Smad3 Dosage Determines Androgen Responsiveness and Sets the Pace of Postnatal Testis Development

Catherine Itman, Chin Wong, Briony Hunyadi, Matthias Ernst, David A. Jans, and Kate L. Loveland

Departments of Biochemistry and Molecular Biology (C.I., C.W., D.A.J., K.L.L.) and Anatomy and Cell Biology (C.I., B.H., K.L.L.), Monash University, Melbourne 3800, Australia; and Australian Research Council Centre of Excellence in Biotechnology and Development (C.I., C.W., D.A.J., K.L.L.) and Ludwig Institute for Cancer Research (M.E.), Melbourne 3050, Australia

The establishment and maturation of the testicular Sertoli cell population underpins adult male fertility. These events are influenced by hormones and endocrine factors, including FSH, testosterone and activin. Activin A has developmentally regulated effects on Sertoli cells, enhancing proliferation of immature cells and later promoting postmitotic maturation. These differential responses correlate with altered mothers against decapentaplegic (SMAD)-2/3 signaling: immature cells signal via SMAD3, whereas postmitotic cells use both SMAD2 and SMAD3. This study examined the contribution of SMAD3 to postnatal mouse testis development. We show that SMAD3 production and subcellular localization are highly regulated and, through histological and molecular analyses, identify effects of altered Smad3 dosage on Sertoli and germ cell development.

And Smad3/H11001/H11002 and Smad3/H11002/H11002 mice had smaller testes at 7 d postpartum, but this was not sustained into adulthood. Juvenile and adult serum FSH levels were unaffected by genotype. Smad3-null mice displayed delayed Sertoli cell maturation and had reduced expression of androgen receptor (AR), androgen-regulated transcripts, and Smad2, whereas germ cell and Leydig cell development were essentially normal. This contrasted remarkably with advanced Sertoli and germ cell maturation and increased expression of AR and androgen-regulated transcripts in Smad3+/− mice. In addition, SMAD3 was down-regulated during testis development and testosterone up-regulated Smad2, but not Smad3, in the TM4 Sertoli cell line. Collectively these data reveal that appropriate SMAD3-mediated signaling drives normal Sertoli cell proliferation, androgen responsiveness, and maturation and influences the pace of the first wave of spermatogenesis, providing new clues to causes of altered pubertal development in boys.

(Endocrinology 152: 2076–2089, 2011)

T esticular Sertoli cells mediate hormone actions to provide the specialized microenvironment essential for spermatogenesis. Appropriate Sertoli cell development and maturation underpin normal adult fertility; hence, identifying how these processes are controlled is relevant to understanding sub- or infertility and disorders of testis development and is particularly relevant to the increasing incidence of testicular dysgenesis (1).

The transition of immature, proliferating Sertoli cells into postmitotic, terminally differentiated cells around puberty delimits the size of the adult Sertoli cell population. Because each Sertoli cell supports a limited number of spermatids (2), potential sperm output is determined by the extent of immature Sertoli cell proliferation and timing of Sertoli cell maturation. Hallmark features of Sertoli cell maturation that are essential for normal fertility include the development of androgen responsiveness (3), formation of the blood-testis barrier (4) and secretion of products to support postmeiotic germ cell survival and differentiation (5) (reviewed in Ref. 6). FSH, thyroid hormone, testosterone, and TGFβ superfamily ligands, including TGFβs and activin, influence immature and terminally

ISSN Print 0013-7227 ISSN Online 1945-7170
Printed in U.S.A.
Copyright © 2011 by The Endocrine Society
First Published Online March 8, 2011

Abbreviations: AR, Androgen receptor; ARKO, AR knockout; DDX4, DEAD box polypeptide 4; dpp, days postpartum; HPG, hypothalamic-pituitary-gonadal; PCNA, proliferating cell nuclear antigen; qRT-PCR, quantitative RT-PCR; SCARKO, Sertoli cell-selective AR knock-out; SCP, synaptonemal complex protein; SMAD, mothers against decapentaplegic.

differentiated Sertoli cell function (7–11). This study identifies a new link between activin A and testosterone in these events. Rodent models have established that activin A exerts distinct, developmentally regulated effects on Sertoli cell proliferation and maturation. Dose-dependent enhancement of proliferation is reported in immature rat Sertoli cells in vitro (10) and in mice in vivo; mice with reduced activin bioactivity have fewer Sertoli cells (12, 13), whereas mice lacking inhibin (Inhba−/−), an activin signaling inhibitor, develop Sertoli cell tumors due to their unrestrained proliferation and failure to mature (14). Activin A enhancement of Sertoli cell proliferation appears limited to their immature phase because it does not induce terminally differentiated Sertoli cells to divide (9). Activin also indirectly enhances immature Sertoli cell proliferation by promoting FSH synthesis at the pituitary (9, 10, 15). Rat organ cultures have identified that this period when activin A and FSH synergistically promote Sertoli cell proliferation (9) correlates with transient up-regulation of the activin receptor ActRIIA (16).

Reports of developmentally regulated effects of activin A on Sertoli cell proliferation led us to investigate the mechanism underlying this developmental switch. Binding of activin to cell surface receptors activates intracellular signaling molecules including mothers against decapentaplegic (SMAD) proteins and MAPKs (17). In canonical SMAD-mediated signaling, C-terminally phosphorylated SMAD2 and SMAD3 accumulate in the nucleus and regulate transcription. Acute sensitivity of immature mouse Sertoli cells to activin A corresponds to a divergence from the canonical SMAD signaling pathway: in immature, 6 d postpartum (dpp) Sertoli cells, activin A induces dose-dependent phosphorylation of SMAD2 and SMAD3, yet only SMAD3 accumulates in the nucleus. In contrast, both SMAD2 and SMAD3 accumulate in nuclei of maturing, 15-dpp Sertoli cells (8). This differential SMAD2/3 use corresponded to distinct transcriptional outcomes. Transcripts relating to steroid biosynthesis (Hsd17β1, Hsd17B3) were selectively and dose-dependently up-regulated by activin in 6-dpp Sertoli cells, whereas two markers of Sertoli cell maturation, Gja1 and Serpina5, were up-regulated in 15-dpp cells. These findings were confirmed in vivo; Gja1 and Serpina5 levels were reduced in testes of juvenile mice with lower activin bioactivity (InhbaBR/BR) but increased in Inhba−/− testes (8).

Identifying how activin directly and indirectly stimulates Sertoli cell proliferation and establishing how Sertoli cells shift to a mature activin response is important for understanding the complex processes regulating male fertility. A key clue recently came from removal of either one or both copies of Smad3 from Inhba−/− mice. Instead of developing tumors, Sertoli cells in these mice escaped inappropriate proliferative signals of supraphysiological activin and terminally differentiated (18). This identified SMAD3 as the key mediator of activin-induced Sertoli cell proliferation and suggested that the transition from immature, proliferating to postmitotic, terminally differentiating state is associated with down-regulation of SMAD3-mediated signaling.

Adult male Smad3-null mice are fertile (19), establishing that SMAD3 is not essential for male fertility. Because no characterization of the developing testis in these mice has been performed, we assessed SMAD3 protein localization in developing and adult mouse testes and compared somatic and germ cell maturation between Smad3+/+, Smad3+/−, and Smad3−/− mice at key stages of tests development. Our phenotypic analysis and in vitro approaches examining Smad3 dosage effects on Sertoli cell responses to activin A and FSH reveal a requirement for threshold levels of SMAD3 for normal juvenile testis growth and dose-dependent effects of Smad3 on Sertoli and germ cell maturation and uncover a novel link between Smad3 dose, AR expression, and androgen-mediated transcription of Smad2. These data collectively illuminate an activin-androgen axis that directs the pace of testis development. This first study relating SMAD3 levels to the timing of the first wave of spermatogenesis identifies the Smad3+/− mouse as a model of peripheral precocious puberty and the Smad3−/− mouse as one of delayed Sertoli cell development.

Materials and Methods

Experimental animals and tissues

Wild-type mice [C57Bl/6Asnu × CBA/CaWehiAsnu (F1)] were obtained from Monash University Central Animal Services. Investigations conformed to the National Health and Medical Research Council/Commonwealth Scientific and Industrial Research Organisation/Australian Agricultural Council Code of Practice for the Care and Use of Animals for Experimental Purposes and were approved by the Monash University Standing Committee on Ethics in Animal Experimentation. Smad3−/− mice were maintained by heterozygous matings, genotyped as described (19), and housed under conventional conditions approved by the Animal Ethics Committee at the Ludwig Institute for Cancer Research (Melbourne, Australia). Juvenile animals were killed by decapitation and adults by carbon dioxide asphyxiation and cervical dislocation before tissue removal.

Testis and body weights were recorded at 7, 16, and 70–91 dpp. One testis was fixed in Bouins fixative for 5 h and then dehydrated through a graded ethanol series, embedded in paraffin, and sectioned at approximately 4 μm onto Superfrost Plus II slides (Lomb Scientific, Sydney, Australia). The other testis was snap frozen on dry ice and then stored at −80 C.
Cord diameter measurement and scoring of germ cell differentiation

Hematoxylin and eosin-stained testis sections from four 7-dpp litters were examined using a Leica DMI microscope (Leica Biosystems, Mount Waverley, Victoria, Australia). Images were captured using a Leica DCM200 camera (Leica Biosystems) and cord diameters measured using ImageJ software version 1.38x (http://rsbweb.nih.gov/ij/). Cords were considered circular if perpendicular diameters were within 98–100% of each other. At least 49 sections were measured per genotype. Germ cell differentiation was determined by nuclear morphology in testis sections from seven 16-dpp litters (20). At least 72 round tubule cross-sections were scored per animal.

Serum FSH measurement

Blood was collected using capillary tubes from decapitated 7-dpp mice or cardiac puncture of anesthetized adult mice. Samples were assayed individually in 20-μl duplicates in a single assay. Serum FSH levels were determined using RIA reagents provided by Dr. A. Parlow (National Institute of Diabetes and Digestive and Kidney Diseases, National Hormone and Peptide Program, Torrance, CA). Iodination preparation and antiserum used were rFSH I-9 and anti-rFSH-S-11, respectively. Results are expressed in terms of NIH DFL mFSH-RP-1. The tracer was iodinated using Iodogen reagent (Sigma, St. Louis, MO) and detected with goat antirabbit IgG (GAR no. 12; Monash University, Melbourne, Australia). The lowest limit of detection was 1.30 ng/ml and the within-assay coefficient of variation was 9.1%.

Immunohistochemistry

Section immunohistochemistry was performed as described (21). Antigen retrieval was achieved using an 800-W microwave oven by heating samples to 90°C in 50 mM glycine (pH 3.5) for 10 min and then cooling for 20 min [to detect SMAD3, proliferating cell nuclear antigen (PCNA), DEAF box polypeptide 4 (DAX4), and synaptosomal complex protein (SCP)-3] or heating in 1 M EDTA-NaOH (pH 8) for 5 min at 100°C and then 20°C for 5 min and cooling for 1 h [to detect AR (22)]. Anti-SMAD3 (Invitrogen, Carlsbad, CA) was used at 0.5 μg/ml, anti-PCNA (Dako, Carpinteria, CA) at 0.96 ng/ml, anti-AR (Santa Cruz Biotechnology, Santa Cruz, CA) at 0.2 ng/ml, and anti-SCP3 (Abcam, Cambridge, UK) at 1.25 ng/ml. Bound primary antibodies were detected using biotinylated antirabbit antibody (Chemicon, Temecula, CA) or biotinylated antimouse (Chemicon). Signal was amplified with Vectastain Elite ABC kit reagents (Vector Laboratories, Burlingame, CA) according to the manufacturer’s instructions and detected with 3,3-diaminobenzidine tetrahydrochloride (Dako). Anti-DDX4 (Abcam) was used at 0.5 ng/ml, detected with 3,3-diaminobenzidine tetrahydrochloride (Dako). Anti-DDX4 (Abcam) was used at 0.5 ng/ml, anti-PCNA at 0.16 μg/ml, anti-SCP3 at 0.3 μg/ml, and anti-AR at 0.2 μg/ml. Bound primary antibodies were detected using goat-antirabbit Alexa Fluor 680 (Invitrogen) or goat-antimouse IR-800 (Rockland, Gilbertsville, PA) and visualized with the Li-Cor Odyssey (John Morris Scientific, Melbourne, Australia). Negative control blots were performed for every experiment using identical samples without primary antibody to assess background signal.

Primary cell culture and SMAD signaling analysis

Enriched 6-dpp Sertoli cells were prepared, treated, and analyzed as previously described (8). At least four animals were used per genotype with more than 200 cells measured per animal.

Proliferation assay

Cells were cultured for 72 h with 50 ng/ml activin A (R&D Systems, Minneapolis, MN) or 390 mIU FSH (Gonafel FSH, Serono, Australia). DNA synthesis was monitored by tritiated thymidine incorporation [methyl-3H]-thymidine, 5 μCi/ml (Amersham Biosciences, Castle Hill, New South Wales, Australia) during the final 18 h. Cells were harvested on a Packard Micromate 196 cell harvester (Packard Instrument, Meriden, CT). Incorporated radionucleotide was counted using a Packard 1900 TR liquid scintillation counter. Assays were performed in quintuplicate with at least n = 4 per genotype.

Western blot

Cell lysate preparation and Western blots were performed as described (23). Anti-SMAD2 and anti-SMAD3 were used at 0.25 μg/ml, anti-β-tubulin (Sigma) at 30 μg/ml, anti-DDX4 at 0.05 μg/ml, anti-PCNA at 0.16 μg/ml, anti-SCP3 at 0.3 μg/ml, and anti-AR at 0.2 μg/ml. Bound primary antibodies were detected using goat-antirabbit Alexa Fluor 680 (Invitrogen) or goat-antimouse IR-800 (Rockland, Gilbertsville, PA) and visualized with the Li-Cor Odyssey (John Morris Scientific, Melbourne, Australia). Negative control blots were performed for every experiment using identical samples without primary antibody to assess background signal.

RNA isolation, cDNA synthesis, and quantitative RT-PCR (qRT-PCR)

RNA was prepared using TRIZol (Invitrogen). Contaminating genomic DNA was eliminated using deoxyribonuclease I (Ambion, Austin, TX) per the manufacturer’s guidelines. RNA integrity was visualized under UV light after electrophoresis of 1 μg total RNA in a 1.1% formaldehyde gel. One microgram of total RNA was reverse transcribed using 100 U Superscript III reverse transcriptase (Invitrogen) with 2.5 μM random hexamer oligonucleotides (Roche, Mannheim, Germany) according to the manufacturer’s guidelines. qRT-PCR analysis was performed using the Applied Biosystems 7900HT Fast real-time PCR system (Applied Biosystems, Foster City, CA) using 125 nM each of 2′-deoxyadenosine-5′-triphosphate, 2′-deoxycytidine-5′-triphosphate, 2′-deoxythymidine-5′-triphosphate, and 2′-deoxyguanosine-5′-triphosphate (Boehringer, Auckland, New South Wales, Australia). 2.5 mM MgCl2 (Sigma-Aldrich), 20 μg/ml 6-ROX (Invitrogen), 100 nM primers, 1× AmpliTaq Gold buffer and 10 U/ml AmpliTaq Gold DNA polymerase (Applied Biosystems) in 8% dimethylsulfoxide (Sigma-Aldrich). Supplemental Table 1 lists primer sequences, accession numbers, and amplicon size. Amplification parameters were 95°C for 10 min, 40 cycles of 95°C (15 sec), 62°C (15 sec), and 72°C (30 sec) using cDNAs diluted 1:80. Standard curves were generated using 7- or 16-dpp Smad3+/− mouse testis cDNA diluted 1:20/60/180/540/1620. Data were analyzed using SDS software version 2.3 (Applied Biosystems). Target copy number was determined by the Pfaffl comparative threshold cycle method (ΔCt or ΔΔCt) (24). Product purity was assessed by melting curve analysis between 60 and 95°C and specificity by sequencing the generated product (23). Every primer pair in every experiment was tested without template and with RNA samples that were not reverse transcribed;
in every case, no amplification was detected. Differences in cDNA synthesis efficiency were measured by amplification of spike RNA before cDNA synthesis as described (25).

TM4 cell culture and hormone treatment

TM4 Sertoli-derived cells (26) were maintained as described (8). Crystalline testosterone (Sigma) was dissolved in 100% ethanol to 100 mM and stored in glass vials at −20°C. Seventy percent confluent TM4 cells were serum starved for 2 h and then treated with 100 μM testosterone (27) or ethanol vehicle control for 6.5 h. RNA isolation was performed using TRIzol (Invitrogen) as described above. Three independent experiments were performed.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5 software (GraphPad Inc., La Jolla, CA). Data were tested for normal distribution using the D’Agostino and Pearson normality test. Normally distributed data were analyzed using the two-tailed unpaired t test or one-way ANOVA with Tukey’s posttest. Differences were considered significant if P < 0.05.

Results

Dynamic SMAD3 production and localization is evident in mouse testes

Immunohistochemical detection of SMAD3 in mouse testes sections using a previously validated antibody (8) identified highly regulated production and subcellular localization in somatic and germ cells (Fig. 1A-D). SMAD3 localized to nuclei of Sertoli, peritubular myoid, and interstitial cells at birth and was nuclear and cytoplasmic in these cells at 5 and 15 dpp. In adult testes, faint cytoplasmic signal in Sertoli cells contrasted with intense signal in interstitial cells. This description differs from a previous report that SMAD3 is limited to Sertoli cells in the adult male mouse (28), perhaps reflecting different detection methods used. In germ cells, SMAD3 was notably absent from gonocytes at birth. At 5 dpp, a faint signal was detected in spermatagonia, whereas at 15 dpp, intense signal was visible in the pachytene spermatocyte cytoplasm. Acrosomal staining was evident in spermatids in adult testes. Because specific cell types displayed changes in SMAD3 nuclear localization, we proceeded to analyze testes of Smad3−/− mice (19) to probe the functions of SMAD3 during testis development.

A threshold level of SMAD3 is required for normal juvenile testis growth and Sertoli cell proliferation

Body weight, testis weight, and testis to body weight ratios of 7 dpp, 16 dpp, and adult Smad3+/+, Smad3+/−, and Smad3−/− mice are listed in Supplemental Table 2. Testis weights and testis to body weight ratios of Smad3+/− and Smad3−/− mice were significantly lower than those of Smad3+/+ littermates at 7 dpp. At 16 dpp, Smad3−/− testes were significantly smaller than Smad3+/− testes. Because reduced testis size is indicative of impaired Sertoli cell proliferation, we assessed seminiferous cord diameter and Sertoli cell proliferation in testis sections from 7-dpp mice. Cord diameter in Smad3−/− mice (65.09 ± 0.62 μm) was significantly reduced compared with Smad3+/+ (67.65 ± 0.41 μm, P < 0.01) and Smad3+/− (66.98 ± 0.33 μm, P < 0.05) littermates (Fig. 1E), suggestive of fewer Sertoli cells. Proliferating Sertoli cells, identified by immunohistochemical detection of PCNA (29) and distinguished from neighboring spermatogonia by detection of DDX4 (30) (Supplemental Fig. 1) unexpectedly identified that Smad3−/− Sertoli cells had a higher proliferative index (45.44 ± 0.96%) compared with Smad3+/+ (39.87 ± 1.25%, P < 0.01) and Smad3+/− (36.18 ± 1.68%, P < 0.01) cells (Fig. 1F).

Because FSH and activin A each stimulate Sertoli cell proliferation, serum FSH levels and Sertoli cell capacity to respond to FSH and activin were measured. Serum FSH levels did not differ between genotypes in 7-dpp or adult mice (Fig. 1G). The capacity of 6-dpp Sertoli cells to proliferate in response to activin or FSH was measured using an established in vitro thymidine incorporation assay (9, 10) with cells cultured for 72 h in the presence of 50 ng/ml activin A or 390 mIU FSH (Fig. 1H). Activin A increased thymidine incorporation approximately 2-fold relative to untreated cells, with no differences measured between genotypes. Unexpectedly, FSH induced a greater than 3-fold increase in thymidine incorporation by Smad3+/− Sertoli cells (4.27 ± 2.05) compared with wild-type and heterozygous samples (1.33 ± 0.18 and 1.67 ± 0.86, respectively; P < 0.05). These data indicate that decreased FSH availability or an impaired proliferative response to FSH or activin A is unlikely to be the causative factor of smaller testes in Smad3+/− and Smad3−/− mice. The finding that Smad3−/− Sertoli cells displayed a higher proliferative activity in vivo and in vitro was intriguing. Because proliferation is a feature of immaturity, we further analyzed the maturational state of Sertoli cells of Smad3+/−, Smad3+/−, and Smad3+/+ mice.

Activin A induces SMAD2 nuclear accumulation in immature Sertoli cells when SMAD3 is reduced or absent

Sertoli cells display a fundamental change in activin A responsiveness as they mature; immature (6 dpp) Sertoli cells transduce activin signals via SMAD3, whereas maturing (15 dpp) Sertoli cells respond by nuclear accumulation of SMAD2 and SMAD3 (8). We examined whether SMAD2 could transduce activin signals in immature Ser-
SMAD3 localization in mouse testes

Significance was determined using the Kruskal-Wallis test and Dunn's posttest with P < 0.05 considered significant. Different letters within each age group indicate significant differences. E, Seminiferous cord diameter is significantly smaller in testes of 7-dpp Smad3+/− mice (n = 7) than in Smad3+/+, (n = 11) and Smad3−/− (n = 6) littersmates (from four litters). A minimum of 49 round cord sections each were measured from each genotype. F, Quantification of PCNA-positive, DDX4-negative cells within the seminiferous epithelium (i.e. Sertoli cells), plotted as percentage. Significantly more Sertoli cells in Smad3+/− mice (n = 7) were PCNA positive compared with Smad3+/+ (n = 6) and Smad3−/− (n = 8) littersmates. At least 200 Sertoli cells were counted per animal. Representative images of immunohistochemistry and validation of antibody specificity are presented in Supplemental Fig. 1.

G, Serum FSH levels in 7-dpp and adult Sertoli cells were counted per animal. Representative images of immunohistochemistry and validation of antibody specificity are presented in Supplemental Fig. 1.

H, In vitro proliferation of 6-dpp Sertoli cells.

The pacse of Sertoli cell, but not Leydig cell, maturation depends on Smad3 dosage

For gene expression analysis by qRT-PCR, 18S, β actin, ArpboPo, Hnrfp, Rip17, and Rps21 transcript levels were measured to identify an appropriate standard against which to normalize gene expression between genotypes. No transcript was present at equivalent amounts in total RNA isolated from 7-dpp Smad3+/+, Smad3−/−, or Smad3−/− testes. This was not due to variable efficiency of cDNA synthesis or inconsistent input RNA in cDNA synthe-
sis reactions (Supplemental Fig. 2). Gene expression was therefore normalized to equivalent quantities of input RNA.

Differences in germ to Sertoli cell ratio between genotypes were assessed by comparing expression of the Sertoli cell marker Wilms tumor homolog 1 (Wt1) (31) and the germ cell marker Ddx4 (30) by qRT-PCR. Expression of these genes was not affected by Smad3 dosage, determined by measuring transcript levels in isolated Sertoli and germ cells from 7-dpp mice (Fig. 3A). Equivalent ratios of Ddx4 to Wt1 in total testes at 7 (Fig. 3B) or 16 dpp (data not shown) indicated no difference in germ to Sertoli cell ratio between genotypes.

Transcripts associated with Sertoli cell maturation that were measured were anti-Müllerian hormone (Amb) [down-regulated during maturation (32)] and Cldn11, Tip1, Gja1, androgen receptor (Ar), Serpina5, transferrin (Trf), Gata1, and p27Kip1 (up-regulated as Sertoli cells mature). Amb levels were not different between genotypes at 7 or 16 dpp (Fig. 3, C and D). At 7 dpp, Cldn11, Gja1, Serpina5, and Trf transcript levels were significantly reduced in Smad3−/− relative to Smad3+/+ testes, whereas Ar and Gata1 mRNA levels were significantly lower relative to Smad3+/− and Smad3−/−. Tip1 levels were reduced in both Smad3+/− and Smad3−/− samples relative to the wild type. No difference in Cdkn1b transcripts was detected between genotypes at this age. At 16 dpp, Ar transcript levels remained significantly lower in Smad3−/− compared with Smad3+/− testes. Serpina5 and Trf were significantly lower in Smad3−/− testes relative to Smad3+/− and Smad3+/−. More Cldn11 and Cdkn1b transcripts were detected in Smad3+/− testes relative to Smad3+/− and Smad3−/−. Considered together, these data indicate Sertoli cell maturation in Smad3−/− mice is delayed at 7 dpp but recovers by 16 dpp. In contrast, maturation of 16-dpp Smad3+/− Sertoli cells mice appears relatively advanced.

Leydig cell maturation was examined by measuring expression of genes associated with different stages of development (Tsp2, Cyp11a1, Ins13, Eh) and normalized to Sur2, which is present at consistent levels throughout Leydig cell development (33). Sur2 levels were not different between genotypes at 7 or 16 dpp, and we measured no difference in transcript levels of Leydig cell maturation markers (Supplemental Fig. 3).

The first wave of spermatogenesis is advanced in Smad3+/− testes

To ascertain the functional relevance of apparent differences in Sertoli cell maturation in Smad3+/− and Smad3−−/− mice, germ cell differentiation was assessed at 7 and 16 dpp. c-kit transcripts, found in Leydig cells (34) and differentiating spermatagonia through to pachytene spermatocytes (35–37), were slightly, but significantly, reduced in 7-dpp Smad3−/− testes (Fig. 4A). An increased proportion of meiotic germ cells in 7-dpp Smad3−/− testes indicated by histological observation was assessed by immunohistochemical detection of the meiotic marker SCP3 (38), confirming Smad3−/− mice had a significantly greater proportion of cord sections containing meiotic cells (Figs. 4, B–G).

The most advanced germ cell present in round seminiferous tubule cross-sections at 16 dpp was identified by nuclear morphology (Table 1). Surprisingly, diplotene spermatocytes and round spermatids were present in Smad3+/− animals but not in Smad3+/+ or Smad3−/− mice (Fig. 4, H–K). This early appearance of spermatids
isolated from 7-dpp mRNAs in total testes of 7-dpp considered significant. markers in testes of Smad3 associated with Sertoli cell maturation in testes of 7-dpp mice. No difference in dosage. B, Quantitative comparison of normalized to input RNA and plotted as fold change relative to determined using two-tailed Mann-Whitney test and Dunn’s posttest with 2082 Itman 6), and Gapds correlated with increased expression of the spermatid marker Gapds (39) in Smad3+/− relative to Smad3−/− testes (Fig. 4K). Smad3+/+, Smad3+/−, and Smad3−/− male mice adults are fertile (19). Histological examination of adult testes revealed no gross difference in spermatogenesis, indicating haploinsufficiency or absence of Smad3 causes no overt adult spermatogenic phenotype (Fig. 4, L–N).

Smad3 dosage alters Sertoli cell androgen responsiveness

The intriguing finding of reduced Ar levels in 7-dpp Smad3-null testes led us to examine androgen responsiveness in these samples. Immunohistochemical detection of AR protein revealed staining of similar intensity in peritubular and Sertoli cell nuclei in Smad3+/+ and Smad3+/− mice. In Smad3−/− testes, peritubular cell staining was visibly reduced and Sertoli cell signal was faint to undetectable (Fig. 5, A–C). The significance of this was examined further by qRT-PCR measurement of androgen-regulated mRNAs in Sertoli and Leydig cells. Sertoli cell-expressed Rbox5, Spinlwl, and Drd4 transcripts were significantly lower in 7-dpp Smad3−/− testes relative to Smad3+/+ and Smad3+/− (Fig. 5F). At 16 dpp, Rbox5 and Spinlwl were significantly higher in Smad3−/− testes compared with Smad3+/− and Drd4 relative to Smad3+/+ (Fig. 5G). The Leydig cell androgen-regulated Cyp17a1 transcript was not different at 7 or 16 dpp (Fig. 5H).

Smad3 is required for normal Smad2 levels in juvenile Sertoli cells

These data reveal that Smad3 haploinsufficiency is associated with premature attainment of key developmental milestones in Sertoli and germ cells. We thus hypothesized that SMAD3 is down-regulated as Sertoli cells mature. Consistent with this, Western blot analysis of SMAD proteins in total testis lysates established that SMAD2 protein levels were relatively constant between 4 and 15 dpp and then reduced to approximately half in adult testes. SMAD3 levels rapidly declined around when Sertoli cells cease proliferating (12 dpp), with
a 100-fold lower level measured in adult testes relative to 4 dpp (Fig. 6, A–C). These data also illustrate that SMAD2 and SMAD3 protein are differentially regulated in the testis. Because use of both SMAD2 and SMAD3 by maturing Sertoli cells in response to activin (8) suggested SMAD2 and SMAD3 may be important for Sertoli cell maturation, we measured

![Image](https://example.com/image.png)

FIG. 4. Spermatogenesis is advanced in Smad3−/− mice. Bars represent the highest and lowest values measured, boxes indicate the 25th and 75th percentiles, and the line indicates the mean. Dark gray, Smad3+/+; pale gray, Smad3+−−; white, Smad3−−. Different letters within genes measured indicate significant differences. A. Quantitative analysis of c-kit mRNA levels in testes of 7-dpp Smad3+/+ (n = 6), Smad3+−− (n = 6), and Smad3−− (n = 6) mice identified significantly lower expression in testes from Smad3−− relative to Smad3+/+ and Smad3+−− littersmates. Values were normalized to input RNA and plotted as fold change relative to Smad3+/+, which was set at 1. Smad3+/+, n = 6; Smad3+−−, n = 6; Smad3−−, n = 6. Significance was determined using the Kruskal-Wallis test and Dunn’s posttest with P < 0.05 considered significant. B. Quantification of cord sections containing SCP3-positive spermatocytes established that spermatogenesis in 7-dpp Smad3−−/− mice was significantly advanced relative to Smad3+/+ littersmates. Smad3+−−, n = 4; Smad3+−−, n = 8; Smad3+/−, n = 8. Significance was determined using one-way ANOVA with Kruskal-Wallis test and Dunn’s posttest with P < 0.05 considered significant. C. Western blot analysis confirmed that the anti-SCP3 antibody detected bands of the expected size (38) in lysates from the 15-dpp mouse testes with no band observed in the absence of primary antibody. Size markers are indicated to the left. D–G, Representative images of immunohistochemical detection of SCP3 (SYCP3) in testes of 7-dpp Smad3+/+ (H), Smad3−−/− (E), and Smad3+/− (F) mice identifies early spermatocytes by brown nuclear staining. Sections were counterstained with Harris hematoxylin (blue) for visualization of nuclei. Asterisk, Cord sections containing SCP3-positive spermatocytes. Scale bar, 20 μm. H–J, Visualization of germ cell development in testis sections from 16-dpp Smad3+/+ (H), Smad3−−/− (I), and Smad3+/− (J) mice by hematoxylin and eosin staining identified the presence of round spermatids in Smad3+/+ testes only (within dotted white circle) at this age. Bar, 20 μm. K. Expression of Gapds, a marker of round spermatids, is significantly greater in testes of 16-dpp Smad3+/+ mice relative to Smad3+/− mice. Values were normalized to input RNA and plotted as fold change relative to Smad3+/+, which was set at 1. Smad3+/+, n = 5; Smad3−−/−, n = 8; Smad3+/−, n = 8. Significance was determined using the Kruskal-Wallis test and Dunn’s posttest with P < 0.05 considered significant. L–N, Visualization of stages of spermatogenesis denoted by Roman numerals (20) in hematoxylin and eosin-stained testis sections from adult Smad3+/+ (L), Smad3−−/− (M), and Smad3+/− (N) mice. Bar, 50 μm. No gross difference in testis histology was apparent between genotypes.
TABLE 1. Spermatogenesis is advanced in 16-dpp Smad3^{+/−} mice

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Tubules assessed, n</th>
<th>Preleptotene/leptotene</th>
<th>Zygotene</th>
<th>Pachytene</th>
<th>Diplotene</th>
<th>Round spermatid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smad3<sup>+/−</sup> (n = 3)</td>
<td>503</td>
<td>1.94 ± 1.94%</td>
<td>13.67 ± 4.83%</td>
<td>84.39 ± 6.38%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smad3<sup>−/−</sup> (n = 23)</td>
<td>4531</td>
<td>0.27 ± 0.09%</td>
<td>9.17 ± 0.64%</td>
<td>90.14 ± 0.64%</td>
<td>0.15 ± 0.09%</td>
<td>0.27 ± 0.1%</td>
</tr>
<tr>
<td>Smad3<sup>−/−</sup> (n = 6)</td>
<td>732</td>
<td>0.23 ± 0.23%</td>
<td>8.29 ± 1.23%</td>
<td>91.48 ± 1.29%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data indicate the proportion (upper value) and the number (lower value) of tubule cross-sections in which the indicated cell type was the most advanced germ cell present. Diplotene spermatocytes and round spermatids were observed only in testes of Smad3^{−/−} mice. At least 72 round tubule cross-sections were scored per animal.

Smad2 levels in Smad3^{+/−}, Smad3^{−/−}, and Smad3^{−/−} testes. Remarkably, 7-dpp Smad3^{−/−} testes, which have a phenotype of delayed Sertoli cell maturation, have significantly fewer Smad2 transcripts (0.22-fold reduction, P < 0.05). No difference was measured at 16 dpp, when markers of Sertoli cell maturation are equivalent to wild type (Fig. 6C).

Reduced Smad2 expression in 7-dpp Smad3^{−/−} testes with recovery to wild-type levels by 16 dpp is similar to the Ar expression profile. We tested whether this reflected a link between androgen and Smad2 using AR-positive Sertoli-like TM4 cells (26). After 6.5 h stimulation with 100 μM testosterone or vehicle, Smad2 and Smad3 transcript levels were measured by qRT-PCR. Transcript levels were normalized to β-actin, which did not differ between treatments (data not shown). Testosterone selectively increased Smad2, but not Smad3, relative to controls (Fig. 6D). We therefore speculate that reduced Smad2 mRNA in 7-dpp Smad3^{−/−} testes is a consequence of reduced capacity to respond to testosterone due to lower AR levels.

Discussion

This is the first study to identify that Smad3 gene dosage affects the pace of testis development. Smad3 haploinsufficiency is associated with advanced Sertoli cell maturation and spermatogenesis, while the absence of Smad3 is linked with delayed Sertoli cell maturation. Whereas activin activates several intracellular signaling molecules, including SMAD2, SMAD3, and MAPKs, reducing the availability of just one component of the SMAD-mediated signaling pathway dramatically affects signal transduction and development in the testis.

Our findings converge on current knowledge of androgen actions in the testis. Our identification of an apparent genetic interaction between Smad3 dosage, AR levels, and Smad2 is the basis for a model by which the activin-androgen axis programs the pace of testis development (Fig. 7). We propose that a threshold level of SMAD3 in the immature Sertoli cell is required to ensure normal testis growth and timely AR synthesis. This enables appropriate expression of androgen target genes, including Smad2, thereby promoting Sertoli cell maturation. Down-regulation of SMAD3, through as-yet-unknown mechanisms, is associated with cessation of Sertoli cell proliferation and attainment of terminal differentiation. Our model predicts that increased androgen production at puberty would lead to the maintenance, or up-regulation, of SMAD2 in maturing Sertoli cells as SMAD3 levels decline. Correlating with studies showing that altering the SMAD2 to SMAD3 ratio directly influences transcriptional responses to TGFβ (40), our data support the hypothesis that shifting the SMAD2 to SMAD3 ratio to favor SMAD2 alters the response of Sertoli cells to activin A as they mature. These data are consistent with our previous finding that the onset of SMAD2 use in activin A signal transduction is associated with Sertoli cell maturation (8).

Interestingly, testis weight and testis to body weight ratios in Smad3 heterozygous and knockout mice were significantly smaller than those of wild-type littermates at 7 dpp but were equivalent at later ages. We propose that the relatively higher proliferation rate of juvenile Smad3^{−/−} Sertoli cells enables testes of these mice to reach wild-type size by 16 dpp, whereas premature appearance of round spermatids in 16 dpp Smad3^{+/−} mice increases cell numbers so that testis weights are equivalent to wild type at this age.

Juvenile testis growth reflects the mitogenic actions of activin A and FSH on Sertoli cells (9, 10, 12, 41). Impaired testis growth in juvenile Smad3^{−/−} and Smad3^{+/−} mice appears independent of serum FSH or Sertoli cell capacity to respond to FSH or activin, suggesting a different mechanism, which we propose to be androgen based. A comparison of mice with constitutive or Sertoli cell-specific AR ablation [AR knockout (ARKO), Sertoli cell-selective AR knockout SCARKO] established that androgens indirectly promote Sertoli cell proliferation, likely via peritubular cells (42). We postulate that testes of 7-dpp Smad3-
null mice are smaller because reduced AR expression impairs the capacity of peritubular cells to indirectly facilitate Sertoli cell proliferation during early testis development. Later, after Sertoli cells become AR positive, androgens act directly to promote exit from the cell cycle (43). We therefore speculate that delayed onset of AR expression in Smad3−/− Sertoli cells impairs their capacity to respond to antiproliferative, maturation-promoting androgen signals.
Additional evidence that the Smad3+/− and Smad3−/− testicular phenotypes result from altered androgen responsiveness lies in the identification of several essential Sertoli cell transcripts affected by Smad3 dosage that are androgen regulated. These include protease inhibitors Serpina5 (44, 45) and Spinl1 (44, 46), and cell cycle inhibitor Cdkn1b (43), providing the first in vivo data showing androgen actions during testis development are modulated by the impact of SMAD3 on AR levels and building on a recent study describing activin/SMAD3/AR-mediated reciprocal effects of SMAD3 on AR transcriptional activity (47). Second, we have discovered dose-dependent, nonlinear effects of SMAD3 on AR expression and AR actions in vivo: reduced SMAD3 levels are associated with increased AR production and AR target gene expression, yet absence of SMAD3 results in significantly reduced levels of AR and androgen-regulated transcripts. The testicular phenotypes of Smad3+/− and Smad3−/− mice are not consistent with altered androgen production because transcript levels of steroidogenic enzymes or the Leydig cell androgen-regulated gene Cyp17a1 (48) were not different between genotypes. What remains to be established is whether differential expression of androgen target genes in testes of Smad3+/− and Smad3−/− mice is solely due to differences in AR production or also reflects altered AR activity, perhaps resulting from altered SMAD3-AR interactions, analogous to prostate cancer cell line studies that demonstrate reciprocal effects of SMAD3 on AR transcriptional activity (49).

Comparison of germ cell differentiation in Smad3+/− and Smad3−/− mice to well-characterized mouse models of altered androgen signaling suggest that Sertoli cells are the primary cell type affected by altered Smad3 dosage. ...
SMAD3-AR axis defines the pace of normal testicular maturation

A

Activin A

SMAD3

SMAD2

AR → Smad2

7 dpp

Immature Sertoli cell

SMAD2

SMAD3

16 dpp

Maturing Sertoli cell

B

Sertoli cell: advanced maturation

AR, androgen targets

BTB components

Spermatogenesis: advanced

Sertoli cell: delayed maturation

AR, androgen target genes

BTB components

Spatlen 2

Sertoli cell: delayed maturation

Select androgen targets

BTB components

Other maturation markers

Spermatogenesis: advanced

FIG. 7. Model depicting the requirement for regulated and interdependent activin and androgen actions for normal testis growth, development, and maturation. A, In the normal immature testis, activin A signals via SMAD3 to promote normal testis growth and steroidogenesis and appropriately timed AR expression. Down-regulation of SMAD3 is associated with the cessation of Sertoli cell proliferation and progression toward a terminally differentiated state. In maturing Sertoli cells, one outcome of AR activation is to up-regulate Smad2 transcripts. This further promotes Sertoli cell terminal differentiation by contributing to the shift toward use of both SMAD2 and SMAD3 in activin A signal transduction. B, The importance of SMAD3 in directing the normal pace of testis development and maturation is evident in mice that have altered levels of SMAD3. Smad3 haploinsufficient mice (Smad3+/−) display enhanced androgen responsiveness, advanced Sertoli cell maturation, and spermatogenesis, whereas mice that lack Smad3 (Smad3−/−) have impaired androgen responsiveness and delayed Sertoli cell development.

AR KO (50) and SCARKO (50) mice, the tfm mouse (51, 52), and the hpg mouse (53), spermatogonial differentiation proceeds unaffected through to late pachytene spermatocyte stage, with spermatogenic arrest before completion of meiosis. In the present study, germ cell development in testes of Smad3−/− mice during the first wave of spermatogenesis was apparently normal. Furthermore, progression through meiosis during the first wave of spermatogenesis has a higher androgen signaling threshold than does ongoing adult spermatogenesis (54). This provides a plausible explanation of why advanced germ cell differentiation is observed in 16-dpp Smad3+/− mice, which display increased testicular expression of Ar and androgen-target genes and genes required to support postmeiotic germ cell survival, all consistent with the measured indicators of increased androgen signaling.

Pubertal development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis and in boys typically occurs between age 8 and 14 yr. Hypothalamic secretion of GnRH stimulates LH and FSH release from the pituitary to act on Leydig and Sertoli cells, respectively (reviewed in Refs. 55 and 56). There is an increasing worldwide recognition of a trend toward precocious puberty (57), which can result from premature activation of the HPG axis (central precocious puberty) or may be HPG independent due to altered testis function (peripheral precocious puberty), such as the presence of Leydig cell tumors (55). Precocious puberty is often associated with elevated androgens (55). We propose that the Smad3−/− mouse constitutes a novel model of peripheral precocious puberty in which FSH levels, Leydig cell development, and markers of androgen synthesis are normal. Because androgen effects are mediated by the AR, our findings that Smad3 dosage influences AR expression in developing Sertoli cells reveals a potentially new etiology of precocious puberty when androgen levels are apparently normal and Leydig cells appear unaffected. On the other hand, endocrine disrupting chemicals are linked to delayed puberty and impaired androgen actions in boys (57, 58). Studies using rats support these human data, with endocrine disruptors exerting broad effects on the developing testis, including changes to Sertoli cell proliferation, maturation, and androgen responsiveness, with the developing testis more sensitive than the adult testis (reviewed in (59)). The Smad3−/− mouse phenocopies these human and rodent data, presenting as a model of delayed Sertoli cell development and impaired androgen responsiveness. The Smad3+/− and Smad3−/− mice therefore offer the opportunity to dissect the control of pubertal development by activin and related signaling molecules and identify SMAD2 and SMAD3 as new targets for reproductive toxicology investigations into altered pubertal development.
Collectively our data demonstrate that normal testis growth and maturation require coordinated and interdependent activin/TGFβ and androgen signaling with regulated production of Smad2, SMAD3, and AR influencing the balance between cell growth, differentiation, and maturation in establishing the adult testis.

Acknowledgments

We thank Dr. Peter Stanton for the gifts of antiandrogen receptor antibody and testosterone. We also thank Dr. Yuan Zhu and Dr. Jonathan Graff for permission to use the Smad3−/− mice, Bianca Teal for excellent management of the Smad3 mouse colony, Dr. Zhen Zhang for assistance with blood collection, Anne O’Connor and Sue Hayward for performing FSH RIAs, and Dr. Wendy Winnall for spike RNA.

Address all correspondence and requests for reprints to: Associate Professor Kate Loveland, School of Biomedical Sciences, Monash University, Building 77, Level 1, Wellington Road, Clayton, Victoria 3800, Australia. E-mail: kate.loveland@monash.edu.

This work was supported by National Health and Medical Research Council of Australia Grants 545917 and 545916 (to K.L.L.), Grants 487922 and 603122 (to M.E.), Grant APP1002486 (to D.A.J.), Australian Research Council Grants 545917 and 545916 (to M.E.), Grant 487922 and 603122 (to M.E.), Grant 545917 and 545916 (to C.I.), and 348239 (to K.L.L.) and 384109 (to D.A.J.), the Operational APP1002486 (to D.A.J.), Australian Research Council Grants 545917 and 545916 (to M.E.), Grant 487922 and 603122 (to M.E.), Grant 545917 and 545916 (to C.I.), and 348239 (to K.L.L.) and 384109 (to D.A.J.), the Operational Infrastructure Support Program by the Victorian Government of Australia (to M.E.), and the Monash University Postgraduate Scholarship and Bridging Postdoctoral Fellowship (to C.I.).

References

1. Skakkebæk NE, Raipert-De Meyts E, Main KM 2001 Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspect. Hum Reprod 16:972–978
2. Orth JM, Gunsalus GL, Lamperti AA 1988 Evidence from Sertoli cell-depleted rats indicates that spermatids number in adults depends on number of Sertoli cells produced during perinatal development. Endocrinology 122:787–794