic idea of the qpOASES algorithm is the use of a homotopy for parametric QP, which has previously been proposed by Best [279].

A unique advantage of qpOASES [282] is that the Phase I is not needed. The term Phase I describes the solution of an auxiliary problem to find a feasible starting point for primal and dual Active Set methods [184]. The generation of an appropriate starting point with Phase I can be as expensive as the subsequent solution of the actual problem. Another advantage of the qpOASES algorithm is that it produces a sequence of optimal solutions for QPs on the homotopy path. Thus, it is possible to interrupt this sequence and start a new homotopy from the current iterate towards the next QP.

The main idea of the qpOASES algorithm is as follows. The transition from the “old” problem to the “new” one, the algorithm moves on a straight line in the parameter space [198]. The algorithm builds on the expectation that the active set does not change much from one QP to the next, but is different from conventional warm starting techniques.

For transition from a solved quadratic program \(QP(w_0) \) to the next one \(QP(w_0^{\text{new}}) \), the online active set strategy moves on a straight line in the parameter space [280], i.e., in the set \(\mathbb{P} = \{ w_0 \in \mathbb{R}^{n_{w0}} | QP(w_0) \text{ is feasible} \} \). Using the definitions:

$$\Delta w_0 := w_0^{\text{new}} - w_0;$$

$$\Delta g := g(w_0^{\text{new}}) - g(w_0) = F^T\Delta w_0;$$

$$\Delta b := b(w_0^{\text{new}}) - b(w_0) = E\Delta w_0.$$

The gradient and the constraint vector are re-parameterised as:

$$\tilde{w}_0 : [0; 1] \rightarrow \mathbb{R}^{n_x}; \quad \tilde{w}_0(\tau) := w_0 + \tau \Delta w_0;$$

$$\tilde{g} : [0; 1] \rightarrow \mathbb{R}^{n_g}; \quad \tilde{g}_k(\tau) := g_0 + \tau \Delta g;$$

$$\tilde{b} : [0; 1] \rightarrow \mathbb{R}^{n_b}; \quad \tilde{b}_k(\tau) := b_0 + \tau \Delta b;$$
We start from the known optimal solution x^* and λ^* (and a corresponding working set A) of the last $QP(w_0)$ and want to solve $QP(w_{new})$. The basic idea of the online active set strategy is to move from w_0 towards w_{new}^{new}, and thus from (x^*, λ^*) towards $(x_{new}^{new}, \lambda_{new}^{new})$ while keeping primal and dual feasibility (i.e., optimality) for all intermediate points. Further details on the qPOASES algorithm can be found in [198, 280].

An interesting discussion of the relative merits of active-set versus interior-point approaches from the perspective of efficient and fast embedded implementation can be found in [283].

5.4 Branch and Bound algorithm

The Branch and Bound is one of the methods for a global optimisation [215, 216] that maintains a provable upper and lower bound on the optimal objective value [216]. The branch-and-bound type algorithms terminate with a certificate proving that the solution found is ϵ-suboptimal. Branch and bound algorithms can be (and often are) slow: in the worst case the required effort grows exponentially with the problem size [217, 218].

The Branch and Bound algorithm for QP problems The branch and bound algorithm [217] finds the global minimum of a function f over an m-dimensional rectangle Q_{init}, within some prescribed accuracy ϵ. We let f^* denote the optimal value of the f, that is $f^* = \inf_{x \in Q_{init}} f(x)$. For a rectangle $Q \subseteq Q_{init}$, we define:

$$\Phi_{min}(Q) = \inf_{x \in Q} f(x)$$

(5.87)

and therefore $f^* = \Phi_{min}(Q_{init})$. The branch-and-bound algorithm uses functions $\Phi_{lb}(Q)$ and $\Phi_{ub}(Q)$ for the lower and upper bounds, which are defined for any rectangle $Q \subseteq Q_{init}$. These functions must satisfy:

1. $\Phi_{lb}(Q)$ and $\Phi_{ub}(Q)$ are lower and upper bounds on $\Phi_{min}(Q)$, respectively; that is, $
\forall Q \subseteq Q_{init}, \ \Phi_{lb}(Q) \leq \Phi_{min}(Q) \leq \Phi_{ub}(Q)$.

2. the difference between the upper and lower bounds uniformly converges to zero, as the maximum length of the sides of Q goes to zero: $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall Q \subseteq Q_{init}, size(Q) \leq \delta \implies \Phi_{ub}(Q) - \Phi_{lb}(Q) \leq \epsilon$. That is, the bounds become tight as the rectangle shrinks to a point.

3. an important note from the practical point of view: the functions $\Phi_{ub}(Q)$ and $\Phi_{lb}(Q)$ should be inexpensive to compute.

The basic idea of the Branch and Bound algorithm is as follows:

1. compute lower and upper bounds on f^*
 - set $L_1 = \Phi_{lb}(Q_{init})$ and $U_1 = \Phi_{ub}(Q_{init})$
 - terminate if $U_1 - L_1 \leq \epsilon$
2. partition (split) \(Q_{\text{init}} \) into two rectangles \(Q_{\text{init}} = Q_1 \cup Q_2 \)

3. compute \(\Phi_{lb}(Q_i) \) and \(\Phi_{ub}(Q_i) \), \(i = 1, 2 \)

4. update lower and upper bounds on \(f^* \)
 - update lower bound: \(L_2 = \min\{\Phi_{lb}(Q1), \Phi_{lb}(Q2)\} \)
 - update upper bound: \(U_2 = \min\{\Phi_{ub}(Q1), \Phi_{ub}(Q2)\} \)
 - terminate if \(U_2 - L_2 \leq \epsilon \)

5. refine the partition by splitting \(Q_1 \) or \(Q_2 \), and repeat steps 3 and 4.

Figure 5.2: The scheme of the Branch and Bound algorithm for an example of \(\mathbb{R}^2 \) optimisation problem, after 3 iterations. The partition of the original rectangle is shown on the left; the associated binary tree is shown on the right. The picture is from [218].

The scheme of the Branch and Bound algorithm for a low-dimension problem is shown in Fig. 5.2. One can see that the convex set to be explored shrinks after a few iterations, which can be represented as a binary tree (see Fig. 5.2 on the right). The main problem is how to find the lower bound of the convex QP in a way that is computationally inexpensive.

On implementation of the Branch and Bound algorithm As the algorithm proceeds, some rectangles can be eliminated, or pruned\(^3\), from the consideration, since \(\Phi_{\text{min}}(Q_{\text{init}}) \) cannot be achieved in them. This is done as follows. At each iteration, we eliminate from the list \(\mathcal{L}_k \) any rectangles that satisfy \(\Phi_{lb}(Q) > U_k \), since every point in such a rectangle is worse than the current upper bound on \(f^* \). The scheme of the Branch and Bound is given in Algorithm 7.

If the number of rectangles in the partition is \(k \) (without pruning), then the total volume of these rectangles is \(\text{vol}(Q_{\text{init}}) \), so \(\min(\text{vol}(Q)) \leq \frac{\text{vol}(Q_{\text{init}})}{k} \). Therefore for large \(k \), at least one rectangle has small volume.

There are many ways to compute the lower bound of the optimisation problem. With the KKT system available, we can compute bounds for each primal and dual variable by

\(^3\)The term pruned comes from the fact that the algorithm can be viewed as developing a partially filled binary tree of rectangles representing the current partition \(\mathcal{L}_k \), with the nodes corresponding to rectangles and the children of a given node representing the two halves obtained by splitting it. The leaves of the tree give the current partition. By removing a rectangle from consideration, we prune the tree.
Algorithm 7: General scheme of the Branch and Bound algorithm

Data: starting point x_0, $J = \nabla^2 f(x)$, $g = \nabla f(x)$

$k = 0$;

$L_0 = \{Q_{\text{init}}\}$;

$L_0 = \Phi_{lb}(Q_{\text{init}})$;

$U_0 = \Phi_{ub}(Q_{\text{init}})$;

while $U_k - L_k > \epsilon$ do

pick $Q \in L_k$ for which $\Phi_{lb}(Q) = L_k$;

split Q along one of its longest edge into Q_I and Q_{II};

form L_{k+1} from L_k by removing Q_k and adding Q_I and Q_{II};

$L_{k+1} \leftarrow \min_{Q \in L_{k+1}} \Phi_{lb}(Q)$;

$U_{k+1} \leftarrow \min_{Q \in L_{k+1}} \Phi_{ub}(Q)$;

$k \leftarrow k + 1$;

end

solving LPs [284]. These LPs are the most time-consuming part of the reformulation. One can use warm-start to speed up the solution of the LPs.

5.5 Chapter Summary

This chapter provides the analysis of optimisation algorithms, their strengths and weaknesses along with their computational time complexity. The mathematical background of the algorithms and details of implementation are presented.

According to the discussion of QP algorithm families in Section 5.1, the families of Active Set (Section 5.3) and Gradient-based (Section 5.2) algorithms are promising candidates for RHC in AO because of their low computational complexity, low storage requirements and relative ease of implementation.

A detailed feasibility study of RHC and further choice of algorithms for the control of deformable mirrors is the subject of Chapter 6 and the performance analysis is presented in Chapter 7.
Chapter 6

Feasibility of Constrained Receding
Horizon Control in Adaptive Optics

... "and what is the use of a book,"
thought Alice, "without pictures or conversations?"

— Alice's Adventures in Wonderland by Lewis Carroll

Detailed numerical simulations aimed at a comprehensive study of computational feasibility of Receding Horizon Control with constrained Quadratic Programming algorithms is the key point of this lengthy and "picturesque" chapter. The details of simulations are provided in Section 6.1. A preliminary assessment of Receding Horizon Control feasibility is presented in Section 6.2 for two main families of optimisation algorithms, namely the Primal-Dual Interior Point (Subsection 6.2.1) and the Dual Active Set QP (Subsection 6.2.2) methods. The results of preliminary assessment of algorithms, discussed in Subsection 6.2.3, compelled us to explore other, more advanced, customized and modern, optimisation algorithms in Section 6.3. Extensive numerical simulations were carried out for the Branch-and-Bound (Subsection 6.3.1), Range-Space Primal Active Set (Subsection 6.3.2), Parametric Active Set (Subsection 6.3.3), Barzilai-Borwein PABB (Subsection 6.3.4), Gradient Projection Conjugate Gradients GPCG (Subsection 6.3.5), and Gradient Projection Preconditioned Conjugate Gradients (Subsection 6.3.6) algorithms. The summary of feasibility of constrained Receding Horizon Control implementation for astronomical adaptive optics systems is presented in Section 6.4.

6.1 Details of the Numerical Simulations

The goal of the comparison of Quadratic Programming algorithms was to study the computational time requirements for different types of algorithms and constraints for RHC. The numerical simulations were performed as follows. All the transfer matrices were converted to state-space and discretised with the sampling rate of 1 kHz, unless stated otherwise. The...
initial states of both plant and disturbance were assigned to zero. Then, a long sequence of the output disturbance was generated\(^1\) and re-used for all QP algorithms.

The output disturbance in these simulations started from zero, and the amplitude was gradually increased to reach more and more constraints as time progressed. Simulations were carried out based on the hardware models from Subsection 3.1. All QP algorithms were implemented in ANSI C [285] with BLAS library and compiled as MEX for MATLAB 2007b\(^2\) using GCC compiler\(^3\) in Linux for maximum performance.

The percentage of active constraints in the case of an adaptive optics control system is related to the strength of atmospheric turbulence:

- **weak turbulence** - almost no active constraints;
- **moderate turbulence**: the controller output reaches 5% of the constraints;
- **strong turbulence**: the controller output reaches 20% of the constraints.

By increasing the amplitude of the output disturbance, we were able to gather enough data to plot the computational time versus percent of active constraints. The computational time is not constant, but rather has a probability distribution that is not known beforehand (see Fig. 6.1, upper part of the plot). Therefore, a scatter plot is made to show the distribution of computational time: the bigger the markers on the plot, the more probable that the calculations of the control signal will take certain time, as shown in Fig. 6.1. The distribution of computational time is shown for each of the cases of active constraints percentage and for each size (i.e., the number of actuators in a square grid) of a deformable mirror.

The computational time was measured by the built-in MATLAB functions tic-toc. According to the MATLAB documentation [286], tic-toc uses the `gettimeofday` function in Linux. The output from `gettimeofday` is used to form a 64-bit counter value that is saved as a tic value. When toc is called, the `gettimeofday` is called again, and a difference is formed with the last tic value. That difference is divided by a frequency and returned as the elapsed time. The frequency used for `gettimeofday` is \(10^6\) Hz, which gives a 1\(\mu s\) resolution.

Since the simulations are run on a notebook rather than on a Real-Time Operating System (RTOS), the spread of computational time can be partially attributed to background processes taking up “wall clock” time. Other factors can contribute to the computational time spread, such as cache (in)efficiency of the QP solver code and dynamic memory allocation. Another source of computational time distribution comes from the fact that, due to the randomness of the simulated process noise, for the same percentage of active constraints the starting points may be different. Therefore, it might take more or fewer iterations in each specific case, which contributes to the computational spread.

\(^1\)We use the model of the output disturbance from (3.6) driven by a white noise to generate 10000 instances of the disturbance, each instance is a vector of size \((n \times n) \times 1\), where \(n\) is the number of actuators.

\(^2\)Simulations were run on a Lenovo T430 notebook: Intel Core i7-2640M Processor 2.80GHz with 8 GB DDR3 SDRAM, Debian GNU/Linux 386 v 6.0 and MATLAB 2007b for UNIX.

\(^3\)The GCC (GNU C Compiler) version 4.4.5 (Debian 4.4.5-8) was used for the compilation of MEX files with CFLAGS=' -std=-c99 -O3 -fPIC -m32' and MEX was called as: mex {QP-c -lblas -latlas -lm
Figure 6.1: Distribution of the computational time. The size of the marker is proportional to the probability of the computational time for a certain percentage of active constraints (the bigger the marker, the more probable that the QP is solved within that time).

In order to minimise the impact of background processes, the MATLAB process has been assigned to a designated core of the 4-core processor, and other processes were reassigned to the other cores using standard UNIX system tools. Single-thread computations in MATLAB were explicitly endorsed by setting `maxNumCompThreads=1`, which controls the maximum number of computational threads used by MATLAB to perform tasks. These steps put the QP solvers in similar conditions and allow estimating the computational time with relatively high accuracy.

6.2 Preliminary assessment of Receding Horizon Control feasibility

The numerical simulations in this section are intended to provide an initial feasibility analysis of two different QP approaches, namely Dual Active Set and Predictor-Corrector Interior point. For each approach we consider two cases: general linear inequality constraints and bound (boxed) constraints only.

We consider the comparison of computational time for the target deformable mirror, which has 7×7 actuators, and discuss the largest possible model of the deformable mirror that can be controlled within 1 msec. The simulations presented in this section do not include time-delays and measurement noise. The main purpose of this section is to analyse the feasibility of RHC rather than to simulate the complete system.
6.2.1 Computational feasibility of RHC: Primal-Dual Predictor-Corrector Interior Point QP algorithm

In this subsection, we provide the results of numerical simulations for the Interior Point (IP) QP algorithm (described in Subsection 5.1.2.1). We compare the feasibility of the IP QP for the case of general linear inequality constraints and bound constraints, and how the computational time grows with the percentage of active constraints.

6.2.1.1 Feasibility for general linear inequality constraints case

The model of the deformable mirror with the four nearest coupled actuators (see Fig. 3.2(b)) was used for numerical simulations presented in this subsection. One can notice from Fig. 6.2(a) that the computational time has a very favourable dependence on the percentage of constraints reached: the time grows slowly with the percentage of active constraints. Furthermore, the Primal-Dual IP QP algorithm has almost no variance of computational time.

However, the results of numerical simulations in Fig. 6.2(a) indicate that the requirement of 1 msec time frame can be satisfied only for a relatively small model of a deformable mirror with 6 x 6 nearest coupled actuators. Therefore, the computational performance of the IP QP algorithm with general linear inequality constraints is unacceptable for adaptive optics, where the typical time of computation for a control signal must be less than 1 msec. In order to improve the performance, we can simplify the algorithm and use only bound (boxed) constraints for the QP problem.

6.2.1.2 Feasibility for bound constraints case

In order to make the IP QP algorithm feasible for adaptive optics, we can use only bound (boxed) constraints. Expectedly, the performance of the IP QP algorithm with boxed constraints (see Fig. 6.2(b)) is considerably better compared with the case of general linear inequality constraints in Fig. 6.2(a). The computational time for the target hardware, which is a 7 x 7 actuators DM, decreased from about 1.5 msec to 0.6 msec for the constrained case.

The largest size of the problem that can be solved within 1 msec time frame is an 8 x 8 actuators DM, and in the case of bound constraints the computational time decreased from about 2.5 msec (general linear inequality constraints) to 0.8 msec (bound constraints).

Despite the fact that the speed-up in the case of bound-constrained QP is considerable, there is a noticeable spread of computing time. The spread is negligible for small problems like 6 x 6 actuators, but more pronounced for larger problems (can be up to 200μsec for an 8 x 8 actuators DM and 30% of active constraints).

We note that, unlike for Active Set QP algorithms, the term “active constraints” is somewhat arbitrary for interior point methods. This is because interior point algorithms approach the constraints only in the limit, thus remaining in the feasible interior region of a convex set. Therefore there will be no (or very few) values that are exactly equal to the constraints. For the sake of comparison we consider the constraint to be active if it is closer than \(p_{\text{tol}} = 10^{-3} \) to the actual constraint value. For example, if the constraint is 130 rel. units, then the active constraint for the interior point algorithm will be 1.2909e-02 rel. units.

The size of the markers in Fig. 6.2(b) corresponds to the probability of the time required to compute the QP solution: the bigger the marker, the more probable that the QP solution will take such a time.
Figure 6.2: Computational time for Primal-Dual Interior Point QP versus percentage of active constraints: (a) with general linear inequality constraints; (b) with bound constraints only.

As before, the computational time of the bound-constrained Predictor-Corrector primal-dual IP QP algorithm is almost the same regardless of the percentage of active constraints, which is a favourable property for AO systems. Therefore, the bound-constrained IP QP can be used to control the deformable mirror with up to 8 × 8 actuators within 1 msec even for severe atmospheric turbulence (45% of active constraints).

6.2.1.3 Summary of results for Primal-Dual Predictor-Corrector Interior Point QP

The comparison of the performance for general linear inequality and boxed constraints for the IP QP algorithm is presented in Fig. 6.3. It is clear that the IP QP algorithm with general linear inequality constraints is unacceptably slow for adaptive optics applications.

Figure 6.3: Comparison of computational time for the Primal-Dual Predictor-Corrector Interior Point QP algorithm with general linear inequality constraints (filled markers on the plot) and with bound constraints (empty markers) versus percentage of active constraints.

To speed up the computations, we can use only bound (boxed) constraints, which give a considerable performance improvement. The maximum size of the problem in this case...
is 8×8 actuators DM that is feasible to be solved within 0.8 msec, as seen in Fig. 6.3. It is noteworthy that the spread of calculation time for the bound-constrained IP QP can be considerable: for the example of an 8×8 actuators DM, it is about 150μsec for the case of 30% of active constraints.

We also provide a comparison of the computational speed versus the size of the problem for Primal-Dual Predictor-Corrector Interior Point QP for both general linear inequality and bound constraints, as seen in Fig. 6.4. One can clearly see that the simplified bound constrained case provides a considerable increase in speed.

![Figure 6.4: Computational time for Primal-Dual Predictor-Corrector Interior Point QP algorithm versus the number of actuators for: −− unconstrained case, −−− when 5% of constraints are active, −− when 20% constraints are active.](image)

Therefore, we can conclude that the bound-constrained IP QP solver is feasible to control a moderate-size deformable mirror with up to 8×8 actuators within 1 msec using only one core of a general-purpose CPU. An attractive property of the IP QP algorithm is that the computational time is almost the same, regardless of the percentage of activated constraints. Therefore, it may be beneficial to use such an algorithm in cases of strong turbulence, when there are many active constraints.

6.2.2 Computational feasibility of RHC: Dual Active Set QP

We provide the results of numerical simulations for the Dual Active Set (AS) Quadratic Programming (QP) algorithm described in Subsection 5.3.2. The feasibility of AS QP for the case of general linear inequality constraints and bound constraints is compared.

6.2.2.1 Feasibility for general linear inequality constraints case

One can see from Fig. 6.5(a) that it is possible to solve the constrained QP problem for the deformable mirror with up to 8×8 actuators within 1 msec even for a strong atmospheric turbulence (30-35% of active constraints).

The computational time grows relatively fast with the number of constraints activated. For example, for a 7×7 actuators DM, the time grows from 260μsec for the unconstrained case to 720μsec for the case of strong turbulence, when 45% of the constraints are active.
The Dual Active Set QP algorithm has negligible (10–40μs) spread in computational time even for relatively large problems, as seen in Fig. 6.5(a). When only a few constraints are reached, even relatively large problems like 9 × 9 actuators can be computed within a 1 msec time-frame for a reasonable (10-15%) percentage of active constraints. Therefore, it is feasible to use the Dual Active set QP algorithm for Receding Horizon Control for deformable mirrors with up to 8 × 8 actuators.

6.2.2.2 Feasibility for bound constraints case

Although the results of Dual Active Set QP with general linear inequality constraints are very promising, a question worth asking is: if we need faster computational speed and use only bounded constraints, how beneficial is it?

Our simulations show that the speed-up in the case of simplified bound constraints is considerable: one can see from Fig. 6.5(b) that the solution of the constrained QP problem for the target 7 × 7 actuators deformable mirror is 1.5-2x times faster compared to the general linear inequality constraints case. That is, with bound constraints only one can solve the 7 × 7 problem within 210μsec for the unconstrained case, and 420μsec for the pessimistic case when 45% of the constraints are active (strong turbulence). The maximum size of the problem that can be solved within 1 msec is 10 × 10 actuators for a reasonable (10-15%) percentage of active constraints.

![Figure 6.5: Computational time for Dual Active set QP versus percent of active constraints: (a) with general linear inequality constraints; (b) bound constraints.](image)

Furthermore, the computational time grows slowly with the percentage of active constraints for the bound-constrained Dual Active set QP (see Fig. 6.5(b)) compared to the case of general linear inequality constraints (see Fig. 6.5(a)). Therefore, even relatively large problems of DM with 10 × 10 actuators can be solved by Dual Active Set QP within 1 msec timeframe for a moderately strong turbulence.

6.2.2.3 Summary of results for Dual Active Set QP

We provide a comparison in Fig. 6.6 of the Dual Active Set QP with general linear inequality constraints and with bound constraints only.
Figure 6.6: Comparison of computational time for the Dual Active set QP algorithm with general linear inequality constraints (filled markers on the plot) and for the QP algorithm with bound constraints (empty markers) versus percentage of active constraints.

One can clearly see that the speed-up in the case of simplified bound constrained algorithm is considerable: it is possible to solve the optimization problem for 10×10 actuators DM within 1 msec for a reasonable (10-15%) percentage of active constraints. More importantly, the computation time grows slowly as the percentage of active constraints increases for bound-constrained Dual Active set QP.

The same trend can be seen on the comparison of the computational time versus the problem size presented in Fig. 6.7. The QP algorithm with bounded constraints is expectedly faster and can solve even relatively large problems (model of DM with 10×10 coupled actuators) within 1 msec for a reasonable (up to 20%) percentage of active constraints.

Figure 6.7: Computational time for Dual Active Set QP algorithm versus the number of actuators in the model of a deformable mirror for: unconstrained case (marked by \circ), case when 5% of constraints are active (marked by \triangleright), and case when 20% of constraints are active (marked by \triangleleft). The markers for general linear inequality constraints (filled) and for bound constraints (empty) have been split apart for illustrative purposes.
6.2.3 Results discussion and further choice of QP algorithms

One can compare the dependence of the Interior Point algorithm on the problem size and number of active constraints (see Fig. 6.3) and the Active Set algorithm (see Fig. 6.6). For adaptive optics systems with a particular structure of the Hessian matrix (see Subsection 4.6 for details), we can say that the Dual Active set QP algorithm with bound constraints is the most suitable for applications with tight requirements on computational time. Contrary to the Interior Point algorithm (see Fig. 6.4), the Dual Active Set algorithm can be used for solving relatively large constrained problems of 10×10 actuators DM using only one CPU core.

The results above, while certainly encouraging, lead us to look for other optimisation algorithms. It is clear that Interior Point methods with typical complexity of $O(n^3)$ are not suitable for AO applications. Gradient-based algorithms are considerably less complex (typically $O(n)$), but they suffer from convergence problems in cases of poor conditioning of the Hessian matrix. In our problems, the condition number corresponds to the degree of inter-actuators coupling that can be significant (see Fig. 4.18 and the discussion in Subsection 4.6). Hot-started Active Set methods, and specifically Primal ones, are very attractive because only a few constraints can be active for a short period of time during the operation of AO systems.

Adaptive optics systems, controlled by RHC with constrained QP, are crucially conditioned by how fast the control input can be computed. Like in most engineering problems, we are forced to make some trade-offs: we sacrifice flexibility (general linear inequality constraints) for additional speed (bound constraints). Therefore, in the following sections we consider to use only bound constraints to meet the tight computational time requirements.

6.3 Feasibility of Receding Horizon Control for adaptive optics using customized optimisation algorithms

The main results of the initial assessment of Receding Horizon Control in AO, performed in the previous section, are as follows:

1. Active set and gradient-based algorithms are the main candidates for QP solvers in adaptive optics;
2. In order to satisfy tight computational requirements in AO, we have to resort to bound constraints only;
3. Hot-start and structure-exploiting must be used (and be efficient) to further accelerate the QP solving.

To exploit the banded structure of the Hessian matrix and accelerate the solution of a QP problem given tight requirements on computational time (considerably less than a millisecond), we implemented the following additional algorithms: Range-Space Primal Active Set (QP RSPAS), Projected Alternating Barzilai-Borwein (PABB), Branch-and-Bound, and Gradient Projection Conjugate Gradient (GPCG, along with its preconditioned
version, GP\textsc{preconCG}). We also used the \textsc{qpOASES} algorithm to compare with QP \textsc{RSPAS}.

The summary of the algorithms compared and implemented along with some of their features, has been presented in Table 5.1. The results of numerical simulations are provided in the following subsections.

6.3.1 Results for Branch and Bound QP algorithm

The results of numerical simulations for the Branch and Bound QP algorithm are described in this subsection. The algorithm itself is described in Section 5.4, implemented in ANSI C, and compiled as a MEX function to run in the MATLAB environment.

6.3.1.1 On hot-start of Branch and Bound algorithm

The Branch and Bound (BaB) algorithm does not have hot start capability. Instead, one can artificially tighten the constraints for the algorithm to make the convex set smaller to explore. The optimal value of the control signal for the case of fast sampling does not change much from the previous instance to the next. The idea of the acceleration of the BaB algorithm is basically to redefine the constraints on-the-fly, based on the dynamics of an output disturbance, to make the constraints tighter.

The rationale behind such tightening is the observation that in the constrained case the BaB algorithm converges faster because the convex set to explore shrinks. That is, we constrain the incremental changes of control inputs (e.g., the difference between the u_{t-1} and u_{t-2}) with boxed constraints that can be re-evaluated at each sampling instance. This leads to shrinking the convex set to be explored by the BaB algorithm, and, consequently, to less iterations and faster computational time.

Unfortunately, such an approach requires the algorithm to recompute its bounds every sampling instance, which can be computationally expensive. Furthermore, the bounds tightened in such a way appeared to have less impact on the speed of the algorithm than expected. Therefore, the results presented below are for cold-start operation only.

6.3.1.2 Results for the decoupled actuators case

Results of numerical simulations for the case when there is no coupling between the actuators are presented in Fig. 6.8. One can see that the optimisation problem in this case takes less time as the number of constraints increases. This is because the box of the optimisation set for the BaB algorithm to explore shrinks\footnote{This feature of the Branch and Bound algorithm is apparent from the scheme in Fig. 5.2 discussed in Section 5.4 of Chapter 5. Basically, the tighter the constraints are, the less the number of iterations is required to explore the box-constrained convex set (i.e., the algorithm has a smaller “box” to explore, which takes less time). Such a feature of the Branch and Bound method can be used to accelerate the algorithm. The idea of shrinking the constraints artificially to accelerate the Branch and Bound algorithm tries to use this general property (not too successfully), as discussed in Section 6.3.1.1.} with more active constraints, which results in less iterations.

It is also noteworthy that the decoupled case has almost no spread in computation time. For example, in case of the target hardware of 7×7 actuators DM, it takes about $250\mu s$ to compute the solution for the case of 5% active constraints, and decreases to about $240\mu s$
for the case of 20% of active constraints. For a large problems like 10 × 10 actuators, the computation time is 870μs for the case 5% of activated constraints (moderate atmospheric turbulence), and is considerably lower (about 600μs) when 20% of constraints are active. The decoupled case, however, can be of interest only for the segmented mirrors, since in other DMs, such as continuous faceplate mirrors, there is coupling between neighbouring actuators.

6.3.1.3 Results for the case of coupling between four nearest actuators

The coupling between actuators makes the dynamics more complex and therefore increases the computation time, as one can see from the comparison of Fig. 6.9 (the case of coupling between four nearest actuators) and Fig. 6.8 (the decoupled case). The computational time also has a considerable spread: while for 7 × 7 actuators problem the spread can be about 70μs, for larger problems like 10 × 10 actuators, the spread can be up to 500μs.

Such a spread in computational time is due to the fact that the BaB algorithm uses Linear Programming (LP) to estimate the lower bound in each partition of the set and to provide a starting point. The computational time grows for the LP with the number of active constraints and the condition number of the Hessian matrix, which makes the computational time more spread. However, with more and more constraints become active, the convex set to be explored shrinks because the problem becomes more constrained. Therefore, the partition of the convex set is smaller, which causes the stopping criterion to be met sooner. Consequently, in the more constrained case it takes less iterations and computational time to solve the entire optimisation problem by the BaB optimisation algorithm.

For the case of the target deformable mirror with 7 × 7 actuators, the optimisation problem can be solved within 220 – 230μs for the unconstrained case (weak turbulence), about 260–340μs in the case of 5% active constraints, decreasing to about 250–300μs for the case of 20% of active constraints (strong turbulence). Larger problems such as 10 × 10...
Figure 6.9: Coupling between four nearest actuators only: computational time for Branch and Bound QP algorithm versus the percentage of active constraints for different number of actuators in a deformable mirror.

actuators have a considerable spread in the computation time: it takes 850 – 900μs in the unconstrained case, about 1050–1500μs for the case of 5% of activated constraints, and 700 – 900μs in the case of 20% active constraints, which is unacceptably long both for timing requirements and time uncertainty. That is, the Branch and Bound algorithm may be of interest when the problem is severely constrained (30-40%), which is a highly unlikely operation mode of an adaptive optics system.

6.3.1.4 Results for the case of coupling between four nearest and four diagonally adjacent actuators

The added dynamics in the case of coupling between four nearest neighbouring and four diagonally adjacent actuators does not affect much the computational time for the Branch and Bound QP algorithm, as one can see from Fig. 6.10. For example, the 7 × 7 actuators DM optimisation problem takes 220 – 240μs in the unconstrained case, about 250–360μs in case of 5% active constraints, decreasing to about 230–290μs for the case of 20% of active constraints. A larger problem of 10 × 10 actuators has a considerable spread in computational time, resulting in 850–870μs for the unconstrained case (weak turbulence), 850–1300μs to solve the problem in the case 5% of activate constraints (corresponds to a moderate turbulence), and 700–800μs for the strong atmospheric turbulence case of 20% active constraints.

This is unacceptably long for the typical requirements in adaptive optics systems because of both computational time and its spread. Moreover, the computational time is the longest for the case when only a few constraints are activated - such an operation is likelier to happen for adaptive optics.

6.3.1.5 Summary of results for the Branch and Bound QP algorithm

Both the computational time and its spread are too large for the Branch and Bound algorithm to be considered suitable for Adaptive Optics applications. The most probable
Figure 6.10: Coupling between four nearest and four diagonally adjacent actuators: computational time for Branch and Bound QP algorithm versus the percentage of active constraints for different number of actuators in a deformable mirror.

computational time for the target 7×7 actuators DM is 200 – 300μs in the unconstrained case, 300 – 320μs for the case of 5% active constraints, and 260 – 280μs for the case of 20% of active constraints. The Branch-and-Bound algorithm takes considerably more time to compute the solution of an optimisation problem in the larger case of 10×10 actuators DM, resulting in 800 – 900μs for the unconstrained case, 1000 – 1300μs for the case of 5% active constraints, and 600 – 800μs in case of 20% active constraints. It was found out that the hot-start capability for the BaB algorithm is not efficient and hard to implement. While the algorithm might be an alternative solution in cases of severely constrained operation, such an operation mode is rare in adaptive optics systems.

6.3.2 Results for Range-Space Primal Active Set QP algorithm

This section provides the results of numerical simulations for the Range-Space Primal Active Set QP (RSPAS) algorithm (also known as AS WGS, Weighted Gram-Schmidt), each iteration of which is feasible (i.e., satisfies the constraints on all iterations). The case of decoupled actuators (Subsection 6.3.2.1), the case when the energized actuator affects only four closest neighbours (Subsection 6.3.2.2), and the case when four closest and four diagonally adjacent actuators are affected by one energized actuator (Subsection 6.3.2.3) are considered. The results for cold and hot start are compared for each case. All the simulations were performed for the coupling degree of γ = 0.20, if not stated otherwise.

6.3.2.1 Results for the decoupled actuators case

The case when there is no coupling between actuators has been evaluated. The performance evaluation of the Range-Space Primal Active Set QP is provided below.

Performance estimations for cold-start operation First, the operation of the Range-Space Primal Active Set QP is reported when the optimisation problem is solved every time from scratch (i.e., in cold-start). One can see in Fig. 6.11 that starting from a certain
number of active constraints, the computation time grows quicker, especially for relatively large problems. This is expected from the range-space approach, which is beneficial only when a few constraints are active. For example, while for the system with 8×8 actuators it takes about 100µs to compute the constrained solution with up to 30% active constraints, the same time is necessary for 10×10 system in the case of 5% of active constraints.

![Distribution of the computation time, microseconds (µs)](image)

Figure 6.11: Decoupled case: computational time for Range-Space Primal Active Set QP (with bound constraints only) versus percentage of active constraints in a cold-start operation mode.

Although some additional acceleration is possible, like using more efficient Givens rotations or further exploiting sparsity, the relationship between the computation time and active constraints will not change too much. Another way to improve the performance is to exploit the inherently fast sampling rate of the control problem, which brings us to the use of a hot-start operation.

Performance estimations for hot-start operation The sampling rate in adaptive optics systems typically is 1000 Hz [142] or more [141]. On the other hand, the output disturbance does not change that fast. The change of the active set is therefore predictable and exploitable.

Indeed, using the hot-start procedure described in Subsection 5.3.1.6, we can accelerate the Range-Space Primal Active Set QP considerably, as seen in Fig. 6.12(a). The acceleration is more apparent with the growth of the percentage of active constraints and the size of the problem.

The most important difference between the cold-start and hot-start operation is that the time grows slowly with the percentage of active constraints in hot-start operation mode, as seen from a comparison between Fig. 6.12(a) and Fig. 6.11. This is especially noticeable after 15-20% of constraints are reached, and for systems that are larger than 9×9 actuators.

The reason for the significant acceleration of Range-Space Primal Active Set QP with hot-started mode becomes clear from Fig. 6.12(b), where the number of iterations is plotted
Figure 6.12: Performance of QP AS WGS algorithm in a hot-start operation mode, case of decoupled actuators in a DM: (a) computational time for Range-Space Primal Active Set QP versus percentage of active constraints; (b) number of iterations for Range-Space Primal Active Set QP versus percentage of active constraints.

as a function of active constraints. In this case, only one iteration is needed to find a new optimal value most of the time.

6.3.2.2 Results for the case of coupling between four nearest actuators only

The decoupled case is trivial and does not describe the physics of a continuous-faceplate deformable mirror, where the actuators are obviously coupled. This subsection presents the performance analysis for the Range-Space Primal Active Set QP algorithm in case of coupling between four nearest neighbour actuators that corresponds to a denser Hessian matrix.

Performance estimations for cold-start operation The results of numerical simulations for the QP WGS AS are presented in Fig. 6.13(a) for cold-start operation (i.e., the QP algorithm solves the optimisation problem every time from scratch).

Figure 6.13: Performance of QP AS WGS algorithm in a cold-start operation mode, coupling between nearest actuators in a DM: (a) computational time for Range-Space Primal Active Set QP versus percentage of active constraints; (b) number of iterations for Range-Space Primal Active Set QP versus percentage of active constraints.
The results suggest that cold-started QP has a reasonable performance only when there are few constraints active. For example, the computation time for the 10 × 10 actuators DM grows quickly up to about 10% of active constraints. However, as the number of active constraints grows beyond 5-10% (more than 8-10 constraints are active), the time to solve the constrained optimisation problem via range-space grows almost exponentially.

The number of iterations grows linearly with the percentage of active constraints, as one can conclude from Fig. 6.13(b), although the computational load increases quickly with the increasing size of the matrices to be multiplied. This brings us again to the hot-start idea.

Performance estimations for hot-start operation Similarly to the decoupled case, hot-start allows for exploiting the inherently fast sampling rate in adaptive optics systems. This leads to the hot-start operational mode, where we use the number of active constraints from the previous sampling instance \(t_{k-1} \), previous optimal solution \(x_{k-1} \), and matrices \(L_{k-1} \) and \(Y_{k-1} \) from the LQ factorisation at the previous sampling instance.

Comparing the computation time for the cold-start in Fig. 6.13(a) with hot-start in Fig. 6.14(a), we note a significant speed-up. For example, for the target hardware of 7 × 7 actuators DM, the computational time of about 600 \(\mu \)s was encountered for cold-start when 25% constraints are active. Hot-start operation for the same 7 × 7 problem, on the other hand, takes only about 40 \(\mu \)s, almost regardless of the percentage of the active constraints. Even large systems like 10 × 10 actuators can be solved within 150 \(\mu \)s for the pessimistic case of 20-40% of active constraints in hot-start mode, while in cold-start it takes considerably longer than 1000 \(\mu \)s.

Figure 6.14: Performance of QP AS WGS algorithm in a hot-start operation mode, coupling between nearest actuators in a DM: (a) computational time for Range-Space Primal Active Set QP versus percentage of active constraints; (b) number of iterations for Range-Space Primal Active Set QP versus percentage of active constraints.

The explanation of this significant speed-up can be drawn from a comparison between Fig. 6.13(b) and Fig. 6.14(b). Since we have a comparatively slow atmospheric turbulence, a relatively fast plant, and a fast sampling rate, the active set changes only by a few constraints from one sampling instance to the next. Therefore, we are exploiting both
the structure of the problem (sparse, bound constraints) and its physics (slow disturbance dynamics and fast sampling).

6.3.2.3 Results for the case of coupling between nearest and adjacent actuators

When the actuator is coupled not only with the four closest neighbours, but affects the diagonally adjacent actuators as well, the dynamics are more complex and the Hessian matrix is more dense (see Fig. 4.3). However, the condition number of the Hessian matrix is lower; that is, the problem is better conditioned (see Fig. 4.15). Therefore, the Primal Active Set QP algorithm is expected to be faster since the initial starting point is closer to the actual optimum in the constrained case.

Performance estimations for cold-start operation Since the optimisation problem is better conditioned in the case of four nearest and four adjacent actuators, as apparent from Fig. 4.15, it takes less time to compute the solution since the guess of \(x_0 = P_1 [-H^{-1}F] \) is closer to the actual optimum. It takes about \(400 - 500 \mu s \) to compute the solution for the \(10 \times 10 \) actuators DM in the case of four nearest neighbouring actuators coupling and 10% of active constraints (see Fig. 6.13(b)), while in the case of both nearest and diagonally adjacent actuators, it takes only \(200 - 300 \mu s \) (see Fig. 6.15(a)).

![Figure 6.15: Performance of QP AS WGS algorithm in a cold-start operation mode for nearest and diagonally adjacent actuators coupling case: (a) computational time for Range-Space Primal Active Set QP versus percentage of active constraints; (b) number of iterations for Range-Space Primal Active Set QP versus percentage of active constraints.](image)

Similarly, it takes fewer iterations for the case of nearest and diagonally adjacent actuators than for the case of nearest coupling actuators only, as seen in Fig. 6.15(b) and in Fig. 6.13(b), respectively.

Performance estimations for hot-start operation Performance of the hot-start operation for the case of nearest and diagonally adjacent actuators coupling has been evaluated as well. One can see from Fig. 6.16(a) that even for a relatively large system with \(10 \times 10 \) actuators, it takes about \(100 \mu s \) to compute a constrained optimal solution even
when more than 25% of constraints are active. Comparing the hot-started operation mode in Fig. 6.16(a) with the previous case of coupling in Fig. 6.14(a), one may notice that the computational time is slightly lower in the case of diagonally adjacent coupling. In the case of a 10 × 10 actuators problem, with coupling between both nearest and diagonally adjacent actuators, it takes about 110μs for the case of 35% active constraints, as opposed to about 150–170μs for the case of four nearest actuators coupling.

![Graphs showing distribution of computation time and number of iterations](image)

Figure 6.16: Performance of QP AS WGS algorithm in a **hot-start** operation mode for nearest and diagonally adjacent actuators coupling case: (a) computational time for Range-Space Primal Active Set QP versus percentage of active constraints; (b) number of iterations for Range-Space Primal Active Set QP versus percentage of active constraints.

Similarly, it takes only one or two iterations at a sampling rate of 1000 Hz to compute the new optimal solution, as seen in Fig. 6.16(b).

6.3.2.4 Analysis of Hot- and Cold-start operation for Range-Space Primal Active Set QP algorithm

This subsection briefly outlines the comparison of hot and cold-start operation in terms of speed and compares the growth rate of the computation time as the optimisation problem becomes larger.

Efficiency of the hot-start operation We would like to stress the efficiency of the hot-start operation of the Range-Space Primal Active Set QP algorithm, especially for relatively large systems such as 10 × 10 (100 states) model of the deformable mirror.

Using the data in Fig. 6.13(a) for cold-start and Fig. 6.14(a) for hot-start, we can see in Fig. 6.17 by how many times hot-start operation is faster than cold-start.

It is apparent that the hot-start operation is significantly faster, and the advantage of it becomes more apparent with the growth of activated constraints and the size of the problem. As one can see, the hot-start operation mode is more advantageous in the case when many constraints are active, keeping the computational time below 100μs even for relatively large systems (9 × 9 actuators DM). More importantly, the computational time is predictable and does not have a noticeable spread, which is important in adaptive optics applications.
6.3 Feasibility for RHC in AO with customized algorithms: Range-Space Primal AS

Figure 6.17: Speed-up (i.e., how many times faster) of hot-start operation compared to cold-start for 25 states (5×5 actuators), 49 states (7×7 actuators), and 100 states (10×10 actuators) system.

6.3.2.5 Growth of the computation time with the size of the problem

We compare the growth rate of the computation time as a function of the optimisation problem size for both cold and hot start operations. Three cases of constraints are considered: unconstrained case (weak turbulence), case when 5% of the constraints are active (moderate turbulence), and case when 20% of the constraints are active (strong turbulence). The results of the comparison are provided in Fig. 6.18 for the case of a 1000 Hz sampling rate.

Figure 6.18: Computational time for Range-Space Primal Active Set QP algorithm versus the number of actuators in the model of a deformable mirror for: (a) sampling rate of 1000 Hz; (b) sampling rate of 250 Hz. Markers for hot-start (empty) have been split apart for illustrative purposes.

One can see that starting from the 8×8 actuators DM case, the computation time for cold-start grows rapidly (filled markers in Fig. 6.18(a)) when only 5% of constraints are active. Conversely, the computational burden for the hot-started Primal Active Set algorithm grows slowly and is within 75μs even for large (10×10 actuators) systems and 20% of active constraints. As before, we note that such an operation is unlikely for
adaptive optics systems; however, it goes without saying that knowing the behaviour of the QP algorithm is crucially important in real-time applications.

Figure 6.19: Computational time for Range-Space Primal Active Set QP algorithm for nearest actuators coupling (filled markers on the plot) and for the case when the coupling is between both nearest and diagonal adjacent actuators (empty markers). Sampling rate is 1000 Hz.

Hot-start is less beneficial for a slower sampling rate, as it has been already shown in Fig. 6.17, but nonetheless advantageous. One can compare the case of the 1000 Hz sampling rate in Fig. 6.18(a) and the 250 Hz sampling rate in Fig. 6.18(b). In the latter case, it takes more iterations for the hot-started Range-Space Primal Active Set QP algorithm to find an updated optimal value, which is more apparent for larger systems like 10×10 actuators (almost 2x slower than the case of 1000 Hz).

Finally, the growth rate of the computational time versus the size of the optimisation problem (that is, the number of actuators in the DM) is presented in Fig. 6.19. One can see that the computational speed for hot-started Range-Space Primal Active set QP solver is very fast: it takes about $75\mu s$ even for the pessimistic case of 20% active constraints and a large deformable mirror with 10×10 actuators. More importantly, the speed of computations is almost the same for nearest coupled and nearest plus diagonally adjacent case (different condition number), which makes the Range-Space Primal Active set QP solver our main candidate for the control problems in adaptive optics.

6.3.2.6 Summary of results for the Range-Space Primal Active Set QP

The hot-start operation for Range-Space Primal Active Set QP is crucially important and advantageous, especially when many constraints are active. Hot-start operation for the 7×7 actuators problem takes only about $40\mu s$ almost regardless of the percentage of constraints. Even large systems like 10×10 actuators can be solved within $150\mu s$ for the pessimistic case of 20-40% of active constraints in hot-start mode, while in cold-start it takes considerably longer than $1000\mu s$. For a slower sampling rate, such as 250 Hz, the hot-start operation is less beneficial but nonetheless advantageous. These features make
the Range-Space Primal Active set QP solver our main candidate for using in Receding Horizon control with constrained online QP.

6.3.3 Results for Parametric Active Set algorithm qpOASES

This section provides the results of numerical simulations for the qpOASES Parametric Active Set QP algorithm. The qpOASES is an open-source C++ implementation of the Parametric Active Set algorithm [198, 287], which was inspired by the field of parametric quadratic programming and applied to various control problems [280]. As mentioned in Subsection 5.3.3, the qpOASES algorithm moves from the previous solution to the next on a straight line in the parameter space [198], and therefore no Phase I is needed.

The results of numerical simulations are provided for qpOASES in the following subsections. The case of nearest actuators coupling is considered in Subsection 6.3.3.1, and the case when four closest and four diagonally adjacent actuators are coupled is considered in Subsection 6.3.3.2. The growth rate of the computational time versus the number of actuators in a deformable mirror is considered in Subsection 6.3.3.3, where qpOASES is compared with my own implementation of Range Space Primal Active Set QP from Section 6.3.2. All the simulations are performed for a coupling degree of $\gamma = 0.20$, if not stated otherwise.

6.3.3.1 Results for the case of coupling between four nearest actuators only

The qpOASES_sequenceSB routine was compiled as a MEX file and used for the numerical simulations. The qpOASES_sequenceSB is a qpOASES algorithm (see Section 5.3.3 for mathematical details) version for hot-started control problems subject to simple bound (SB) constraints. The results are provided in Fig. 6.20(a) for the dependency of computational time versus active constraints and in Fig. 6.20(b) for the dependency of iterations number versus active constraints.

![Figure 6.20: Performance of qpOASES algorithm in a hot-start operation mode, coupling between nearest actuators in a DM: (a) computational time versus percentage of active constraints; (b) number of iterations versus percentage of active constraints.](image)
From Fig. 6.20(b) it is clear that in the hot-start mode, the qpOASES uses only one iteration to find a new optimum. Therefore it should not be surprising that even the problem of relatively large 9×9 actuators DM can be solved within 100–110μs.

Further observations of Fig. 6.20(a) allow to conclude that the computational time does not noticeably grow with the percentage of active constraints (apart from sporadic deviations, which probably come from background processes in the operating system during time measurements). That is, for the target deformable mirror with 7×7 actuators, the computational time is about 55–60μs, and stays almost the same for the case of 5\% active constraints (moderate turbulence) and 20\% active constraints (strong turbulence). Larger systems such as deformable mirrors with 10×10 actuators can be solved within 140–150μs even for the pessimistic case of 20–40\% of active constraints in hot-start mode.

6.3.3.2 Results for the case of coupling between nearest and adjacent actuators

The results for the case when the actuators in a deformable mirror are coupled both with the four closest neighbours as well as the diagonally adjacent actuators are provided in Fig. 6.21. Similarly to the case of nearest actuators only, it takes only one iteration in the hot-start operation for the qpOASES to find the next optimum as can be concluded from Fig. 6.21(b).

![Figure 6.21: Performance of qpOASES algorithm in a hot-start operation mode for nearest and diagonally adjacent actuators coupling: (a) computational time versus percentage of active constraints; (b) number of iterations versus percentage of active constraints.](image)

The computational time for the case of nearest plus adjacent actuators coupling is similar to the nearest only actuators case, as one can see from comparison of Fig. 6.20(a) and Fig. 6.21(a). The computational time for a 7×7 DM with four nearest and four adjacent coupled actuators, is about 50–60μs, which is almost the same\(^7\) compared to the case of nearest actuators coupling only. The large optimisation problems of 10×10 actuators can be solved within 140–160μs even for the pessimistic case of 20–40\% of active constraints in hot-start mode.

\(^7\)The accuracy of the tic-toc MATLAB command is $\pm 1 \mu$s; however, actual computational time is affected by the background processes of an operation system.
6.3.3.3 Growth of computational time with the size of the problem

This subsection is aimed at comparing two Active Set algorithms, namely the qpOASES and the Range-Space Primal Active Set from the previous Section 6.3.2. Three usual cases were considered: unconstrained case, 5% active constraints and 20% active constraints for nearest only and nearest plus adjacent coupling. The results are provided in Fig. 6.22, where Fig. 6.22(a) corresponds to the qpOASES algorithm and Fig. 6.22(b) corresponds to the Range-Space Primal Active Set QP algorithm.

![Figure 6.22:](image)

Figure 6.22: Computational time versus the number of actuators in the model of a deformable mirror for: (a) qpOASES algorithm; (b) own implementation of Range-Space Primal Active Set algorithm.

The Range-Space AS QP implementation is clearly faster than qpOASES in the unconstrained case, as seen in Fig. 6.22, mainly due to the fact that the Range-Space algorithm simply multiplies the inverted Hessian matrix (pre-computed offline) and the \(\mathbf{F} \)-vector, and then checks if there are violated constraints. This is reasonable, since the unconstrained operation of an adaptive optics system is the main operational mode. In the constrained case, the Range-Space algorithm is 1.3–2× times faster than the qpOASES algorithm, which again should not be surprising: the qpOASES algorithm uses primal and dual variables with parameterisation, while Range-Space AS QP is a Primal algorithm. Also, the qpOASES code was compiled without any additional tweaks, while Range-Space AS exploits the banded structure of the Hessian matrix and is tailored specifically for Adaptive Optics control problems.

It is also interesting to compare a highly constrained mode for both algorithms (see Fig. 6.23). The qpOASES algorithm has a remarkably predictable behaviour: it uses only one iteration to solve the next problem with hot-start, and therefore the computational time for qpOASES is almost independent of the percentage of active constraints (see Fig. 6.23(a)). The Range-Space AS algorithm, on the other hand, is noticeably faster in the case when up to 20% of constraints are active, as seen in Fig. 6.23(b). This is exactly why the Primal Range-Space QP algorithm is regarded as one with a high potential for AO systems. For more constrained cases, the Range-Space AS algorithm uses more than one iteration, and the computational time in highly constrained operation starts to become comparable with qpOASES: about 40–50\(\mu \)s for 7 \(\times \) 7 DM and 150–170\(\mu \)s for 10 \(\times \) 10 DM.
Figure 6.23: Computational time for versus the number of active constraints for: (a) the qpOASES algorithm; (b) own implementation of the Range-Space Primal Active Set QP algorithm.

6.3.3.4 Summary of results for the Parametric qpOASES algorithm

In hot-start mode, the qpOASES algorithm uses only one iteration to find a new optimum, therefore it takes only $55-60\mu$s for 7×7 nearest coupled actuators DM problem and $140 - 150\mu$s for the 10×10 actuators DM. A nice feature of the qpOASES is that the computational time does not noticeably grow with the percentage of active constraints. The comparison of the qpOASES against the Range-Space Primal Active Set QP shows that the Range-Space algorithm is 1.3-2x times faster for the case of large problems and few active constraints. This is mainly because the Range-Space implementation uses pre-computed matrices such as the inverted Hessian matrix and the Cholesky factorisation.

As a concluding remark, it should be noted that the qpOASES was used without any customisation, while the Range-Space algorithm was heavily tailored to AO problems. The performance in hot-start operation mode is comparable with Range-Space AS, and the most attractive feature of the qpOASES is that it uses only one iteration, even in very constrained cases, to find the next optimal value.

6.3.4 Results for Barzilai-Borwein PABB QP algorithm

The Projected Alternating Barzilai-Borwein (PABB) algorithm is simple and easy to implement. However, it shares the disadvantages of the gradient-based algorithms such as dependence of convergence on the conditioning of the Hessian matrix. In this subsection, we provide the numerical analysis for the PABB algorithm in case of different couplings and hot/cold-start operation modes.

6.3.4.1 Analysis of Hot- and Cold-start operation for the PABB QP algorithm

The PABB QP algorithm in cold-start operation solves optimisation problems each time from scratch, using the values of the lower bound of constraints as a starting point. Since the sampling in adaptive optics control problems is inherently fast, the optimal value does not change much from one sampling instance to the next. The fast sampling rate
can be therefore exploited to accelerate the PABB algorithm by feeding back to the QP solver the previous optimal solution as a starting point along with the gradient vector that corresponds to that point. We call such a mode hot-start mode.

![Figure 6.24: Distribution of iterations for Hot- and Cold-start operation modes as a function of active constraints for the PABB QP algorithm.](image)

The hot- and cold-start modes are compared for two cases of the optimisation problem size, namely for 7×7 actuators and 10×10 actuators DMs, as seen in Fig. 6.24. Expectedly, the hot-started PABB is considerably faster than cold-started implementation: we observe 1.5 – 2x less iterations for hot-start, and consequently about 2x times less computation time. We observed that the acceleration is more pronounced for the unconstrained case, where it can be up to two- to threefold. The exact acceleration will depend on the condition number and the tolerance value. For the constrained case, the acceleration is slightly less pronounced and can be up to 1.5-2.5x times. Our results are consistent with results in [244], where it was shown that the hot-start strategy yields a lower computational complexity in general.

6.3.4.2 On convergence of the PABB algorithm

The convergence rate of the PABB algorithm deteriorates as the condition number of the Hessian matrix increases, as seen in Fig. 6.25. Therefore, for coupled systems with a coupling degree \(\gamma > 0.22 \), which corresponds to \(\kappa(H) = 10^2 \), we need to implement safeguards such as limitations on the step size \(\alpha_{ABB} \) and the non-monotone line-search. This will slow down the algorithm but can improve the convergence rate.

In the case of the nearest and adjacent diagonal actuators coupling, we can observe a similar behaviour of the PABB algorithm, although the condition number \(\kappa(H) = 10^2 \) in this case corresponds to a much higher coupling degree of \(\gamma = 0.35 \) (see Fig. 4.15).

Intuitively, the convergence in the constrained case should be faster, since the termination condition will be satisfied sooner. Indeed, this is consistent with the numerical simulations presented in Fig. 6.26: the tighter the constraints, the fewer the number of the iterations required for the convergence within the prescribed tolerance. Such a remarkable property is desirable for the constrained optimisation algorithms in adaptive optics.
Figure 6.25: Number of iterations (tolerance $\tau = 10^{-3}$) versus norm-based condition number of the Hessian matrix for the 7×7 actuators DM (case of nearest neighbour coupling only).

Figure 6.26: Number of iterations versus the percentage of active constraints for the deformable mirror with 7×7 actuators with a different coupling degree γ.

More important is that as more and more constraints become active, the computational time decreases, as seen in Fig. 6.27. One can see from Fig. 6.26 that the number of iterations has a distribution, and the spread of the iterations distribution depends on the condition number $\kappa_{\|\cdot\|_2}(H)$ of the Hessian matrix H. The spread of the iterations number is small (5-7 iterations) for a well-conditioned Hessian matrix $\kappa(H) = 10$, which corresponds to a low coupling degree $\gamma = 0.15$ between the actuators. However, variance of the iterations increases significantly with increasing coupling degree.

6.3.4.3 Tolerance versus accuracy

The PABB algorithm has a stopping criterion, which is based on the difference between the norm of an old solution and the norm of a new solution. The less strict the tolerance, the faster the convergence, but the solution is obviously less accurate. The accuracy depends on the coupling between actuators (and consequently on the condition number) and the
Active constraints, percent % of all constraints

Figure 6.27: Computational time versus active constraints for PABB algorithm and the model of a 7 × 7 actuators deformable mirror with: − ○ − decoupled actuators; − Δ − coupling between nearest actuators only; − ◆ − coupling between four nearest actuators and four diagonally adjacent actuators. The data points were separated intentionally for illustrative purposes.

number of active constraints (the convergence is faster when many constraints are active). Here we compare the solution of the PABB algorithm for various tolerance values against the Dual Active Set QP algorithm. The purpose is to evaluate the appropriate value of tolerance for the PABB algorithm.

Cold-start operation On each sampling instance we subtract the solution of PABB algorithm from the solution of the Dual Active Set QP and take the maximum absolute value of this difference. The maximum difference is normalised on the maximum amplitude of the signal and plotted as a percentage of the maximum signal. As the simulation progresses, the amplitude of the disturbance grows, and more constraints become active. Therefore, we can obtain the dependency of the absolute deviation from the optimal solution in percent of the maximum amplitude as a function of active constraints. The results for cold-start mode are presented in Fig. 6.28(a) for 7 × 7 actuators DM and various tolerance levels.

As one can see in Fig. 6.28(a), for the cold-started QP PABB the maximum deviation of the produced solution can reach up to 20% for the τ = 10⁻² and 7 × 7 actuators DM case. The tolerance τ = 10⁻⁵ can be considered acceptable for the cold-start operation. Events of a noticeable deviation from the optimum solution for the PABB algorithm are rare, and in Fig. 6.28(b) one can see that the average deviation is considerably lower.

Hot-start operation The deviation from the optimal solution is lower in the case of the hot-start PABB as seen in Fig. 6.29(a). This can be explained by the fact that the algorithm already has a good starting point, and the optimal value is close enough to the previous solution. Therefore, the hot-start operation of PABB has a lower deviation from the optimum (about 1-3%) even in case of rather large tolerance τ = 10⁻².

The same is true for the average deviation, which is lower in the hot-start case (see Fig. 6.29(b)). It is noteworthy that for stricter tolerance like τ = 10⁻⁵ and less, the
Figure 6.28: Tolerance versus accuracy in a **cold-start** operation mode for the PABB algorithm: (a) maximum deviation from optimal value (in percent of full signal amplitude) as a function of active constraints; (b) mean deviation from optimal value (in percent of full signal amplitude) as a function of active constraints.

Figure 6.29: Tolerance versus accuracy in a **hot-start** operation mode for the PABB algorithm: (a) maximum deviation from optimal value (in percent of full signal amplitude) as a function of active constraints; (b) mean deviation from optimal value (in percent of full signal amplitude) as a function of active constraints.

deviation from the optimum is negligible for both hot (see Fig. 6.29(a)) and cold-start (see Fig. 6.28(a)) case that is below 0.2 – 0.1%. Therefore, we use the hot-start mode of the PABB algorithm in the following subsections.

6.3.4.4 Results for the decoupled actuators case

In the decoupled case, there is no influence between the actuators, and the Hessian matrix is diagonal. Expectedly, in this case the QP is solved within minimal time by the PABB algorithm, as seen in Fig. 6.30(a). In this case, the band of the matrix can be set to two elements, which makes the computations extremely fast: even for large 10×10 actuators DM it takes less than 45μs to compute the solution of a constrained problem.

More importantly, the computational time does not depend on the percentage of active constraints. The decoupled case, however, is not of interest, since in any real deformable
Figure 6.30: Performance of the QP PABB algorithm in a hot-started operation mode for decoupled actuators DM: (a) computational time versus percentage of active constraints; (b) number of iterations versus percentage of active constraints.

mirror (except for the segmented mirrors) there is an inevitable influence between neighbouring actuators.

6.3.4.5 Results for the case of coupling between the four nearest actuators only

The convergence of the PABB algorithm depends strongly on the condition number of the Hessian matrix, which in turn depends on the actuators coupling as discussed above in Subsection 6.3.4.2. The case of coupling degree $\gamma = 0.25$ between four nearest actuators only (strong coupling, large condition number, as seen in Fig. 4.15) and the case of weaker coupling $\gamma = 0.20$ (well-conditioned Hessian) are considered. Two cases of tolerance, namely strict $\tau = 10^{-5}$ and loose $\tau = 10^{-3}$, are discussed. The reason why there are so many cases is because the PABB is non-preconditioned and therefore its convergence depends on both the tolerance and the conditioning number of the Hessian matrix.

Coupling degree $\gamma = 0.25$, poorly-conditioned Hessian matrix Such a poorly-conditioned Hessian matrix leads to convergence difficulties for the PABB algorithm (see Fig. 6.31(a)). Although each iteration is computationally inexpensive (less than 2μs per iteration8), in a heavily coupled case with poor conditioning it becomes harder to predict how long it would take for the algorithm to find a solution. The spread of computational time becomes more pronounced with the size of the problem and a more tight tolerance. For the example of 7×7 actuators DM, in the unconstrained case it takes 180–220μs to compute the solution in case of heavy coupling $\gamma = 0.25$ with strict tolerance $\tau = 10^{-5}$. For the less restrictive (but still acceptable) tolerance of $\tau = 10^{-3}$, the unconstrained case takes only 70–100μs, as seen from the comparison of Fig. 6.31(a) and Fig. 6.31(b).

The tolerance has a considerable impact on the convergence of the PABB algorithm. Considerably more iterations are required in the latter case, but the results are more accurate and closer to the optimal values. For a larger problem, which is a deformable mirror

8Time measurements are performed with the built-in MATLAB functions tic-toc, which has 1μs resolution.
Figure 6.31: Computational time versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.25$ between nearest neighbour actuators: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.

with 10×10 actuators and the tolerance value $\tau = 10^{-5}$, the spread of computational time can be significant: the unconstrained case can take from 230μs to 670μs. The constrained case converges faster: for example of 5% active constraints (weak atmospheric turbulence), the time to compute the solution can vary from 200μs to 350μs, and the case of 20% active constraints takes $120 - 140\mu$s to solve. This can be concluded from Fig. 6.31(a), where the size of the markers corresponds to the probability of computational time for the particular size of the problem.

A poorly conditioned Hessian matrix and a tight tolerance deteriorate the convergence rate of the PABB, as expected. One might consider non-monotone line-search procedures [236, 243]. However, preliminary simulations show that those procedures are not always efficient and considerably increase the cost per iteration (evaluation of objective functions, additional storage requirements).

Figure 6.32: Number of iterations versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.25$ between nearest neighbour actuators: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.

The PABB algorithm is simple and fast, but the condition number of the Hessian $\kappa \geq 500$ makes the algorithm to take too many iterations, as seen in Fig. 6.32(a): about 80-100 iterations for 7×7 DM and 80-180 for 10×10 DM.
Coupling degree $\gamma = 0.20$, **well-conditioned Hessian matrix** As expected, as the coupling between the actuators decreases, which corresponds to the decrease of the condition number of the Hessian matrix, the convergence and the computational time of the PABB algorithm improve. This is shown in Fig. 6.33 for the coupling degree $\gamma = 0.20$ (which corresponds to the condition number $\kappa(\mathbf{H}) \sim 10^2$ of the Hessian matrix).

![Graphs showing distribution of computation time](image)

Figure 6.33: Computational time versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour actuators: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.

The solution of an unconstrained optimisation problem for the target 7×7 actuators DM takes 80–90\(\mu \)s to compute for coupling $\gamma = 0.20$ with strict tolerance $\tau = 10^{-5}$, about 60–70\(\mu \)s in the case of 5\% active constraints, and 45–60\(\mu \)s for 20\% active constraints, as seen in Fig. 6.33(a). A less tight tolerance of $\tau = 10^{-3}$ decreases the time to 50–60\(\mu \)s, 55\(\mu \)s and 45–55\(\mu \)s respectively.

A larger optimisation problem, such as 10×10 actuators DM, unsurprisingly takes more time to compute. The unconstrained case takes 95–110\(\mu \)s to solve for the tolerance $\tau = 10^{-3}$, the case of 5\% active constraints (moderate turbulence) takes 70–90\(\mu \)s, and the case of 20\% active constraints takes 80–90\(\mu \)s (strong turbulence).

![Graphs showing distribution of number of iterations](image)

Figure 6.34: Number of iterations versus the percentage of active constraints for different numbers of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour actuators: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.
The same trend can be observed in Fig. 6.34: the well-conditioned Hessian matrix and many active constraints reduce the number of iterations of the PABB algorithm. The comparison between Fig. 6.34(a) and Fig. 6.31(a) illustrates a more general result that the convergence of the PABB deteriorates with an increasing condition number of the Hessian matrix, which corresponds to increased coupling between the actuators.

6.3.4.6 Results for the case of coupling between nearest and adjacent actuators

The condition number of the Hessian matrix is less for the case of coupling between four nearest neighbour actuators and four diagonally adjacent actuators, compared to the case of coupling between the nearest actuators only (compare Fig. 4.17 and Fig. 4.19). Therefore, one may expect a better convergence of the PABB QP algorithm.

Coupling degree \(\gamma = 0.25 \), strong coupling between actuators The coupling degree of \(\gamma = 0.25 \) in case of nearest and adjacent actuators coupling leads to \(\kappa(\Xi) \sim 40 \) as opposed to \(\kappa(\Xi) \sim 10^3 \) for the case of the coupling between nearest neighbour actuators only. Expectedly, the convergence in the case of both nearest and adjacent actuators coupling is faster, as seen in Fig. 6.35.

![Computational time versus the percentage of active constraints for different numbers of actuators in a deformable mirror with coupling \(\gamma = 0.25 \) between nearest neighbour and diagonally adjacent: (a) tolerance \(\tau = 10^{-5} \); (b) tolerance \(\tau = 10^{-3} \).](image)

Since the Hessian matrix is well-conditioned, the convergence of the PABB takes 35-40 iterations at most (see Fig. 6.36). An unconstrained optimisation problem for \(7 \times 7 \) actuators DM takes 60-70 \(\mu s \) to compute for coupling \(\gamma = 0.25 \) with strict tolerance \(\tau = 10^{-5} \), about 50-60 \(\mu s \) in the case of 5% active constraints and 60-75 \(\mu s \) for 20% active constraints case, as seen in Fig. 6.35(a). A less tight tolerance of \(\tau = 10^{-3} \) decreases the computational time to 45-50 \(\mu s \), 50 \(\mu s \) and 50-60 \(\mu s \) respectively.

The larger problem of a DM with \(10 \times 10 \) actuators and \(\tau = 10^{-5} \) can be solved within 100-150 \(\mu s \): the unconstrained case can take from 110 \(\mu s \) to 140 \(\mu s \), the case of 5% active constraints (moderate atmospheric turbulence) takes from 90 \(\mu s \) to 110 \(\mu s \), and the case of 20% active constraints takes 90-120 \(\mu s \) (see Fig. 6.35(a)).
6.3 Feasibility for RHC in AO with customized algorithms: PABB

Figure 6.36: Number of iterations versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.25$ between nearest neighbour actuators: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.

The increase of the tolerance does not impact the convergence noticeably, since the Hessian matrix is better conditioned: one can compare the performance of PABB algorithm with loose tolerance of $\tau = 10^{-3}$ in Fig. 6.35(b) and the performance with stricter tolerance $\tau = 10^{-5}$ in Fig. 6.35(a). The number of iterations is lower for the case of nearest plus diagonally adjacent coupling (see Fig. 6.36), as opposed to the case of nearest actuators coupling only (see Fig. 6.34).

Coupling degree $\gamma = 0.20$, well-conditioned Hessian matrix The computational time for this case has less spread, as seen in Fig. 6.37. Better conditioning of the Hessian matrix makes the results for the case of weaker coupling $\gamma = 0.20$ similar to the case of $\gamma = 0.25$. The issue with the PABB algorithm, however, remains the same: its convergence depends heavily on the condition number of the Hessian matrix, which can be large for heavily-coupled actuators in a deformable mirror. This circumstance compels us to seek other optimisation algorithms that allow both projected and preconditioned operation.

Figure 6.37: Computational time versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour actuators: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.
6.3.4.7 Growth of computation time with size of the problem for the PABB QP algorithm

The growth rate of the computational time versus the DM size is provided in Fig. 6.38 for the coupling degree $\gamma = 0.25$, and in Fig. 6.39 for the coupling degree $\gamma = 0.20$ respectively. The filled markers correspond to the computational time when four nearest actuators are coupled, and empty markers show the coupling between the four nearest and four adjacent actuators.

![Image](a)

![Image](b)

Figure 6.38: Comparison of computational time for PABB QP for nearest actuators coupling (filled markers on the plot) and for the case when the coupling is between both nearest and diagonal adjacent actuators (empty markers) for coupling degree $\gamma = 0.25$, versus the size of the optimisation problem (number of actuators in a DM): (a) tolerance $\tau = 10^{-3}$; (b) tolerance $\tau = 10^{-5}$.

The case of the coupling degree $\gamma = 0.25$ represents a significant challenge for the PABB algorithm (see Fig. 6.38), especially in the case of nearest coupled actuators only, as shown in Fig. 6.38(a). One can see that for problems of a size larger than 8×8 actuators, the computational time grows quickly. The spread of computation time becomes more pronounced in the case of larger problem sizes (that is, 10×10 actuators and more), which can be expected as the algorithm relies on gradients evaluation.

This reveals that the PABB QP solver is suitable only in relatively well-conditioned problems, where $\kappa(\mathbf{H}) \leq 10^3$. For example, in case of coupling $\gamma = 0.20$, the computational time is considerably faster, as one can see from Fig. 6.39. One could expect that making the PABB algorithm to use a pre-conditioner would be easy, but this is not the case. It is true that a Preconditioned Barzilai-Borwein method exists [288], but it is for unconstrained problems only. The main difficulty is that the preconditioned direction, even if it is a descent direction, might not be a descent direction after being projected on the constrained set [289, 290].

6.3.4.8 Summary of results for the PABB QP algorithm

The PABB algorithm can be efficiently hot-started by using the previous optimal solution and the gradient vector as a starting point. The acceleration is more beneficial for the unconstrained case with up to 2-3x times speed-up. The convergence rate of PABB is
getting worse as the coupling degree (and, consequently, the condition number of the Hessian matrix) increases. For the problems larger than 8 × 8 actuators, the computational time grows quickly. Therefore, the PABB QP algorithm is suitable only for relatively well-conditioned problems, where $\kappa(\mathbb{H}) \leq 10^3$. These circumstances compel us to seek other algorithms, which allow both projection and preconditioning.

6.3.5 Results for Gradient Projection Conjugate Gradients algorithm

The Gradient Projection Conjugate Gradients (GPCG) algorithm uses two stages to solve the bound-constrained optimisation problem with the prescribed tolerance: the Gradient Projection (GP) stage for the constrained part of the problem, and the Conjugate Gradients (CG) stage for the unconstrained part of the problem. Each part of the problem has different line-search parameters but the same tolerance.

6.3.5.1 Choosing the parameters for the GPCG QP algorithm

There are four main parameters for the GPCG algorithm:

1. The GP stage has the parameter $\eta_2 > 0$ for the sufficient progress test (5.38) and the parameter $\mu_2 \in (0, 0.5)$ for the sufficient decrease condition (5.35) of the projected search;

2. The CG stage has the parameter $\eta_1 > 0$ for the sufficient progress test (5.42) and $\mu_1 \in (0, 0.5)$ for the sufficient decrease condition (5.44)

Simulations were performed to find optimal values for the parameters η and μ. The tolerance, the maximum iterations counter, and other variables were fixed, and two series of simulations were run: for the GP stage (to determine η_2 and μ_2) and for the CG stage (to determine η_1 and μ_1). The goal was to find the parameter set that leads to a minimum number of iterations in both stages. The results of simulations for the closed-loop AO
system with nearest-coupled DM actuators shown in Fig. 6.40 suggest the parameters \(\eta_1 = 0.25 \) and \(\mu_1 = 0.25 \) that gives minimal number of iterations for the CG part, and \(\eta_2 = 0.55 \) and \(\mu_2 = 0.25 \) for the constrained for the GP part of the GPCG algorithm. It is interesting to note that in the case of unconstrained operation, the GPCG may take too many GP iterations, as shown in Fig. 6.42. This is because of very poor convergence of the GP algorithm, which is not surprising as the gradient projection algorithm is merely a modified version of the steepest descent [228] algorithm.

As a workaround for such behaviour, one can explicitly constrain the maximum number of GP iterations \(k_{\text{GP}}^{\text{max}} \) forcing GPCG to switch back to the CG part (which is much faster and more efficient). In the numerical simulations, the number of outer iterations was
restricted to 100, GP iterations to 4 and CG iterations to 20. The parameters that yield a minimum number of iterations, according to Fig. 6.42, are slightly different for the unconstrained case: \(\eta_2 = 0.65 \) and \(\mu_2 = 0.25 \). As a trade-off for both unconstrained and constrained operation modes, the parameters \(\eta_2 = 0.60 \) and \(\mu_2 = 0.25 \) were chosen for both cases. With these parameters fixed, one can commence the study of convergence, hot/cold-start modes and cases of coupling between the actuators.

6.3.5.2 Analysis of Hot- and Cold-start operation for the GPCG QP algorithm

The gradient-based algorithms can be hot-started simply by feeding the previous results as a starting point for the current sampling instance. However, it is of interest to know whenever the hot-start is efficient for the algorithm and how beneficial it is in terms of both iterations and computational time. Therefore, the simulations for the GPCG algorithm were run for the case of cold and hot-start, and the results are presented in Fig. 6.43(a) and in Fig. 6.43(b) for the CG number of iterations and overall computational times, respectively. Two cases of DM sizes, namely \(7 \times 7 \) and \(10 \times 10 \) actuators were considered to show the benefits of the hot-start operation. The tolerance for the GPCG algorithm was set as \(\tau = 10^{-5} \), which is rather restrictive, in order to make the difference for hot- and cold-start operation more apparent.

![Figure 6.43](image)

Figure 6.43: Comparison of hot-start (red markers) and cold-start (blue markers) for GPCG algorithm with strict tolerance \(\tau = 10^{-5} \); (a) distribution of the CG iterations number for GPCG algorithm; (b) distribution of computational time for GPCG algorithm.

One can conclude from Fig. 6.43(b) that in terms of computational time, the hot-start operation is 1.2–1.5 times faster for both \(7 \times 7 \) DM and \(10 \times 10 \) DM. This is because fewer CG iterations are necessary for the convergence in hot-start, as obvious from Fig. 6.43(a). Therefore, all the further results in this subsection are provided for the hot-started operation of the GPCG algorithm.

6.3.5.3 Results for the decoupled actuators case

The decoupled case is obviously the fastest since there is no influence between the neighbour actuators, and the Hessian matrix is diagonal. This is why it takes only a few steps for the CG part of the GPCG algorithm to converge, as seen in Fig. 6.44(b). Therefore the
computational time is within 100-140μs even for a relatively large problem of 10 × 10 actuators DM, as seen from Fig. 6.44(a).

![Graph](image)

Figure 6.44: Dependency of the: (a) computational time versus active constraints, (b) CG iterations versus the percentage of active constraints. The case of decoupled actuators in a deformable mirror.

The computational time is almost independent of the percentage of active constraints. The slight spread of computational time can be attributed to background processes in operating system and different starting points due to the randomness of the simulated disturbance. However, in our cases it requires only 2 or 3 iterations (see Fig. 6.44(b)) to find the solution of the optimisation problem.

6.3.5.4 Results for the case of coupling between four nearest actuators

Similarly to the PABB algorithm (see Section 6.3.4) and other gradient-based methods, the convergence of the GPCG algorithm depends on the condition number of the Hessian matrix. Both the Gradient Projection (GP) stage and the Conjugate Gradients (CG) stage are affected: the larger the condition number, the more iterations it takes to converge. We consider the case of coupling degree \(\gamma = 0.20 \) between four nearest actuators only, where the condition number is about \(\kappa(H) \sim 10^2 \). As the coupling between the actuators decreases, which corresponds to a decrease of the condition number of the Hessian matrix, the convergence (and therefore the computational time) improves.

The tolerance for the stopping criterion also impacts the computational time of the GPCG algorithm: one can see from the comparison of Fig. 6.45(a) and Fig. 6.45(b) that the computational time is considerably less in the case of a less restrictive tolerance. Another important observation is that the computational time tends to decrease as more and more constraints are activated.

One can see from Fig. 6.45(a) that for the unconstrained case, the GPCG algorithm solves the 7 × 7 DM problem within about 190μs, while the case of 10 × 10 actuators takes about 700μs. Such a disappointing computational performance can be explained by a frequent evaluation of the cost function and the strict tolerance of \(\tau = 10^{-5} \) that forces the algorithm to make many iterations. The case of 5% active constraints, which corresponds
6.3 Feasibility for RHC in AO with customized algorithms: GPCG

![Figure 6.45](image1)

Figure 6.45: Computational time versus the percentage of active constraints for different numbers of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour actuators, hot-start case: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.

to a moderate atmospheric turbulence, takes 170\mu s to compute the 7×7 actuators problem, and slightly less for the case of a strong turbulence, when 20\% constraints are active.

However, the tolerance of $\tau = 10^{-5}$ can be considered unnecessarily strict, and a lower precision of $\tau = 10^{-3}$ can be used. For the case of 7×7 DM, the unconstrained QP can be solved within 110\mu s; the moderate turbulence problem can be solved in 120–135\mu s, and the case of strong turbulence takes about 100\mu s to solve, as one can see in Fig. 6.45(b). The larger problem of 10×10 actuators takes 330–440\mu s in the unconstrained case, about 400–440\mu s in the case of 5\% active constraints (moderate turbulence) and about 400–420\mu s in the case of 20\% active constraints (strong turbulence).

![Figure 6.46](image2)

Figure 6.46: Iterations versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour actuators (tolerance $\tau = 10^{-5}$, hot-start): (a) for the CG part of GPCG algorithm; (b) for the GP part of GPCG algorithm.

The decrease of computational time with the number of active constraints can be also seen in Fig. 6.46(a) for the CG part and Fig. 6.46(b) for the GP part of the GPCG algorithm. As mentioned in Subsection 6.3.5.1, the number of GP iterations has been restricted because the GP algorithm is generally inefficient and is used only for the constrained part of
the algorithm. This is why the number of GP iterations in Fig. 6.46(b) for the constrained case is almost the same.

6.3.5.5 Results for the case of coupling between nearest and diagonally adjacent actuators

When one energized actuator affects four nearest neighbour actuators and four diagonally adjacent actuators, the dynamics of the systems become more complicated. Counterintuitively, the convergence of the GPCG algorithm is better; that is, both computational time and the number of iterations are lower. This should not be surprising, since the condition number of the Hessian matrix is lower for the case of coupling between four nearest neighbour actuators and four diagonally adjacent actuators, compared to the case of coupling between nearest actuators only (see Fig. 4.15).

Two cases of tolerance were considered similarly to the previous subsection: a strict tolerance of \(\tau = 10^{-5} \) and a loose tolerance of \(\tau = 10^{-3} \). One can see from Fig. 6.47(a) that the \(7 \times 7 \) actuators DM problem can be solved within 120\(\mu \)s in the unconstrained case and within 150\(\mu \)s in the case of active constraints for the tolerance \(\tau = 10^{-5} \).

![Figure 6.47: Computational time versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling \(\gamma = 0.20 \) between nearest neighbour and diagonally adjacent actuators, hot-start case: (a) tolerance \(\tau = 10^{-5} \); (b) tolerance \(\tau = 10^{-3} \).](image)

As before, the tolerance can be set to be less strict (but nonetheless accurate enough) as \(\tau = 10^{-3} \). For this case, the computational time is expectedly lower, as seen in Fig. 6.47(b). The computational time reduces 1.2–1.5x and is less spread. For example, in the \(7 \times 7 \) actuators DM case, the unconstrained case takes 70\(\mu \)s to compute, and the constrained case takes about 100\(\mu \)s. Larger problems with \(10 \times 10 \) actuators take 210\(\mu \)s for the unconstrained case. The case of 5% active constraints, which corresponds to moderate atmospheric turbulence, takes about 300\(\mu \)s, while strong turbulence (20% active constraints) takes 340\(\mu \)s.

The contribution to computational time is bigger from the CG part of the GPCG algorithm compared with the GP part, partly because the GP iterations are limited (due to their inefficiency, as mentioned earlier in Subsection 6.3.5.1. The number of GP iterations for the unconstrained case is 10–14, and for the constrained case it remains nearly the same.
Figure 6.48: Iterations versus the percentage of active constraints for different numbers of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour and diagonally adjacent actuators (tolerance $\tau = 10^{-5}$, hot-start): (a) for the CG part of GPCG algorithm; (b) for the GP part of GPCG algorithm.

(6-8 iterations) and tends to decrease with a growing percentage of active constraints, as seen in Fig. 6.48(b).

However, the main contribution is from CG iterations, as shown in Fig. 6.48(a). The number of CG iterations for the unconstrained case is from 13 to 18, and for the constrained case it is 20-22 iterations with a decreasing tendency towards 16-20 iterations. It is therefore of interest to apply some form of preconditioning to the CG part, which should improve overall performance of the GPCG algorithm.

6.3.5.6 Growth rate of the computational time with the size of the problem for the GPCG QP algorithm

The growth rate of the computational time versus the size of the problem is provided in Fig. 6.49. The filled markers show the computational time for the case when four nearest actuators are coupled, and empty markers show the coupling between the four nearest and four adjacent actuators. As before, the number of iterations (and, consequently, the computational time) strongly depends on the condition number of the Hessian matrix $\kappa(\mathbf{H})$.

The fact that the condition number is lower for the case of nearest-plus-adjacent actuators (despite more complex dynamics) explains why the computational time is lower.

According to [266], at least 70% of the GPCG computing time is due to the Conjugate Gradients method. It is therefore interesting how much the computational time can be lowered using preconditioning techniques. Since in most practical cases the Cholesky decomposition is already available, the preconditioning may be performed efficiently and with minimal changes in the algorithm.

6.3.5.7 Summary for the GPCG algorithm

The GPCG algorithm, while theoretically attractive and relatively simple, is somewhat disappointing in terms of raw performance. The main reason of relatively poor performance can be attributed to the necessity of evaluation of gradient and objective functions at each
Figure 6.49: Comparison of computational time for the GPCG QP algorithm for nearest actuators coupling (filled markers) and for the coupling between both nearest and diagonal adjacent actuators (empty markers) versus percentage of active constraints. The case of coupling degree $\gamma = 0.20$ is shown.

Such evaluations can be (and often are) computationally expensive. Nonetheless, the GPCG algorithm can be improved further as follows:

- the Barzilai-Borwein algorithm can be used instead of GP for the constrained case, although this complicates the convergence analysis;
- preconditioning can be used in the CG part of the GPCG algorithm to reduce the number of iterations since at least 70% of the GPCG computing time is due to the Conjugate Gradients method [266];
- the GPCG algorithm can be efficiently parallelised - results in [266] indicate that up to 16 processors can be used for efficient parallelising the GPCG algorithm.

The next section explores the preconditioned version of the GPCG algorithm and evaluates the benefits of preconditioning.

6.3.6 Results for Gradient Projection Preconditioned Conjugate Gradients algorithm

In the previous subsection 6.3.5, the GPCG algorithm was considered. Although the numerical results were not encouraging, it was noted that using preconditioning methods for the CG part and exploiting the banded structure of the Hessian matrix could accelerate the solution of the optimisation problem for Receding Horizon Control. The numerical routines such as dsbmv_- and dsbmv_+ in the BLAS library can be used for operations with banded matrices. Combined with efficient preconditioning techniques, this allows achieving a considerable acceleration of the GPCG algorithm.

This subsection provides the results on numerical simulations for the Gradient Projection Preconditioned Conjugate Gradients (GPreconCG) method, where the Hessian matrix H (see Fig. 6.50(a)) has been replaced by the more compact banded matrix H_b (see...
Figure 6.50: The Hessian matrix for the case of 7×7 actuators DM with nearest coupling: (a) in standard form; (b) banded form with extracted diagonal elements. Note the difference in the number of elements.

Fig. 6.50(b). The structure is exploited by extracting the leading $(k + 1) \times n$ part of the Hessian matrix \mathbb{H} column-by-column, as described in Subsection 4.6 (see Fig. 4.20). The Cholesky factorisation $\mathbb{C}^T \mathbb{C} = \mathbb{H}$ of the Hessian matrix \mathbb{H} that is used as pre-conditioner was converted for efficiency in the same way - only the banded matrix \mathbb{C}_b is used for computations. Backward and forward substitution routines were implemented using the dtbsv routine in BLAS library for efficient exploiting of the Hessian structure.

6.3.6.1 Comparison of Hot- and Cold-start for GPreconCG QP algorithm

Although the hot-start is obviously beneficial for the gradient-based QP algorithms, it is nonetheless worth analysing the impact of hot-starting on the iterations number in the GPreconCG QP algorithm.

As was mentioned in Subsection 6.3.5.6, at least 70% of the GPCG computing time is due to the Conjugate Gradients method [266]. One can see from Fig. 6.51(a) that the benefits of hot-starting increase as more and more constraints become active. The number of iterations for the unconstrained case is the same, regardless of cold- or hot-start. The constrained case is different, however: hot-start reduces the number of CG iterations about 2x times compared to cold-start, as one can see from Fig. 6.51(a), where blue-coloured markers represent cold-start and red-coloured markers are for hot-start.

The number of iterations for the Gradient Projection part of the GPreconCG are again lower, as evident in Fig. 6.51(b). In the unconstrained case, similarly to the CG part, hot-start does not make any difference, but for the constrained case the number of iterations is about two times less than for cold-start. This is reflected in the computational time, as one can see in Fig. 6.52.

6.3.6.2 Results for the case of decoupled actuators

In the decoupled case, there is no influence of the energised actuator on the neighbour actuators; therefore, the dynamics of the DM is the simplest. Consequently, the Hessian matrix
Figure 6.51: Comparison of number of iterations for cold and hot-start for the GPpreconCG algorithm versus the percentage of active constraints (nearest neighbour actuators coupling, algorithm tolerance $\tau = 10^{-5}$): (a) the CG stage of the GPpreconCG algorithm; (b) the GP stage of the GPpreconCG algorithm.

Figure 6.52: Comparison of computational time for cold- and hot-start for the GPpreconCG algorithm versus the percentage of active constraints (7×7 and 10×10 DMs with coupling $\gamma = 0.20$ between nearest neighbour actuators, algorithm tolerance $\tau = 10^{-5}$).

is diagonal9 and it is expected that the decoupled case is the fastest, as can be concluded from Fig. 6.53(a). The computational time has almost no spread, and is independent from the percentage of active constraints.

Such a fast computational time (e.g., the case of 10×10 DM is solved within 90μs) should not be surprising, as there are only two iterations for the CG part (see Fig. 6.53(b)) necessary for the convergence of the GPpreconCG algorithm.

6.3.6.3 Results for the case of coupling between four nearest actuators only

This subsection provides the comparison between the standard GPCG algorithm (results from Section 6.3.5) and the GPpreconCG. The incomplete Cholesky factorisation was used

9This is the case of the shortest prediction horizon $N_p = 2$, $N_c = 1$ that is used throughout the thesis, as it has been discussed in Subsection 4.1.2 of Chapter 4.
Figure 6.53: Computational time versus the percentage of active constraints for different number of actuators in a deformable mirror with decoupled actuators (hot-start case, tolerance $\tau = 10^{-5}$): (a) computational time versus active constraints for the decoupled case and (b) CG iterations versus active constraints.

as pre-conditioner. The structure of the Hessian matrix was exploited using its banded form (see Fig. 6.50(b)).

The numerical simulations were carried out for the case of coupling between the four nearest actuators with coupling degree $\gamma = 0.20$, and these results were compared against the results for the standard GPCG (without preconditioning and structure exploiting). One can see from the comparison of standard GPCG (see Fig. 6.54(a)) and GPreconCG (see Fig. 6.54(b)) that preconditioning and efficient structure exploiting can significantly reduce the computational time of the QP problem solution.

Figure 6.54: Computational time versus the percentage of active constraints for different numbers of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbor actuators (hot-start case, tolerance $\tau = 10^{-5}$): (a) standard GPCG algorithm; (b) preconditioning via incomplete Cholesky factorisation and structure exploiting used for GPreconCG algorithm.

We observe 3x acceleration in the unconstrained case and 1.8x acceleration in the case when few constraints are active for the 7×7 actuators DM. For larger 10×10 DM, improvements are more pronounced: 7x acceleration for the unconstrained case and 3x acceleration for the case with few active constants. The importance of these results stems
from the fact that the unconstrained case and the case of few active constraints are the most probable mode of operation for an Adaptive Optics system.

The unconstrained case for the 7×7 actuators DM takes only 56μs with the GP-preconCG algorithm, as opposed to 200μs for standard GPCG. The case of moderate turbulence, when 5% of constraints are active, requires about 90μs for GP-preconCG - a considerable improvement over GPCG with 170μs. The larger size of 10×10 actuators DM requires 95μs in the unconstrained case, 200-230μs in the case of 5% active constraints, and 250-280μs in the case of 20% active constraints for the tolerance $\tau = 10^{-5}$.

One can see from Fig. 6.54(b) that the computational time increases with the number of active constraints, and in severely constrained cases (e.g., 30-40% active constraints), the performance results for the standard GPCG and GP-preconCG are similar. This is, however, an unlikely operational mode for an adaptive optics system (but still of interest as it shows the behaviour of the QP algorithm).

The tolerance in the termination condition can be lowered in order to accelerate the GP-preconCG algorithm further. For the sake of computational time comparison, the results for tolerance $\tau = 10^{-5}$ are presented in Fig. 6.55(a), and the results for the less restrictive tolerance $\tau = 10^{-3}$ are shown in Fig. 6.55(b).

![Figure 6.55](image)

Figure 6.55: Comparison of computational time for coupling $\gamma = 0.20$ between nearest neighbour actuators in hot-start case for preconditioned GP-preconCG and different tolerances: (a), tolerance $\tau = 10^{-5}$; (b), tolerance $\tau = 10^{-3}$.

Additionally, the computational time spread is considerably less when preconditioning is used. This can be partly attributed to the fact that considerably less iterations are required for the CG part to converge to the solution of the optimisation sup-problem. Indeed, less iterations are required both for the CG part and GP part in the case of using the pre-conditioner, as one can note from the comparison of Figs. 6.56(b) and 6.56(a) for the GP-preconCG, and Figs. 6.46(a) and 6.46(b) for the GPCG algorithm.

The standard GPCG algorithm for the 7×7 DM case needs 26 CG iterations in the unconstrained case (weak turbulence), 35 CG iterations in the case when 5% of constraints are active (moderate turbulence), and 25 CG iterations in the case when 20% of constraints are active (strong turbulence). On the other hand, when preconditioning is used, the number of CG iterations reduces considerably. For the same 7×7 actuators DM case, the GP-preconCG needs only 2 CG iterations for the unconstrained case (weak turbulence), 6
CG iterations in the case when 5% of constraints are active (moderate turbulence), and 10
CG iterations in the case when 20% of constraints are active (strong turbulence).

Figure 6.56: Iterations versus the percentage of active constraints for different numbers
of actuators in a deformable mirror with coupling $\gamma = 0.20$ between nearest neighbour
actuators (tolerance $\tau = 10^{-5}$, hot-start): (a) for the CG part of GPreconCG algorithm;
(b) for the GP part of GPreconCG algorithm.

It is noteworthy that the use of banded matrices for structure exploiting is more ben-
eficial for large matrices such as 100×100 (our case of 10×10 actuators DM). In these cases
the observable acceleration is about 10-15% for the dtbsv_ and dsbmv_ routines (triangular
banded matrices) over the standard dgemv_ and dtrsv_ routines (standard full matrices).

6.3.6.4 Results for the case of coupling between nearest and adjacent actu-
ators

Convergence of the gradient-based QP algorithms is affected by the condition number of
the Hessian matrix. Since the condition number of the Hessian matrix $\kappa(H)$ is lower for the
case of coupling between four nearest neighbour and four diagonally adjacent actuators,
the GPreconCG algorithm is expected to converge faster to the solution. Indeed, from a
comparison of numerical simulation results in Fig 6.57(a) and Fig 6.57(b) for the CG and
GP parts of the GPreconCG algorithm, one can notice that the number of iterations is
considerably lower than for the case of nearest actuators coupling only (see corresponding
Fig. 6.56(a) and Fig. 6.56(b)).

It is noteworthy that for the considered case of coupling, no more than 10 iterations
in the CG part are required for a convergence regardless of the size of the optimisation
problem, as seen in Fig. 6.57(a). Each iteration, however, is more computationally expen-
sive as the problem grows larger - mainly due to the evaluation of the objective functions,
which happens much more often in the CG part.

The small number of required iterations for convergence is the reason why the GPre-
conCG QP algorithm is faster in the case of nearest and diagonal adjacent actuators. The
computational time for this case of coupling (see Fig. 6.58(a)) is lower than the time for
nearest coupling only, as seen in Fig. 6.54(b) from the previous subsection.
Figure 6.57: Iterations versus the percentage of active constraints for different number of actuators in a deformable mirror with coupling $\gamma = 0.20$ between four nearest and four diagonally adjacent actuators (tolerance $\tau = 10^{-5}$, hot-start): (a) for the CG part of the GPpreconCG algorithm; (b) for the GP part of the GPpreconCG algorithm.

Figure 6.58: Comparison of computational time for the coupling degree $\gamma = 0.20$ between nearest and diagonally adjacent actuators in hot-start case for GPpreconCG and different tolerances: (a) tolerance $\tau = 10^{-5}$; (b) tolerance $\tau = 10^{-3}$.

6.3.6.5 Growth rate of computation time with size of the problem

A comparison of the computational time growth rate for both cases of coupling is presented in Fig. 6.59. The GPpreconCG algorithm is obviously faster than the standard GPCG, with less spread of the computational time due to a lower number of iterations for the CG part.

The optimisation problem that corresponds to a DM 7×7 with four nearest neighbour coupled actuators can be solved by the GPpreconCG within 60\(\mu\)s (tolerance value is $\tau = 10^{-5}$) for the unconstrained case and 80\(\mu\)s for 20% active constraints case, providing about 3.5x and 2x acceleration, respectively, compared to the GPCG algorithm. In the larger problem of 10×10 actuators, the GPpreconCG takes about 100\(\mu\)s and 280\(\mu\)s to solve in unconstrained and 20% active constraints cases respectively, yielding 5.5x and 2.5x acceleration compared to GPCG, respectively.
For the case of nearest and diagonally adjacent actuators, the GPreconCG solves an optimisation problem for a 7×7 DM within 60μs and 90μs for unconstrained and constrained cases, producing 2.5x and 1.5x acceleration, respectively. The large optimisation problem of 10×10 nearest and diagonally coupled actuators can be solved within 100μs and 240μs, therefore providing 3.5x and 1.8x acceleration, respectively. This is as expected, since the GPCG spends most of the time in the CG part of the algorithm.

![Graph showing computational time vs number of actuators](image)

Figure 6.59: Growth rate of computational time comparison for: (a) the standard GPCG algorithm (b) for the GPreconCG algorithm.

Moreover, from Fig. 6.59(b) one can see that the computational time for the GPreconCG algorithm grows linearly with the size of the problem, which is a highly desirable feature of a QP algorithm for adaptive optics systems. More importantly, the computational time for different coupling cases is similar, which makes GPreconCG suitable even in the case of strong coupling between the actuators.

6.3.6.6 Summary of results for the GPreconCG algorithm

The results of the numerical simulations for the Gradient Projection Preconditioned Conjugate Gradients (GPreconCG) algorithm can be briefly summarised as follows:

1. The benefits of hot-start increase as more and more constraints become active. Hot-start reduces the number of CG iterations about 2x times compared to cold-start.

2. Since at least 70% of the GPCG computing time is due to the Conjugate Gradients method, the GPreconCG algorithm is considerably faster than the standard GPCG.

3. For the nearest coupling actuators case, the GPreconCG provides 3.5-5.5x acceleration in the unconstrained case and 2-2.5x in the case of 20% active constraints.

4. For the case of coupling between nearest and diagonally adjacent actuators case, GPreconCG yields 2.5-3.5x acceleration in the unconstrained case and 1.5-1.8x acceleration in the case of 20% active constraints.

Preconditioning is clearly advantageous for GPCG QP: we observed a considerable computational speed gain in both unconstrained and constrained cases. The computational
time for GPpreconCG grows linearly with the size of the problem, which is a desirable feature of a QP algorithm in adaptive optics systems. The GPpreconCG algorithm, however, is slower than PABB QP, since GPpreconCG uses evaluation of the objective function to monitor the progress in both parts (CG and GP). Nonetheless, the preconditioned version, the GPpreconCG algorithm can be considered suitable for adaptive optics problems.

6.4 Chapter Summary

The goal of the comparison of QP algorithms was to study the computational time requirements for different types of algorithms and constraints for the implementation of RHC in adaptive optics systems. The summary of the results of the computational performance of the optimisation algorithms is provided in Table 6.1, where the value of the computational time corresponds to the most probable one. One can clearly see that the main candidates for constrained Receding Horizon Control in astronomical adaptive optics are the Active set algorithms (qpOASES and RSPAS) and Gradient-based algorithms (PABB and GPpreconCG).

The Range-Space Primal Active Set algorithm is the fastest among the considered algorithms: it is 1.5–2.3x faster in the case of nearest coupled actuators, and 2–4x faster in the case of coupling between both nearest and adjacent actuators than the closest competitor, the qpOASES algorithm. Also, the Range-Space Primal Active Set is 9–12x faster than the Dual Active Set algorithm from the QPC toolbox in the case of 7×7 actuators DM and 10–15x faster in the case of 10×10 actuators DM.

The gradient-based algorithms are competitive with RSPAS as well. The PABB algorithm is 1.5–2x (and 2–3x for $\tau = 10^{-5}$) slower than RSPAS for 7×7 actuators DM problems and up to 3x (5x for $\tau = 10^{-5}$) slower for 10×10 actuators DM problems. One should note, however, that the performance of the PABB algorithm is improving when more constraints are active. Similarly, the GPpreconCG algorithm can be considered as an alternative to Active Set algorithms. The GPpreconCG is 2–2.5x times slower than RSPAS in the 7×7 case and 2–3.5x slower in the 10×10 case.

It can also be noted that tailoring the RSPAS algorithm specifically to adaptive optics problems allowed to accelerate the QP solution 15–30x times for 7×7 DMs and 30–40x times for 10×10 DMs compared to the standard MATLAB’s Dantzig-Wolfe algorithm. The acceleration is especially significant in the constrained case: the hot-started RSPAS algorithm is up to 200x faster than Dantzig-Wolfe in the case of strong turbulence for the 10×10 actuators DM problem.

Computational feasibility of Receding Horizon Control In this Chapter we have compared Interior Point, Active Set, Branch-and-Bound, and Gradient-based QP algorithms for the online constrained Quadratic Programming problem in adaptive optics control. The results are certainly encouraging. While the Interior Point QP algorithms (see Subsection 6.2.1) do not seem to be a good choice due to the lack of efficient warm-start and typical computational complexity of $O(n^3)$, they might be useful in the case of strong atmospheric turbulence since the computational time does not depend on the constraints.
Table 6.1: Summary of the performance of the optimisation algorithms for Receding Horizon Control of a deformable mirror for astronomical adaptive optics.

<table>
<thead>
<tr>
<th>Turbulence strength</th>
<th>DM size</th>
<th>Coupling type between the actuators</th>
<th>Dantzig-Wolfe</th>
<th>Branch & Bound †</th>
<th>Interior Point †</th>
<th>Dual Active Set †</th>
<th>Active Set §</th>
<th>Primal ‡</th>
<th>PABB ‡‡</th>
<th>GPCG ‡‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak turbulence, 0% of active constraints</td>
<td>7 × 7</td>
<td>nearest only</td>
<td>360</td>
<td>228</td>
<td>521</td>
<td>208</td>
<td>54</td>
<td>23</td>
<td>53 (88)</td>
<td>56 (56)</td>
</tr>
<tr>
<td></td>
<td>10 × 10</td>
<td>nearest + adjacent</td>
<td>367</td>
<td>232</td>
<td>388</td>
<td>208</td>
<td>54</td>
<td>21</td>
<td>46 (60)</td>
<td>56 (57)</td>
</tr>
<tr>
<td></td>
<td>7 × 7</td>
<td>nearest only</td>
<td>947</td>
<td>873</td>
<td>1034</td>
<td>495</td>
<td>144</td>
<td>28</td>
<td>100 (149)</td>
<td>95 (98)</td>
</tr>
<tr>
<td></td>
<td>10 × 10</td>
<td>nearest + adjacent</td>
<td>963</td>
<td>865</td>
<td>1015</td>
<td>497</td>
<td>148</td>
<td>32</td>
<td>79 (92)</td>
<td>104 (102)</td>
</tr>
<tr>
<td>Moderate turbulence, 5% of active constraints</td>
<td>7 × 7</td>
<td>nearest only</td>
<td>600</td>
<td>318</td>
<td>586</td>
<td>289</td>
<td>55</td>
<td>31</td>
<td>49 (59)</td>
<td>60 (90)</td>
</tr>
<tr>
<td></td>
<td>10 × 10</td>
<td>nearest + adjacent</td>
<td>584</td>
<td>300</td>
<td>584</td>
<td>293</td>
<td>54</td>
<td>28</td>
<td>42 (57)</td>
<td>54 (82)</td>
</tr>
<tr>
<td></td>
<td>7 × 7</td>
<td>nearest only</td>
<td>3280</td>
<td>1165</td>
<td>1478</td>
<td>686</td>
<td>145</td>
<td>63</td>
<td>77 (136)</td>
<td>141 (223)</td>
</tr>
<tr>
<td></td>
<td>10 × 10</td>
<td>nearest + adjacent</td>
<td>3115</td>
<td>1100</td>
<td>1641</td>
<td>700</td>
<td>150</td>
<td>66</td>
<td>56 (83)</td>
<td>134 (156)</td>
</tr>
<tr>
<td>Strong turbulence, 20% of active constraints</td>
<td>7 × 7</td>
<td>nearest only</td>
<td>1258</td>
<td>260</td>
<td>590</td>
<td>343</td>
<td>54</td>
<td>34</td>
<td>50 (64)</td>
<td>82 (106)</td>
</tr>
<tr>
<td></td>
<td>10 × 10</td>
<td>nearest + adjacent</td>
<td>1245</td>
<td>279</td>
<td>578</td>
<td>353</td>
<td>54</td>
<td>29</td>
<td>43 (53)</td>
<td>74 (117)</td>
</tr>
<tr>
<td></td>
<td>7 × 7</td>
<td>nearest only</td>
<td>15510</td>
<td>784</td>
<td>1630</td>
<td>942</td>
<td>142</td>
<td>71</td>
<td>85 (87)</td>
<td>212 (274)</td>
</tr>
<tr>
<td></td>
<td>10 × 10</td>
<td>nearest + adjacent</td>
<td>15210</td>
<td>688</td>
<td>1637</td>
<td>948</td>
<td>150</td>
<td>74</td>
<td>84 (115)</td>
<td>182 (232)</td>
</tr>
</tbody>
</table>

† - the algorithm is from the QPC toolbox.
‡ - the algorithm is my own implementation in the QPFTL toolbox.
§ - results are for hot-start operation.
results for the PABB and the GPreconCG algorithm are for coupling $\gamma = 0.20$ and for tolerance: $\tau = 10^{-3}$ (and $\tau = 10^{-5}$ in brackets).
Gradient-based methods are more attractive because of their ease of implementation, rather effective hot-start, considerably lower computational complexity of $O(n)$, and the possibility of preconditioning. The PABB QP algorithm (see Subsection 6.3.4) is suitable only for relatively well-conditioned problems, where $\kappa(\mathbb{H}) \leq 10^3$. The GPpreconCG algorithm, which allows both projection and preconditioning, seems more promising: it allows solving a target 7×7 DM problem within about 80μs for few active constraints, while larger problems of 10×10 DMs require about 100μs.

We found that the most promising methods for online constrained control in adaptive optics can be Primal (see Subsection 6.3.2) or Parametric Active Set (see Subsection 6.3.3) algorithms. Using factorisation updates, bound constraints and hot-start, we can considerably reduce the computational time and complexity (each iteration is $O(n^2)$ flops). It takes only about 40μs to solve the hot-started QP for the 7×7 problem regardless of the percentage of active constraints. Even large systems like 10×10 actuators can be solved within 70μs for moderate turbulence (when 10-15% of constraints are active).

Summary of Computational feasibility of Receding Horizon Control. The comparison between the Interior Point, Active Set, and Gradient-based QP algorithms indicates that the Primal Range-Space Active Set QP solver with bound constraints, structure exploiting and hot-start is favourable for adaptive optics applications. The constrained QP problem can be solved online for a deformable mirror with 7×7 coupled actuators and 1000 Hz sampling rate within 40μs even for the case of 40% of active constraints, which corresponds to severe atmospheric turbulence. The largest considered problem, which is a 10×10 actuators DM, can be solved within 150μs even for a pessimistic case of 20-40% of active constraints in hot-start mode. This is well within the requirement of 1 msec of the computational deadline and is almost as fast as a simple Linear Quadratic Regulator (see next Chapter 7).

In addition, as we will discuss in the next chapter, RHC has similar performance in terms of output disturbance rejection in the unconstrained case. More importantly, RHC is considerably better in the constrained operation of adaptive optics compared to the Linear Quadratic Regulator.

From a practical perspective, problems larger than 10×10 actuators should be sent to different CPU cores. Given current high-performance computers, such as IBM System x3750 with 4x Intel Xeon Processors that have 8 cores 2.4GHz each, we can handle $4 \times 8 \times 100 = 3200$ actuators, allowing us to deal with mirrors of up to 56×56 actuators.

Conclusion of feasibility of constrained control in adaptive optics. Thus, our conclusion is that constrained Receding Horizon control is computationally feasible to be used in adaptive optics systems. This allows the use of adaptive optics in the case of stronger atmospheric turbulence and therefore constitutes an important step towards attaining the full compensation potential of deformable mirrors.
Chapter 7

Performance evaluation for Receding Horizon Control in Adaptive optics

Discovery consists in seeing what everybody has seen, and thinking what nobody has thought.

— Albert Szent-Gyrgyi

Constrained Receding Horizon Control, according to the results of the previous chapters, is shown to be feasible for astronomical adaptive optics systems. This chapter provides a performance analysis of the RHC approach and a comparison with an established control method such as the Linear Quadratic Regulator (LQR) control. A motivational example in Section 7.1 shows the sub-optimality of the saturated control in the case of actuator coupling in a deformable mirror. An initial comparison of Receding Horizon Control and Linear Quadratic Regulator in terms of the residual uncompensated disturbance for unconstrained and constrained cases is then provided in Section 7.2. Further and more detailed comparison of the output disturbance rejection performance for Receding Horizon Control and LQR control is given in Section 7.3. Finally, Section 7.4 compares Receding Horizon Control and the Linear Quadratic Regulator in terms of their computational time for astronomical adaptive optics applications, to answer the question “Is the constrained Receding Horizon Control worth the effort?” The results are summarised in Section 7.5.

7.1 Saturation versus constrained optimisation: A Motivational Example

A good question to ask is: Why is it necessary to use RHC with a constrained QP if the control input produced by LQR can simply be saturated to give a faster controller? To answer this question, a motivational example is given that illustrates the benefits of the constrained optimisation.
Figure 7.1: The Hessian matrices for different types of actuators coupling in a deformable mirror: a) between four nearest neighbour actuators; b) between four nearest neighbour and four diagonally adjacent actuators; c) between eight nearest neighbour and four diagonally adjacent actuators.

First, it is worth noting that in the case of a deformable mirror with a square grid of actuators underneath the reflective surface, the condition number $\kappa(H)$ of the Hessian matrix $H \triangleq \Gamma^T Q \Gamma + R$ depends on a coupling degree γ between the actuators. The coupling can be between the nearest actuators only, or between the four nearest and four diagonally adjacent actuators (see Fig. 3.2 for the actuator coupling schemes). The coupling between the actuators affects the structure of the Hessian matrix, as seen in Fig. 7.1. Consequently, the condition number of the Hessian matrix will grow as the coupling degree increases, as seen in Fig. 7.2(a).

The actuators in real systems are slightly different from one to the next because of differences in their mechanical properties or inaccuracies resulting from a model obtained by system identification methods. Consequently, the poles of a transfer function, which correspond to actuators dynamics, will have slightly different values. This can affect the conditioning of the Hessian matrix, as seen in Fig. 7.2(b).

Figure 7.2: Condition number of the Hessian matrix: (a) for the different types of coupling between the actuators in a deformable mirror (for the case of a 7×7 actuators DM); (b) versus the coupling degree for the 7×7 actuators DM, depending on the variability of actuator dynamics.

The degree of inter-actuator coupling has another consequence for optimisation algorithms: if the starting point is chosen as the saturated unconstrained solution, it may take more computational time for the algorithm to explore the convex set. This is true
for Active Set algorithms (unless an LP problem is used for Phase I). The convergence of gradient-based algorithms, such as Conjugate gradients, Barzilai-Borwein, or Steepest Descent, depends on the condition number: their convergence deteriorates as the problem becomes poorly-conditioned.

More details of the structure of the optimisation problem and the influence of inter-actuator coupling can be found in Section 4.5. It is important to understand the influence of the condition number of the Hessian matrix on the solution of a control problem because this explains why saturating LQR control inputs is undesirable and may lead to a poor and erratic behaviour of the closed loop system.

\subsection{An illustrative example of constrained optimisation in the presence of coupling}

Consider a simple optimisation problem:

\[
\min_x J(x) = \frac{1}{2} x^T \mathcal{H} x + x^T F
\]

with only two variables and the following matrices:

\[
\mathcal{H} = \begin{bmatrix} 1 & \xi \\ \xi & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 0 \\ -4 \end{bmatrix},
\]

where the parameter \(\xi\) controls the condition number of the Hessian matrix. The goal is to find the optimal solution that minimises the quadratic objective function \(J(x)\).

The condition number of the Hessian matrix can be thought of as a measure of how anisotropic (stretched or squeezed) the contours of the optimisation problem are. In the ideal case, the contours of an optimisation problem are circles. For example, if \(\xi = 0\) in (7.2) and the variables do not influence each other, the condition number of the Hessian matrix is \(\kappa(\mathcal{H}) = 1\). Therefore the problem is isotropic (i.e., symmetrical in any direction), as seen in Fig. 7.3a.

As the conditioning number grows, the problem becomes increasingly anisotropic as seen in Fig. 7.3b. In this case the contours of the problem are ellipses, which makes the problem harder to solve for an optimisation algorithm since the optimum is harder to find in a long “valley” of a convex set.

Unconstrained problems are relatively easy to solve, but constraints make the problem more difficult. As will be shown, the saturating, or clipping, of the unconstrained solution of an optimisation problem is no longer optimal in the coupled case. While the saturated values themselves can be optimal, free (unconstrained) variables are likely to have different values. This means that the saturated LQR control will give wrong control inputs that may lead to erratic closed-loop behaviour.

The following subsections present a comparison of the optimal solutions found by RHC via constrained optimisation and by LQR via clipping (saturating) the unconstrained solution for both decoupled and coupled problems.
Figure 7.3: The contours of the unconstrained optimisation problem for different types of coupling: a) decoupled case, when $\xi = 0$ in (7.2); b) nearest coupling, when $\xi = 0.5$. Note how the shape of the contours changes in these cases.

7.1.2 The unconstrained case

Expectedly, since the optimisation problem is unconstrained, both LQR and RHC will produce the same answer\(^1\) because RHC and LQR are basically two approaches for solving the same problem.

Decoupled case, coupling degree $\xi = 0$ The decoupled case from the optimisation point of view represent the diagonal Hessian matrix, which results in an isotropic problem with circle contours as shown in Fig. 7.3a. In the decoupled case ($\xi = 0$) the solution is $x_d^{LQR} = x_d^{RHC} = (0, 4)$, that is, both LQR and RHC give the same answer as expected.

Coupled case, coupling degree $\xi = 0.2$ When the Hessian matrix has off-diagonal components, the optimisation problem becomes more difficult to solve. Consider the case of coupling degree $\xi = 0.2$, which gives similar ellipsoid contours as those shown in Fig. 7.3b. Now both optimisation problems will be solved for the unconstrained case. For the coupled case ($\xi = 0.2$) the solution $x_c^{LQR} = x_c^{RHC} = (-0.8333, 4.1666)$, which gives the minimum value of the objective function $J(x) = -8.3333$ from (7.1).

7.1.3 The constrained case

Now consider the constrained case, and impose the following constraints on the variables:

$$-1 \leq x_1 \leq 1, \quad -1 \leq x_2 \leq 1$$ \hspace{1cm} (7.3)

The contours of the constrained optimisation problem are shown in Fig. 7.4a for the decoupled case and in Fig. 7.4b for the coupled case.

\(^1\) This is true when both problems have the same weighting matrices Q and R, and the terminal cost is given by P, which is the solution of the DARE (see equations (3.9) and (3.18)). That is, the problem will be the same when the matrix P characterises the rest of the quadratic cost for RHC.
Figure 7.4: The contours of the constrained optimisation problem for different types of coupling: a) decoupled case, when $\xi = 0$ in (7.2); b) nearest coupling, when $\xi = 0.2$ in (7.2).

Decoupled case, coupling degree $\xi = 0$ In the decoupled case ($\xi = 0$) both LQR and RHC will again produce the same answer $x_d^{LQR} = x_d^{RHC} = (0,1)$. This can be seen in Fig. 7.4a, where both answers correspond to the constrained minimum $\min J(x_1, x_2) = -3.50$ of the quadratic objective function from (7.1). This is as expected because the optimisation problem is isotropic (i.e., the coupling degree $\xi = 0$).

Coupled case, coupling degree $\xi = 0.2$ In the case of a coupled (and therefore anisotropic) problem, the answer for the control input will be different. For LQR, when the constrained solution is calculated via saturation (clipping) of the unconstrained minimum, the answer is $x_c^{LQR} = (-0.8333, 1.000)$ and the minimum of the cost function $\min J_c^{LQR}(x_1, x_2) = -3.3194$.

However, the constrained minimum of the objective function $J_c(x_1, x_2) = -3.520$. This discrepancy may seem small, but the difference in the control input is more pronounced. The true constrained minimum found by an optimisation algorithm is $x_c^{RHC} = (-0.200, 1.000)$, which gives the constrained minimum $\min J_c^{RHC}(x_1, x_2) = -3.520$.

This is illustrated in Fig. 7.5, where the bright area inside the hatched box (constraints for control input) represents the constrained optimisation problem.

7.1.4 Summary for the illustrative example

This example illustrates the advantages of constrained RHC over saturated LQR: such a difference in the control inputs, as shown in the forthcoming sections, leads to erratic closed-loop behaviour.

The degree of influence of the energised actuator on its neighbour actuators makes the underlying optimisation problem more difficult to solve. The example above shows that the RHC solution is better than saturated LQR, and the more coupled the system, the further the LQR solution will be from the true constrained optimum.

While the suboptimality of the saturated solution seems obvious, an important question is: How significant is the impact of suboptimality on the control inputs generated by a
controller for a DM in AO systems? The following sections of this chapter aim at answering this question.

Figure 7.5: Difference between LQR and RHC in terms of constrained control inputs.

7.2 Initial comparison of the residual disturbance for Linear Quadratic Regulator and Receding Horizon Control

Following the motivational example from the previous section, this section gives an initial comparison of the disturbance rejection performance for the Linear Quadratic Regulator (LQR) and Receding Horizon Control (RHC). We use the amplitude of the residual output disturbance, which remained in the DM's output after the controller attempted to compensate the disturbance, as a metric of the controller's performance. That is, by the residuals we mean the amplitude of an output disturbance that is left over after the compensation by the controller. One can think of two ways of comparison of the disturbance rejection performance for RHC and LQR.

The first method is to compare the distribution of residuals surface-wise, which means comparing the instantaneous distribution of residuals at each sampling instance. That is, at the given sampling instance, the residuals distribution across all channels (actuator outputs) is evaluated. The second method is to compare the distribution of the residuals actuator-wise, which means running a long simulation and calculating the distribution of the residuals that correspond to the selected actuator only.

These comparisons are approximate and do not account for the mirror’s shape: the control inputs in every actuator are interpolated by the mirror itself, and the residual disturbance on the mirror should be estimated. Nonetheless, these results should give an idea of the benefits of constrained Receding Horizon Control in Adaptive optics.
7.2.1 Details of Numerical Simulations for the comparison of LQR and RHC controllers performance

To compare the performance of output disturbance rejection of LQR and RHC controllers, the numerical simulations were performed similarly to the feasibility study in Section 6.1 Chapter 6. That is, the model of the output disturbance from (3.6) driven by a white noise is used for generation of a long series of the disturbance. Each instance is a vector of size \((n \times n) \times 1\), where \(n\) is the number of actuators. The initial states of both plant and disturbance were assigned to zero, and the amplitude was gradually increased to reach more and more constraints as time progressed. The effect of this can be seen in Fig. 7.9, where the amplitude of an uncompensated disturbance grows from the sampling instance 300 as the control input reaches the constraints. Both LQR and RHC controllers were run to compensate for the same disturbance, and the distribution of residuals was recorded for further analysis.

![Diagram of actuators in a 15 x 15 grid](image)

Figure 7.6: Scheme of the actuators in a 15 x 15 actuator deformable mirror (for more detailed simulations, the north-west corner is considered).

The DM model has 225 actuators arranged in a 15 x 15 grid, and each actuator is coupled with its four nearest neighbour actuators, as shown in Fig. 7.6. The coupling degree between nearest actuators is \(\gamma = 0.2\) unless stated otherwise. The same model of a deformable mirror was used for RHC and LQR. We are interested in a north-west sector of the 15 x 15 DM, particularly actuators 1, 2, 3, 16 and 17, as they affect each other.

7.2.2 Performance comparison for the unconstrained case

The distribution of the uncompensated residuals for the case when controllers do not reach constraints is presented in Fig. 7.7 for both RHC (marked by \(-\bullet-\)) and LQR (marked by \(-\triangle-\)). One can see that in the unconstrained case, the performance of LQR and RHC is similar. The performance of LQR and RHC is similar, with LQR performing slightly
better than RHC. The instantaneous surface-wise distribution of the disturbance residuals is presented in Fig. 7.8.

![Residuals Surface-Wise](image)

Figure 7.7: Residuals surface-wise for a 15 x 15 actuators DM in the unconstrained case.

![Distribution of residuals](image)

Figure 7.8: Distribution of uncompensated residuals for a DM with 225 (15 x 15) nearest coupled actuators with coupling degree \(\gamma = 0.2\) for sampling instance 480 for the unconstrained case: (a) for Linear Quadratic Regulator; (b) for Receding Horizon Control.

7.2.3 Performance comparison for the constrained case

The results for the constrained case differ from those for the unconstrained case. The distribution of the residuals for the uncompensated disturbance was recorded for LQR and RHC, and the results are presented in Fig. 7.9. Starting from sampling instance 300 onwards, at which point an increasing number of constraints become active, it is clear from Fig. 7.9 that LQR (marked by \(-\bigtriangleup-\)) has more uncompensated disturbance compared to RHC (marked by \(-\bigcirc-\)).

When only a few constraints are active, the amplitude of the RHC residuals is 25-30% less than for LQR. As the number of active constraints increases the benefits of
RHC in terms of disturbance rejection are more noticeable: the amplitude of the residuals is about two times less than for LQR. This should not be surprising since RHC solves the constrained optimisation problem and gives control inputs that are optimal within constraints, as shown in the illustrative example in Fig. 7.5.

One can also notice a considerable increase of distribution spread of the residuals for LQR for sampling instances 1600 and onwards. Such behaviour of the control inputs generated by LQR in the constrained case is erratic due to high-gain control. To explore the difference in LQR and RHC behaviour, the control inputs were plotted for neighbour actuators 1, 2, 3, 16 and 17 in Fig. 7.10(a) for LQR and in Fig. 7.10(b) for RHC. These actuators were chosen because they are in the same neighbourhood (top left corner of the DM), as seen in Fig. 7.6.

As shown in Fig. 7.10(a) for LQR starting from sampling instance 650, an abrupt change is evident in the control inputs from LQR, with a change from (-230) rel units to $(+230)$ rel units. By contrast, Fig. 7.10(b) shows the control inputs generated by RHC, which are continuous and smooth, indicating better disturbance rejection.
within one sampling instance. This kind of erratic behaviour of a controller is harmful for a continuous-faceplate DM, potentially leading to surface damage. Rapid changes in the saturated mode of LQR become more frequent as the number of active constraints increases, which is why the distribution of residuals in Fig. 7.9 grows considerably after sampling instance 1600.

In contrast, RHC control signals do not exhibit such abrupt changes, as show in Fig. 7.10(b). For example, the control input in actuator 16 (blue line) is saturated for only 200 samples in the RHC case, while for LQR this input is saturated for about 1700 sampling instances (from 250 to 1900). This latter case includes at least seven abrupt changes from the minimal allowable (-230) to the maximal allowable (+230) constraint value. Similar behaviour is shown for actuator 1: RHC generates only three short intervals of saturated control (sampling instances 300-350, 750-1000 and 1600-1750), whereas LQR saturates the control signals from sampling instance 300 up to 1900 with abrupt changes that could be harmful for the deformable mirror’s surface.

7.2.4 Summary for initial comparison of disturbance rejection performance

This brief analysis of performance and comparison of LQR and RHC shows that Receding Horizon Control:

1. gives similar disturbance rejection performance in the unconstrained case compared to LQR;
2. gives 1.3 – 2 times better disturbance rejection in the constrained case;
3. prevents abrupt changes in control inputs when constraints are active, which improves reliability and reduces the risk of mirror surface damage.

Over-saturation and further comparisons between the Linear Quadratic Regulator and Receding Horizon Control are discussed in the forthcoming sections.

7.3 Output disturbance rejection performance for Receding Horizon Control and Linear Quadratic Regulator

The abrupt changes in the control inputs generated by LQR, as observed in Fig. 7.10(a), compel us to investigate the problem deeper. At first glance, these abrupt changes in the control input can be attributed to the fact that LQR gains are optimal for the unconstrained case. When the constraints are reached, the optimum of the cost function no longer corresponds to the saturated control inputs, as shown in the example in Section 7.1. In the constrained case, the free variables, which correspond to a constrained optimum, differ from the saturated unconstrained ones. The larger the condition number of the Hessian matrix $\kappa(\mathbb{H})$, the more apparent the difference. This discrepancy between the control inputs and the constrained optimal inputs leads to a deterioration in output disturbance rejection performance.
The inferior performance of LQR in the constrained case is only part of the problem. Another issue is the over-saturation of LQR control inputs in the constrained case, as seen in Fig. 7.10(a). The term “over-saturation” refers to the situation in which the controller demands a control input level much greater than the available range [123]. The coupling between actuators makes over-saturation worse, as the control inputs in the case of inter-actuators coupling begin to affect each other.

The goal of the controller in adaptive optics systems is to reject atmospheric turbulence as completely as possible. Thus, it is beneficial to use high-gain control. This can be accomplished by setting the matrix $R = 10^{-12}I$ in the cost function (3.9):

$$J = \sum_{k=0}^{\infty} \left(\frac{1}{2}x^TQx + \frac{1}{2}u^TRu \right),$$

and therefore in the gain matrix (3.11):

$$K_{gain} = (B^T\Omega_KB + R)^{-1}B^T\Omega_KA \tag{7.5}$$

However, the problem is that a large gain K_{gain} produces an excessively large control signal in the constrained case, leading to over-saturation and erratic behaviour of control inputs. On the other hand, a small gain control avoids an over-saturation (e.g., corresponding to a weighting matrix $R = 10^{-7}I$), but produces an insufficient control effort in the mild atmospheric conditions and therefore poor performance.

Further numerical simulations for comparison of RHC and LQR

Therefore, more detailed numerical simulations are necessary for the comparison of LQR and RHC. We use the same model of a deformable mirror with 15×15 nearest coupled actuators for both RHC and LQR. The output disturbance was generated once, saved and then re-used for both controllers. The setup for the numerical simulations was the same as described in Subsection 7.2 above. Both controllers were run to compensate for the same output disturbance. The sum of squares of the residual disturbance at each actuator was used for the performance comparison. Three different cases of LQR, namely high-gain control (when the matrix $R = 10^{-12}I$), low-gain control (the matrix $R = 10^{-7}I$) and an “optimised” case (when $R = 10^{-8}I$).

7.3.1 High-gain control case

In the case of high-gain control, we put the weighting matrix $R = 10^{-12}I$. Consider a LQR control for a DM with 15×15 actuators with a coupling between four nearest neighbours. Depending on the coupling degree γ, the maximum gain in the matrix K_{gain} will be different, as shown in Table 7.1. The coupling degree can be associated with the condition number of the corresponding Hessian matrix.

The deformable mirror with 15×15 actuators is driven by LQR to reject the same output disturbance as for RHC. The only difference is the varied degree of coupling γ between the actuator 16 and its neighbours: decoupled case $\gamma = 0$, weak coupling $\gamma = 0.13$, stronger coupling $\gamma = 0.20$, and the strongest case $\gamma = 0.30$. The choice of matrix $R = 10^{-12}I$
Table 7.1: Largest LQR gain in the gain matrix, \(\max(K_{gain}) \), and coupling degree \(\gamma \): high-gain control case.

<table>
<thead>
<tr>
<th>Coupling degree between actuators, (\gamma)</th>
<th>Corresponding condition number, (\kappa(\mathbb{H}))</th>
<th>Maximal gain value, (\max(K_{gain}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>(\kappa \sim 10^3)</td>
<td>5.25e + 03</td>
</tr>
<tr>
<td>0.20</td>
<td>(\kappa \sim 10^2)</td>
<td>1.24e + 03</td>
</tr>
<tr>
<td>0.13</td>
<td>(\kappa \sim 10^1)</td>
<td>1.06e + 03</td>
</tr>
<tr>
<td>0.00</td>
<td>(\kappa \sim 10^0)</td>
<td>9.83e + 02</td>
</tr>
</tbody>
</table>

yields a high-gain control, and the coupling between the actuators makes the problem of over-saturation more apparent. This is illustrated in Fig. 7.11, where all control inputs are shown for actuator 16 (see the DM scheme in Fig. 7.6).

Figure 7.11: Control inputs for actuator 16 in a 15 × 15 actuator deformable mirror for the same output disturbance: influences of coupling degree on the behaviour of control inputs in the constrained case of LQR. The blue line is added for comparison with RHC for the same actuator 16.

Further analysis of Fig. 7.11 allows for a comparison of the selected control inputs of constrained RHC with \(\gamma = 0.20 \) (marked by \(-\circ-\)) with high-gain saturated LQR. Initially, RHC behaves exactly like LQR. However, the control input then goes off the constraints on sampling instance 500, and proceeds with lower gain, resembling the LQR control signal for \(\gamma = 0 \).

The residuals distribution for actuator 16 can be compared for high-gain LQR and RHC in Fig. 7.12. One can see that for the unconstrained case (up to sampling instance 200), LQR and RHC provide the same performance. As more constraints are activated, RHC shows a superior performance in terms of disturbance rejection.

One can conclude from Fig. 7.11 that the coupling degree increases the maximum gain in the matrix \(K_{gain} \) even further for saturated LQR, resulting in over-saturation in the
Figure 7.12: Comparison of uncompensated residuals distribution in a deformable mirror with 15×15 nearest coupled actuators for RHC and constrained LQR.

case of the strongest coupling $\gamma = 0.30$ at sampling instance 205, while the weakly coupled case $\gamma = 0.13$ saturates only on sampling instance 310. The high-gain control in the case of strong coupling clearly represents a problem for DM operation: abrupt and rapid changes in control inputs, which resemble waffle-mode\(^2\), are hazardous for the surface of DMs.

7.3.2 Low-gain control case

As a reasonable solution for the over-saturation problem with constrained LQR operation, one can resort to a low-gain control by changing the values of the matrix R to $R = 10^{-7}I$ to yield a lower-gain control (see Table 7.2) that is less susceptible to over-saturation. This subsection provides a comparison of the control inputs for the low-gain LQR case. The resulting control inputs are presented in Fig. 7.13

Table 7.2: Largest LQR gain in the gain matrix, $\max(K_{gain})$, and coupling degree γ: low-gain control case.

<table>
<thead>
<tr>
<th>Coupling degree between actuators, γ</th>
<th>Corresponding condition number, $\kappa([H])$</th>
<th>Maximal gain value, $\max(K_{gain})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>$\kappa \sim 10^3$</td>
<td>7.46e + 02</td>
</tr>
<tr>
<td>0.20</td>
<td>$\kappa \sim 10^2$</td>
<td>7.45e + 02</td>
</tr>
<tr>
<td>0.13</td>
<td>$\kappa \sim 10^4$</td>
<td>7.38e + 02</td>
</tr>
<tr>
<td>0.00</td>
<td>$\kappa \sim 10^0$</td>
<td>7.12e + 02</td>
</tr>
</tbody>
</table>

The output disturbance rejection performance for the low-gain LQR control is shown in Fig. 7.14 for different coupling degrees γ. The RHC again shows the best performance in

\(^2\)It can be speculated the reconstruction geometry is not the only source of waffle mode and saturated LQR can contribute to waffle mode as well. The over-saturation in the high-gain control mode can trigger the waffle-like behaviour as well, which is likely what the authors in [154] were observing.
the constrained and unconstrained cases, but this time because LQR does not use the full available control power of the actuators. The behaviour of the control inputs is not abrupt, as seen in Fig. 7.15. However, such behaviour is achieved at the price of considerably lower disturbance rejection performance, as seen in Fig. 7.14.

Fig. 7.15 provides control inputs for different actuators; namely, actuators 1, 2, 3, 16, and 17 for the low-gain LQR case. These control inputs can be compared with the high-gain control inputs in Fig. 7.11 to show the impact of the weighting matrix R on the behaviour of control signals. In the low-gain mode, however, it is clear that LQR does not use the
full control authority. This cautious control leaves the disturbance largely uncompensated, which is why the uncompensated disturbance in Fig. 7.14 is considerably higher for LQR compared to RHC.

Figure 7.15: Control inputs generated by LQR for a 15×15 actuators DM with nearest coupled actuators in the constrained case: low-gain operation.

7.3.3 Optimised gain control case

It is possible, after some trial and error, to find the LQR gain matrix that produces a closed-loop operation without abrupt changes in control inputs, while providing a reasonable level of disturbance rejection. In this example such a gain matrix corresponds to the weighting matrix $R = 10^{-8}I$, and the control inputs are shown in Fig. 7.16.

Figure 7.16: Control inputs generated by LQR for a 15×15 actuator DM with nearest coupled actuators in the constrained case: optimised gain.
The LQR controller with the optimised gain matrix clearly uses the full authority of the actuators, although there are few abrupt changes in the control inputs (note the erratic behaviour near sampling instance 500, 1000, 1200 and 1700). In this case of the optimised gain, saturated LQR can be competitive with RHC in terms of disturbance rejection performance.

![Distribution of output disturbance residuals for constrained RHC and saturated LQR.](image)

Figure 7.17: Distribution of output disturbance residuals for constrained RHC and saturated LQR.

Comparing LQR residuals (marked by $-$ \triangle $-$) and RHC residuals (marked by $-$ \bullet $-$) in Fig. 7.17, one can conclude that the performance of RHC and LQR are similar in terms of disturbance rejection. However, the spikes and abrupt changes in the control inputs for saturated LQR are undesirable for DM operation.

It can be concluded that although the saturated LQR control in this case provides good disturbance rejection performance, similar to that provided by RHC, the need to tweak the matrix R manually to find a reasonable gain matrix is undesirable. The goal is to develop a control technique that can work without any supervision to provide disturbance rejection for changing atmospheric disturbance conditions. Moreover, Fig. 7.19 to be presented in the next subsection, will show that RHC clearly outperforms the saturated LQR in terms of disturbance rejection performance for a wide range of operation conditions.

7.3.4 Summary of the disturbance rejection performance comparison

The results of the numerical simulations above indicate that it is possible to find a gain matrix for saturated LQR that provides both adequate disturbance rejection performance and relatively smooth control inputs. By increasing the amplitude of the output disturbance, one can see the behaviour of a controller when more and more constraints become
active\(^3\). The comparison shows that even for the optimised LQR gain there are still some
spikes and abrupt changes in the control input (see the line marked by \(\downarrow\) in Fig. 7.18),
unlike for RHC control (marked by \(\blacklozenge\)\(\leftarrow\)).

![Graph showing control inputs for constrained RHC and saturated LQR for different gains](image)

Figure 7.18: Control inputs for constrained RHC and saturated LQR for different gains: the data are for actuator 16, which is coupled \(\gamma = 0.20\) with its nearest neighbours.

Different gains in LQR produce more or less aggressive controls, and, consequently,
different residual disturbance levels. The comparison in terms of distribution of residual
disturbance in Fig. 7.17 already proves the initial assumption that RHC performs better
(or at least the same) in terms of disturbance rejection compared to saturated LQR. To
make the comparison more apparent, the sum of squares of the residuals was plotted in
Fig. 7.19 in logarithmic scale, and footnote \(^3\) explains how the constraints were activated.

While high-gain LQR (marked by \(\uparrow\)\(\leftarrow\)) provides the same disturbance rejection performance in the unconstrained case as RHC (marked by \(\downarrow\)\(\leftarrow\)), RHC performs much
better when the control inputs are saturated. While the optimised gain LQR (marked by
\(\downarrow\)\(\leftarrow\)) provides almost the same disturbance rejection as RHC in the constrained case,
it is considerably worse at cancelling the atmospheric turbulence in the unconstrained
case, as one can see in Fig. 7.19. This is because lower-gain controllers do not use the
full available control power to reject the output disturbance. In contrast, RHC makes
the best possible choice for adaptive optics system operation, therefore providing the best
disturbance rejection performance at the cost of increased computational time.

Summarising the above results, one can conclude that saturated LQR control does not
always provide a reliable closed-loop operation (abrupt changes and spikes due to relatively\(^3\) As explained in Section 7.2.1, to activate more and more constraints, we use the same approach as in
Section 6.1 Chapter 6. The amplitude was gradually increased to reach more and more constraints as time
progressed. Therefore, the controller must use all the actuators’ authority to compensate (at least partly)
the disturbance. The uncompensated output disturbance tends to increase, as seen in the figures in this
section.
Figure 7.19: Sum of squares of residual disturbance for a deformable mirror with 225 (15 × 15) actuators DM: comparison between constrained and unconstrained operation for LQR and RHC. (The simulation starts unconstrained, and more and more constraints are reached as time progresses due to the nature of the simulated output disturbance, see footnote 3).

high-gain control) and a good disturbance rejection performance compared to constrained Receding Horizon Control with online optimisation.

7.4 Computational burden for Linear Quadratic Regulator and Receding Horizon Control

We have thus observed that constrained Receding Horizon Control indeed performs better than the saturated Linear Quadratic Regulator, especially in the constrained case. This should not be surprising: constrained optimisation in the case of convex quadratic problems gives the best possible answer (i.e., optimal within constraints) that is generally not just a saturated unconstrained optimum (see the example in Subsection 7.1.1).

This section performs a computational time comparison between LQR and RHC to answer the question: Is constrained Receding Horizon Control worth the effort? It is expected that RHC would be significantly slower than LQR, because to compute the control inputs via LQR requires the multiplication of the two matrices (or a matrix by a vector). However, if hot-starting, structure exploiting and simple bound constraints are used in the QP algorithm, the difference between LQR and RHC should not be as dramatic as one would expect. This assertion is supported by the results of the numerical simulations presented in this section.
7.4.1 Computational time evaluation for Linear Quadratic Control

To evaluate the computational performance of LQR and compare it to RHC, a simple ANSI C / MEX routine was written that computes \(u_{\text{new}} = -K_{\text{gain}} \cdot \dot{x} \) from (3.11) and projects the values on the box-constrained feasible set \(\Omega = \{ u \in \mathbb{R}^m : U_l \leq u \leq U_u \} \), with \(U_l \) and \(U_u \) denoting the lower and upper bounds of the control inputs. The computational time performance of LQR for the constrained and unconstrained cases was measured similarly to the QP algorithms in Chapter 6.

![Figure 7.20: Computational time for LQR versus percentage of active constraints, high-gain control with \(R = 10^{-12} \cdot I \).](image)

The computational time of LQR is very fast, as seen in Fig. 7.20. The computational time expectedly does not depend on the percentage of active constraints. It takes about 25–30\(\mu \)s to compute the control inputs for a 7 \(\times \) 7 actuator DM, and 60–70\(\mu \)s for a 10 \(\times \) 10 actuator DM. This provides a control rate of about 16 kHz even for a large deformable mirror with 100 actuators.

The growth of computational time versus the size of the deformable mirror has also been compared. As shown in Fig. 7.21 the computational time grows as \(O(mn) \), as a \(K_{\text{gain}} \) matrix of size \(m \times n \) is multiplied on a \(n \times 1 \) vector of estimated states \(\dot{x} \). Although this computational time can be improved further\(^4\), these results can be considered as a yardstick for comparison with RHC algorithms.

7.4.2 Comparison of computational burden for Receding and Infinite Horizon Control

It is obvious that the QP problem in RHC takes more computational time than simple LQR. However, the dynamics of an atmospheric turbulence are usually slow compared to

\(^{4}\text{The computational complexity of a naïve matrix multiplication algorithm is } O(n^3), \text{ or, to be more precise, } O(mnp) \text{ if one multiplies an } m \times n \text{ matrix by an } n \times p \text{ matrix. There are algorithms that reduce the computational complexity, such as Strassen [201] algorithm with } O(n^{2.807}) \text{ complexity and Coppersmith-Winograd [202], with complexity of } O(n^{2.373}).\)
Figure 7.21: Computational time for LQR versus the number of actuators in a deformable mirror (high-gain control with $R = 10^{-12} \cdot I$).

the dynamics of actuators in deformable mirrors, and a WFS’s frame-rate is typically 500-1000 Hz or more. This can be exploited by optimisation methods to solve the QP problem online: at such a high frame-rate the optimum at a given time cannot move too far from the previous solution, and Active Set algorithms can quickly (within a few iterations) locate the new optimum, even in the case of many active constraints.

Figure 7.22: Computational time comparison between LQR and hot-started RHC for adaptive optics: dependency of computational time versus the percentage of active constraints. The case of 1000 Hz sampling rate is presented.

It should thus not be surprising that under the aforementioned conditions, the Receding Horizon Controller is almost as fast as the Linear Quadratic Regulator. The results in Fig. 7.22 are shown for the hot-started Primal Active Set algorithm in case of a 1000 Hz sampling rate. It takes only a gradient evaluation and constraints check to locate the new
optimal value for the Primal Active Set algorithm (also known as the Active Set with Weighted Gram-Schmidt process, AS WGS).

![Graph showing computational time for LQR and RHC versus number of actuators](image)

Figure 7.23: Computational time for LQR and RHC versus the number of actuators in a deformable mirror (high-gain control with $R = 10^{-12} \cdot I$).

The QP solution is slightly slower than LQR, especially when more constraints are active (15-20% and more), which corresponds to strong turbulence. For example, LQR takes 60–65µs for a 10×10 actuators DM, while RHC takes from 65–70µs to 90–120µs. These results for RHC with *online constrained QP* are very encouraging: when the sampling rate is fast and the output disturbance is relatively slow (which is typical for adaptive optics), RHC with online QP is almost as fast as LQR!

![Graph showing computational time comparison between LQR and hot-started RHC](image)

Figure 7.24: Computational time comparison between LQR and hot-started RHC in Adaptive Optics: dependency of computational time versus percentage of active constraints. The case of a **250 Hz** sampling rate is presented.
The growth rate of the computational time for RHC and LQR versus the number of actuators in a DM is presented in Fig. 7.23. The reason why RHC is faster than LQR in large unconstrained problems is as follows. RHC uses fast gradient evaluation and quickly checks the constraints in the hot-start operation. When only a few constraints are activated, the resulting control input appears optimal and the algorithm terminates. However, in the constrained case, the Lagrange multipliers must be computed and checked. This is why the constrained case in RHC is slightly slower (by 10–20μs) compared to LQR.

The slower frame-rate of 250Hz can still benefit considerably from RHC with hot-started online QP, as shown in Fig. 7.24. In the case of strong turbulence, when 15–20% of constraints are active, more iterations (and thus more computational time) are required for RHC to find the new constrained optimum. In this case, it can take up to 120μs to solve the problem for RHC, compared to 60μs for LQR. One should note that the operation of adaptive optics in such a strong turbulence, when so many constraints are active, is unlikely. The case of 5–10% active constraints for a very short period (e.g., sudden wind gusts) is considered a more realistic scenario for an adaptive optics system operation. In such a case, hot-started RHC is almost as fast as LQR, giving far more benefits (e.g., easier implementation, convenience of analysis, and operation within prescribed constraints) than saturated LQR.

Table 7.3: Summary of the computational time comparison between Infinite (LQR) and Receding (RHC) controllers.

<table>
<thead>
<tr>
<th>Actuators in DM</th>
<th>Actuators grid $n \times n$</th>
<th>LQR time μs</th>
<th>RHC time $1000 \text{ Hz}, \mu s$</th>
<th>RHC time $250 \text{ Hz}, \mu s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained case, 0% active constraints, weak turbulence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5×5</td>
<td>19μs</td>
<td>25μs</td>
<td>25μs</td>
</tr>
<tr>
<td>49</td>
<td>7×7</td>
<td>25μs</td>
<td>29μs</td>
<td>35μs</td>
</tr>
<tr>
<td>100</td>
<td>10×10</td>
<td>60μs</td>
<td>30μs</td>
<td>37μs</td>
</tr>
<tr>
<td>Case of 5% active constraints, moderate turbulence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5×5</td>
<td>19μs</td>
<td>26μs</td>
<td>26μs</td>
</tr>
<tr>
<td>49</td>
<td>7×7</td>
<td>26μs</td>
<td>30–40μs</td>
<td>25–45μs</td>
</tr>
<tr>
<td>100</td>
<td>10×10</td>
<td>60μs</td>
<td>65–70μs</td>
<td>75–95μs</td>
</tr>
<tr>
<td>Case of 20% active constraints, strong turbulence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5×5</td>
<td>19μs</td>
<td>26μs</td>
<td>26μs</td>
</tr>
<tr>
<td>49</td>
<td>7×7</td>
<td>26μs</td>
<td>30–40μs</td>
<td>40–60μs</td>
</tr>
<tr>
<td>100</td>
<td>10×10</td>
<td>60μs</td>
<td>70–90μs</td>
<td>90–120μs</td>
</tr>
</tbody>
</table>
7.4.3 Summary of computational time comparison

The results of these numerical simulations are very encouraging. Given the case of fast sampling rates and slow turbulence, common for astronomical adaptive optics, Receding Horizon Control with online QP can be used for both the unconstrained and constrained case with similar computational time compared to LQR. As seen from Table 7.3, RHC with hot-started QP is only slightly slower than LQR under these conditions.

More importantly, unlike LQR, RHC can be used in the high-gain mode, providing better atmospheric disturbance rejection in the constrained case. The numerical simulation results show that RHC clearly outperforms clipped LQR in terms of atmospheric turbulence rejection performance with a rather small overhead (about 20 – 40µs) in terms of computational time.

7.5 Chapter Summary

The results of the performance comparison between RHC and saturated LQR are as follows:

1. It was shown that LQR performs worse than RHC in terms of atmospheric disturbance rejection in the constrained case, being either too aggressive (and therefore producing abrupt changes and spikes due to a high-gain control), or too cautious (not using the full actuators power).

2. The most promising algorithm for online constrained control in adaptive optics appears to be the Primal Range-Space Active Set. It takes only about 40µs to solve the hot-started QP for a 7×7 actuator DM, and only 70µs for a larger system with 10×10 actuators in the case of moderate turbulence, with 10 to 15% active constraints.

3. The comparison of RHC and LQR in terms of computational time indicates that under certain conditions, such as slow turbulence dynamics and fast actuator response, constrained Receding Horizon control can be almost as fast as simple LQR:

 (a) LQR takes about 25µs for a 7×7 actuator DM, while RHC takes 29µs in the unconstrained case and about 40µs in the case of moderate turbulence (5% active constraints) for the 1000 Hz sampling rate. With the slower sampling rate of 250 Hz, RHC takes about 35µs in the unconstrained case, up to 45µs in the case of moderate turbulence (5% of active constraints), and up to 60µs for the strong turbulence case (20% active constraints).

 (b) For the largest considered case of a 10×10 actuators DM, LQR takes about 60µs to compute the control inputs. Constrained RHC takes 30µs in the unconstrained case, about 70µs in the case of moderate turbulence (5% of active constraints), and about 90µs in the case of strong turbulence (20% active constraints) for the 1000 Hz sampling rate. For the slower sampling rate of 250 Hz, RHC takes about 37µs in the unconstrained case, up to 95µs in the case of moderate turbulence, and up to 120µs for the strong turbulence case.
4 The results of the numerical simulations show that RHC clearly outperforms clipped LQR in the constrained case in terms of atmospheric turbulence rejection. It was estimated that RHC provides 1.3 – 2 times better rejection of the output disturbance than saturated LQR.

Thus, we have shown that Receding Horizon Control with constrained online Quadratic Programming will always make the best possible decision both in the constrained and unconstrained cases. It clearly outperforms clipped LQR in terms of atmospheric turbulence rejection and is almost as fast as the simple LQR technique in the case of slow turbulence dynamics and fast actuator responses.
Chapter 8

Conclusions and Future work

The best way to predict the future is to invent it.

— Alan Kay

Outcomes and results of the thesis are summarised in this concluding chapter. The main results of the research project and novel contributions are summarised in Section 8.1. A brief discussion on some of the issues that have been raised in the course of the research and on the limitations of the current results are provided in Section 8.2. Possible areas for future research extending from this thesis are given in Section 8.3.

8.1 Summary of the Results

This thesis has presented an extensive and detailed feasibility study of fast constrained Receding Horizon Control for astronomical adaptive optics. The actuators in a deformable mirror have a maximum allowable movement, and the controller must account for these hard constraints. The main challenge addressed in this research project is the computational speed of constrained online optimisation: a deformable mirror has many actuators, all of which influence their neighbours, yet the constrained control input for this system must be computed within a fraction of a millisecond.

The constrained Receding Horizon Control paradigm was employed to address the challenging problem of constrained optimal control of deformable mirrors in adaptive optics. Customised quadratic optimisation algorithms to exploit the physics and structure of the control problem in adaptive optics were developed in the course of the research. This has resulted in the development of a novel state-of-the-art Receding Horizon Controller that can operate within prescribed constraints and solve constrained optimisation control problems for large deformable mirrors with 10×10 coupled actuators in $50\text{-}100\mu$s. This is well within the millisecond duty-cycle requirement of a typical adaptive optics system. The ability of a Receding Horizon Controller to generate control inputs within arbitrary constraints allows for the full potential of adaptive optics to be utilised.
8.1.1 A summary of the main results

1. The preliminary assessment of constrained Receding Horizon Control for astronomical adaptive optics with the general-purpose Dantzig-Wolfe optimisation method allowed for the following conclusions to be drawn:

 1) In the unconstrained case, the computational speed is below 1 msec for a deformable mirror with up to 10×10 actuators.

 2) In the case of moderate turbulence (the controller reaches constraints 5\% of the time), the computation burden for RHC with on-line QP is 1000–1400\textmu s to solve the optimisation problem for a DM with up to 8×8 actuators.

 3) In the worst-case scenario of severe atmospheric turbulence, when the controller reaches the constraints 20\% of the time, it takes about 1000–1500\textmu s to solve the optimisation problem for a 7×7 actuator DM model.

2. The detailed analysis of the optimisation problem structure in adaptive optics control resulted in the following outcomes:

 1) The matrices that correspond to the optimisation problem are relatively well-conditioned, banded, and sparse, which can be efficiently exploited.

 2) The matrices can be thresholded to attain more sparsity without noticeable deterioration in performance: the “safe” threshold increases the sparsity up to 20\% for the Hessian matrix.

 3) The analysis shows that the optimisation algorithms must have an efficient hot-start and inexpensive iterations, which narrows the choice of optimisation algorithms to the Active Set and Gradient-based methods.

3. The implementation and customisation of structure-exploiting and hot start-capable optimisation algorithms resulted in:

 1) A comprehensive survey of Quadratic Programming methods (Interior Point, Active Set, Gradient-based, and Branch-and-Bound) was performed.

 2) Accelerated optimisation algorithms were developed for the comparison and performance analysis of the Receding Horizon Control for adaptive optics.

 2.1) The Range-Space Primal Active set (RSPAS) algorithm was found to be up to 4x faster than qpOASES (one of the fastest QP algorithm available), up to 15x faster than the Dual Active Set algorithm (QPC toolbox), and up to 200x faster than the MATLAB’s Dantzig-Wolfe algorithm.

 2.2) The Projected Alternating Barzilai-Borwein (PABB) QP algorithm is up to 2x faster than qpOASES, up to 12x faster than the Dual Active Set algorithm, and up to 180x faster than the Dantzig-Wolfe algorithm.

 2.3) The Gradient Projection Preconditioned Conjugate Gradients (GP precon CG) QP algorithm provides similar performance as qpOASES, up to 5x faster
than the Dual Active Set, and up to $83\times$ faster than the Dantzig-Wolfe algorithm.

3) The comparison between the Interior Point, Active Set, and Gradient-based QP algorithms indicated that the Range-Space Primal Active Set QP solver with bound constraints, structure exploiting and hot-start appears as the most favourable.

4) The extensive numerical study of the computational feasibility of constrained control of deformable mirrors in adaptive optics produced the following findings:

1) The shortest prediction horizon $N_p = 2, N_c = 1$ for Receding Horizon Control was chosen due to the tight computational deadlines in adaptive optics. Even such a short horizon provided a good disturbance rejection performance.

2) The constrained QP problem can be solved online by the Range-Space Primal Active Set (RSPAS) algorithm for a deformable mirror with 7×7 coupled actuators and a 1000 Hz sampling rate within 40µs, even for the case of 40% of active constraints (severe atmospheric turbulence).

3) The largest considered problem, a 10×10 actuator deformable mirror, can be solved via RSPAS algorithm within 150µs even for a pessimistic case of 20-40% of active constraints in hot-start mode.

4) Optimisation problems larger than 10×10 actuators should be split and sent to different CPU cores. Current generation of high-performance computers can control $4 \times 8 \times 100 = 3200$ actuators per unit, giving the capability of handling deformable mirrors of up to 56×56 actuators.

5) Thus, one can conclude that constrained Receding Horizon control is computationally feasible for use in astronomical adaptive optics systems.

5) The performance evaluation of Receding Horizon Control in atmospheric disturbance rejection and comparison with existing control methods allowed to conclude:

1) In the case of fast sampling rates and slow turbulence dynamics, which is common for astronomical adaptive optics, Receding Horizon Control with online QP can be used for both unconstrained and constrained cases at an only marginally slower speed compared to LQR under the same conditions.

2) Numerical simulations show that RHC clearly outperforms saturated LQR in terms of atmospheric turbulence rejection performance, especially in the constrained case.

Thus, in this thesis it was shown that Receding Horizon Control with constrained online Quadratic Programming outperforms saturated LQR in terms of atmospheric turbulence rejection and can operate at speeds almost as fast as those reached by the simple LQR technique in the case of slow atmospheric turbulence dynamics and fast actuators response.
8.1.2 The novel contributions

✓ The problem of constrained control of a deformable mirror in adaptive optics was analysed and solved using Receding Horizon Control with customised constrained Quadratic Programming algorithms.

✓ The structure of the matrices of the adaptive optics control problem was thoroughly analysed and exploited in the development of customised optimisation algorithms for constrained control.

✓ It was proven by extensive numerical simulations that constrained Receding Horizon Control is computationally feasible for control of a deformable mirror in adaptive optics systems.

✓ It was concluded that Receding Horizon Control is applicable for the waffle mode mitigation [150] for small and medium-sized adaptive optics systems.

✓ It was found that, in the typical case of fast sampling rates and slow turbulence dynamics, Receding Horizon Control with online constrained QP is only marginally slower than Linear Quadratic Regulator under the aforementioned conditions.

✓ It was shown that constrained Receding Horizon Control clearly outperforms the saturated Linear Quadratic Regulator in terms of atmospheric turbulence rejection performance in the constrained case.

Thus, Receding Horizon Control with customised state-of-the-art optimisation algorithms has been developed for astronomical adaptive optics, allowing the deformable mirror to operate within the constraints and utilising the full potential of adaptive optics systems.

8.2 Thesis Reflection

This thesis reports the results and conclusions that have been obtained in an effort to solve the problem of constrained optimal control for astronomical adaptive optics systems. The thesis gives an affirmative answer to the crucial question “Is constrained Receding Horizon Control worth the effort?”, and paves the road ahead towards utilising the full potential of adaptive optics. Like any road, however, this thesis is not free from some pitfalls.

While the performance of RHC has been estimated, more comprehensive end-to-end optical simulations with more accurate models of a deformable mirror are needed. More sophisticated atmosphere models are needed for accurate estimations of the RHC performance in adaptive optics. The reported estimations of the disturbance rejection performance are approximated since the disturbance is considered only above the actuators. The simulations did not include the measurement noise from a wavefront sensor, and the effect of time-delays has not been considered. These limitations will be addressed in future work.

Not everything done in the course research has been included in this thesis. A comprehensive model of a CCD/CMOS photoensensor has been developed [98, 293, 294], although it has not been used for the results in the thesis. The idea that an adaptive optics system can
be used for information encryption has been reported [295, 296] but left as an interesting avenue for future work.

Many interesting problems have been opened by these results in the area of adaptive optics control, and many other problems are awaiting for solutions. For example, a Moving Horizon Estimator can be used instead of a Kalman filter to take advantage of fast optimisation algorithms. The largest considered deformable mirror with 10×10 actuators are not the largest possible systems to control: distributed Receding Horizon Control could be considered for parallel control of large mirrors. Furthermore, closed-loop system identification is needed for online adjustment of the atmospheric turbulence model.

8.3 Future Research

The results reported in this thesis seem to open interesting avenues for further research, which are briefly discussed below.

Distributed Receding Horizon Control. Our preliminary studies on the use of RHC in adaptive optics systems have been promising. With a standard notebook, computational times lower than 150 µs have been achieved for deformable mirrors models with up to 10×10 actuators. With current computing technology, the required computational speeds do not seem plausible for larger dimensions in the control problem, with the optimisations being performed on a single core processor. Thus, it is worth considering the use of parallelised Receding Horizon Control [297]. The general idea is that in many large-scale control applications it is convenient to divide the plant-wide problem into a set of smaller and simpler sub-problems. The overall plant-wide control can then be accomplished by the combined behaviour of interacting local controllers [298].

GPU-based Receding Horizon Control. The approach of solving general purpose problems on GPUs is known as GPGPU (General Purpose GPU). Distributed Receding Horizon Control allows the computational load to be spread between cores and processors, thus increasing the size of a deformable mirror that can be controlled with a 10 kHz sampling rate. The solution of QP on a GPU can reduce the computational complexity and accelerate QP about 6x over a sequential program [299].

Time-delayed Receding Horizon Control. With many sources of time-delays, delayed control is challenging. As discussed in [51], the bandwidth of the AO system can decrease from 25% to 5% of the sampling frequency when the read-out time of the CCD plus the time for computations is increased from zero to two frames, with 8% corresponding to the typical case of one frame delay. The benefit of RHC is that the augmentation for delays leads to growth of only one, already very sparse, matrix.

Moving Horizon Estimation. The idea in Moving Horizon state Estimation [128, 136] is to estimate the state vector based on a finite number of past measurements. The estimation problem is solved at each time instance over a fixed window, which
is shifted forward as new measurements become available. The moving horizon estimation can be formulated as a Quadratic Programming problem that requires a solution for each sampling instance. Using the QP algorithms that have been already developed in this project, a Moving Horizon Estimator can be derived to replace the Kalman filter.

* Atmosphere turbulence modelling. A detailed study and modelling of atmosphere properties will be necessary for more accurate estimations of the constrained control performance in adaptive optics. It is worth noting that the University of New South Wales has been conducting research projects in the area of Antarctic astronomy [300] and installing a number of scientific instruments in Antarctica. It will therefore be of interest to derive the mathematical model of the Antarctic atmosphere and simulate the light propagation in Antarctic atmosphere for the performance evaluation of adaptive optics control in the future PILOT and LAPCAT telescopes.

* Adaptive optics as an encryption system. Using the deformable mirror to introduce a controllable phase distortion, information can be encrypted optically and then restored by digital deconvolution methods. The method, known as “wavefront coding”, is similar to adaptive optics [295]. Preliminary results show that such an encryption system, although relatively simple, is reliable against attacks [296].

* System Identification and atmospheric turbulence analysis. Modern control is based on models of processes, and therefore, a reliable model must be identified from the inputs and outputs. Both off-line and online system identification are an essential part of control. Online system identification can be merged with Receding Horizon Control to automatically adjust the turbulence models online as the atmosphere changes its behaviour, and for the analysis of wind speed in atmospheric layers.

These and other future research topics will provide the means for intelligent constraints and dynamics handling by constrained Receding Horizon Control, allowing for the operation of telescopes in cases of stronger atmospheric turbulences. This constitutes an important step towards attaining the full compensation potential of future adaptive optics systems.
Bibliography

205

The End of the Thesis