The role of MIF in melanoma progression

Camila Salum de Oliveira

BSc in Biological Sciences and Master in Neuroscience

Thesis submitted in fulfilment of the requirements for obtain the degree of Doctor of Philosophy in Medical Biochemistry

School of Biomedical Sciences and Pharmacy
University of Newcastle
November 2012
Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provision of the Copyright Act 1968.

__
Camila Salum de Oliveira
Acknowledgements

Firstly I would like to express my sincerest gratitude to my supervisor, Dr Rick Thorne, who has given me all the assistance I could have hoped for since the beginning of this journey. I cannot thank him enough for his guidance, patience and support in every possible aspect of this PhD experience. Without him this thesis would not have been completed. I would also like to thank my first co-supervisor, Prof Gordon Burns, whose knowledge and experience provided valuable advice and insight throughout the progress of this project. I am also very grateful to Dr Charles de Bock whose enthusiasm and energy has always created a vibrant and fun atmosphere to the lab. I also thank him for the patience teaching lab techniques and the invaluable help in reviewing the manuscript. I wish to acknowledge Prof Xu Dong Zhang for providing the cell lines and for offering his laboratory and advices for the intracellular signalling analysis that is part of this thesis.

Dr Tim Molloy from Garvan Institute (Sydney) was of essential help to perform the survival analysis and his collaboration was greatly appreciated. Thanks to Ms Xu Guang Yan for her invaluable assistance with the immunohistochemistry and immunofluorescence staining, up to the last minute, and for all the technical support in the lab. To all the other members of Cancer Research Unit, past and present, thanks for always being available to help whenever I needed, for sharing knowledge and some good laughs. To my office mates and office neighbours, thanks for the much needed pauses and distractions from work.

I am very grateful to my beloved partner, João, for always being by my side, for joining me in this adventure and for making it all much more fun. Finally, I want to express my gratitude to the loved ones back home. Thanks to my brothers and sisters, the blood ones and the chosen ones, for being so present even when physically distant. To my parents, who taught me the real values in life that made me who I am, thanks for being my foundation and my haven. A special thanks to my mum for always “looking after” me even when I was half a planet away from home. This thesis is dedicated to my dad, who passed away recently. I am proud of everything I learned from him and I would not have come so far if it wasn’t for his enormous support. Words cannot describe my love and gratitude.
Table of Contents

ABSTRACT .. XVI

CHAPTER 1 ... 1

1.1 MELANOMA .. 2

1.1.1 Epidemiology .. 2

1.1.2 Etiology and Risk Factors ... 5

1.1.3 Pathology of Melanocytic Tumours .. 7

1.1.4 Staging and Prognosis .. 9

1.1.5 Treatment ... 11

1.2 SIGNALLING NETWORKS IN MELANOMA ... 12

1.2.1 BRAF and MAPK/ERK signalling pathway ... 12

1.2.2 PTEN and the Akt signalling pathway .. 16

1.2.3 NRAS mutations .. 17

1.2.4 Autocrine signalling .. 20

1.3 MIF .. 21

1.3.1 MIF in Melanoma .. 22

1.3.2 MIF signalling ... 23

1.4 CD74 .. 23

1.5 CD44 .. 25

1.5.1 CD44 in cancer .. 27
2.14 CELL PROLIFERATION AND VIABILITY MEASUREMENTS USING MTS REDUCTION 51

2.15 SUB-CELLULAR FRACTIONATION TECHNIQUES ... 51

2.15.1 Detergent lysis method .. 51

2.15.2 Nitrogen decompression method .. 52

2.16 IMMUNOFLUORESCENCE MICROSCOPY .. 53

CHAPTER 3 ... 54

3.1 INTRODUCTION .. 55

3.1.1 MIF as a cancer biomarker ... 55

3.1.2 MIF and melanoma ... 57

3.2 RESULTS .. 59

3.2.1 MIF mRNA and protein expression in melanocytic tumours .. 59

3.2.2 MIF expression levels in melanoma metastases are prognostic for disease progression ... 64

3.2.3 Analysis of MIF receptor expression and association with disease-specific survival in melanoma clinical samples .. 67

3.3 DISCUSSION .. 69

CHAPTER 4 .. 75

4.1 INTRODUCTION .. 76

4.2 RESULTS .. 78

4.2.1 Characterisation of MIF expression and MIF receptors in human melanoma cell lines 78

4.2.2 Small interfering RNA knockdown of MIF decreases melanoma cell proliferation and viability ... 81
4.2.3 MIF Knockdown reduces the number of cells entering S phase 82
4.2.4 MIF knockdown decreases anchorage-independent colony formation 86
4.2.5 MIF expression modulates Akt signalling pathway in melanoma cell lines 88
4.2.6 MIF expression is upregulated under hypoxic conditions in melanoma cell lines 90
4.3 DISCUSSION ... 93

CHAPTER 5 ... 99

5.1 INTRODUCTION .. 100

5.2 RESULTS .. 102
5.2.1 The subcellular localisation of MIF in cultured melanoma cells 102
5.2.2 The cellular distribution of CD44 in cultured human melanoma cells 104
5.2.3 Characterization of CD44 sub-cellular localization in HT-29 and MCF10A cells 106
5.2.4 Characterisation of antibodies against the extracellular and intracellular domain of CD44 in Western blotting ... 111
5.2.5 Biochemical determination of the subcellular localization of CD44 using a detergent-based lysis method .. 113
5.2.6 Determination of CD44 sub-cellular localization using nitrogen decompression lysis and fractionation by differential centrifugation 116

5.3 DISCUSSION ... 118

CHAPTER 6 ... 121

6.1 GENERAL CONCLUSIONS... 122
6.1.1 Recent facts on melanoma ... 122
6.1.2 MIF expression in melanoma progression ... 124
6.1.3 The functional role of MIF in melanoma cell lines ... 125

6.1.4 CD44 translocation to the nucleus: a potential mechanism for delivering the MIF signal? ... 127

6.2 FUTURE DIRECTIONS ... 129

APPENDIX 1 ... 131

APPENDIX 2 ... 147

APPENDIX 3 ... 152

REFERENCES ... 155
List of Figures

Figure 1.1 – Melanoma incidence and mortality rates in Australia – Melanoma incidence and mortality from 1982 to 2007. The rates were age-standardised to the Australian population as at 30 June 2001 and are expressed per 100,000 population (top panel). Melanoma incidence and mortality by age at diagnosis. The rates shown are age-specific rates (bottom panel). Adapted from “Cancer in Australia: an overview, 2010” (5). ... 3

Figure 1.2 – Melanoma progression model showing the five stages of melanoma progression. Benign lesions originate within normal skin and include common acquired or congenital naevi [1] and dysplastic naevi [2]. Both are considered to be precursors of melanoma and can further progress to in situ melanoma, which grows laterally and remain largely confined to the epidermis. This stage is known as radial-growth phase (RGP) melanoma [3]. The next stage, vertical growth phase (VGP) [4], is characterised by the vertical growth of a new population of cells within the melanoma, which may invade the dermis and form expansive nodules. In the latter phase of progression metastatic melanoma [5] dissociates from the primary tumour, and colonises distant sites (Adapted from Chin, 2003 (7)). 8

Figure 1.3 – Schematic representation of the activation of MAPK/ERK signalling pathway in mammalian cells. A simplified MAPK signalling module is illustrated here with the RAS-RAF-MEK-ERK pathway. Extracellular stimuli lead to activation of ERK pathway via consecutive phosphorylations initiated by RAS (HRAS, NRAS and KRAS) which phosphorylates the MKKK RAF (ARAF, BRAF and CRAF). RAF, in turn, phosphorylates MEK (MEK1 and MEK2), which then phosphorylates ERK MAPK (ERK1 and ERK2) leading to activation of transcription factors and regulation of several cellular processes (Modified from Chin 2003 (7)). 15

Figure 1.4 – Altered signalling pathways in melanoma. Representative diagram showing the major molecular pathways involved in melanoma tumorigenesis, survival and senescence. NRAS pathway, in green, includes ERK and Akt pathways and is involved in melanoma proliferation, survival and progression. The CDKN2A locus encodes for tumour suppressors which are thought to contribute to senescence. The p53/Bcl-2 pathway regulates melanoma apoptosis and is modulated by many of the known oncogenic pathways (Adapted from Hocker et al., 2008 (6)). ... 19

Figure 1.5 – CD44 Structure. Graphic representative of CD44 molecule showing potential N- and O-linked sugar residues and CS (chondroitin sulfate side chains) incorporated into the
extracellular domain and serine phosphorylation sites in its intracellular domain (Modified from Martegani et al., 1999 (1)).

Figure 1.6 – Model of the MIF-CD74-CD44 signalling complex. MIF binds to its receptor CD74 with activation of downstream pathways occurring through CD44. MIF can activate both the MAPK/ERK and the PI3K/Akt pathways in immunological systems but the details of MIF-signalling are poorly defined in cancers (Modified from Shi et al., 2006 (2)).

Figure 1.7 – CD44 proteolytic cleavage. Extracellular region of CD44 is cleaved by ADAM10, ADAM17 and MMP14, which triggers the intramembranous cleavage by presenilin-γ-secretase. These sequential cleavages result in the release of the soluble ectodomain of CD44 and the release of an intracellular domain (ICD) fragment, which has been shown to be involved in nuclear signalling (Adapted from Thorne et al., 2004 (3)).

Figure 3.1 – MIF and MIF-signalling receptor expression in melanocytic lesions measured using microarray data. Levels of MIF (A), CXCR4 (B), CD44 (C) and CD74 (D) expression in the two normal skin tissue samples (NS1; NS2), benign naevi (BN1; BN2), atypical naevi (AN1; AN2), melanomas in situ (in situ1; in situ2), VGP melanomas (VGP1; VGP2), MGP melanomas (MGP1; MGP2), and the three MGP melanoma-positive lymph nodes (LN1; LN2; LN3) were obtained from the microarray dataset GSE4587 as described in Chapter 2. Insets show the distribution of expression in the same samples divided in (E) early- and (A) advanced-stage. MIF and CXCR4 expression were higher on the “advanced-stage” samples compared to the “early-stage” samples. Distribution of transcript levels are summarised as box plots (n=8 early stage; n=9 advanced stage. Mann-Whitney test **p<0.01; *p<0.05).

Figure 3.2 – MIF immunohistochemistry staining in ex-vivo sections of different stages of melanocytic lesions. Representative micrographs (40x magnification) showing examples of MIF positive staining as detailed in Table 3.1. Tissue sections representing: (A) benign naevus, (B) dysplastic naevus, (C) primary melanoma and (D) metastatic melanoma. Sections were prepared from archival paraffin embedded tissues and processed for antigen retrieval using Citrate buffer (0.05M, pH 6.0). Sections were incubated with anti-human MIF antibody with detection using Vectastain ABC and VIP substrate (purple colour). Slides were then counterstained with Methyl Green.

Figure 3.3 – MIF expression and association with survival in primary and metastatic melanoma clinical samples using microarrays (GEO dataset GSE8401). (A) MIF expression is ~30% higher in metastatic melanoma compared to primary melanoma samples from GEO dataset GSE8401. Values are mean + SEM (t-test, n=31 primary tumour n=52 metastatic melanoma. **p<0.01) (B) Kaplan-Meier survival analysis showed no difference in disease-
specific survival between high \textit{MIF} (dotted line, upper 50%) and low \textit{MIF} (solid line) expression groups (hazard ratio = 1.091, 95% confidence interval 0.312-3.809; \(p = 0.8911 \)). (C) Kaplan-Meier survival analysis indicate that patients with metastatic melanoma expressing high \textit{MIF} had significantly poorer outcome (hazard ratio = 2.946, 95% confidence interval 1.440-6.029; \(p = 0.0045 \), \(n=52 \)) compared to those with low \textit{MIF} expression.

\textbf{Figure 3.4} - Association between \textit{MIF} expression and survival in melanoma clinical samples (GEO datasets GSE22153 and GSE22154). (A) Kaplan-Meier survival curves were generated for patients with lymph node and subcutaneous melanoma metastases according to the level of \textit{MIF} expression (\(p = 0.319 \), \(n=57 \)). (B) Kaplan-Meier survival curves for melanoma patients with liver and lymph node metastases (\(p = 0.117 \), \(n=20 \)).

\textbf{Figure 3.5} – CD74, CD44 and CXCR4 expression and survival in primary and metastatic melanoma clinical samples using GEO dataset GSE8401. Kaplan-Meier survival curves were generated based on association between the survival data of 52 patients with metastatic melanoma or 31 patients with primary melanoma and the level of CD74, CD44 and CXCR4 expression. No difference in disease-specific survival was measured between high and low expressors for any of the receptors analysed (A-C) for the cases of primary melanoma. Metastatic melanoma patients expressing high CD44 (dotted line, upper 50%) showed significantly poorer outcome (\(p = 0.025 \)) compared to the low CD44 expression patients (solid line) (E). Conversely, high expression CD74 and CXCR4 was associated with significantly better survival in metastatic disease (\(p = 0.002 \) and 0.005, respectively) (D and F).

\textbf{Figure 4.1}– \textit{MIF} and \textit{MIF} receptor expression in the human melanoma cell line panel. (A) Representative Western blots showing \textit{MIF} (~12.5KDa), CD44 (~85-150KDa), CD74 (~34KDa) and GAPDH (~36Kda) immunoreactive bands for all cell lines used throughout this study. \textit{MIF} receptor, CD74, was detected in 10 out of 20 cell lines, while the co-receptor CD44 was ubiquitously expressed. Receptor expression was confirmed by cell surface staining and flow cytometry analysis (B and C). Specific antibody staining (open histogram) is shown overlayed over staining using a control antibody (solid histogram). (B) Consistent with the Western blotting results, all the cell lines stained positively for CD44. (C) CD74 was present at the surface of 10 out of 20 cells analysed (6 representative cell lines are displayed for the flow cytometric analyses).

\textbf{Figure 4.2}– Chemokine receptor expression in the human melanoma cell line panel. CXCR4 and CXCR2 expression was assessed by cell surface staining and flow cytometry analysis. The cells were stained with specific antibodies compared to control antibodies (open histogram versus solid histogram respectively). (A) CXCR4 was present in all the cell lines

\textbf{Figure 4.2}– Chemokine receptor expression in the human melanoma cell line panel.
analysed while (B) CXCR2 expression was absent in all the 20 cell lines (6 representative cell lines shown for each analysis).

Figure 4.3 – Small interfering RNA (siRNA) knockdown of MIF decreases melanoma cell proliferation and viability. The indicated melanoma cell lines were transfected with MIF siRNA (siMIF; 50nM), and the knockdown was confirmed by Western blotting against MIF (~12.5KDa) or GAPDH (~36KDa) as a loading control. As a transfection control, a scrambled siRNA was used at the same concentration (siNC). MIF protein expression was reduced 1 day after transfection, and the knockdown was sustained for 5 days in both (A) MelCV and (B) Me1007 cell lines. The cell number and viability were determined using an automated cell counter using the propidium iodide (PI) exclusion method. (C, D) The results for both MelCV and Me1007 showed a significant reduction in the cell number starting from day 3 after transfection (E, F) and the viability was also reduced in a time-dependent manner. Values are mean ± SEM of 3 experiments performed in triplicate (t-test, n=3, compared to siNC transfected cells. **** p<0.0001; *** p<0.001; **p<0.01; *p<0.05).

Figure 4.4 – Effects of MIF knockdown on the proportion of melanoma cells in S phase analysed using the Click-iT assay. Cell proliferation was determined using Click-iT™ EdU flow cytometry assay as described in Section 2.11. Briefly, cells were transfected with MIF and NC siRNA and after 3 days, 10nM EdU was added to the media for 3h. Analysis of the samples was then conducted on a FACS Calibur flow cytometer. (A, B) Analysis of MelCV and Me1007 cells using the Click-iT™ assay allows accurate determination of the populations of cells entering S phase (box). The results show a clear reduction of number of cells in S phase after MIF knockdown for both MelCV and Me1007 cell lines. (C, D) The bar graphs show the percentage of cells in S phase after MIF knockdown. (E) The analysis was repeated for additional melanoma cell lines and MIF expression significantly reduced the number of cells entering S-phase for 4/6 cell lines. Values are means ± SEM (t-test, n = 5, compared to siNC transfected cells. *** p<0.001 **p<0.01 *p<0.05).

Figure 4.5– MIF knockdown decreases anchorage-independent colony formation. Three days after MIF knockdown, the indicated melanoma cells were harvested and seeded in plates within soft agar. Cells were allowed to grow and form colonies for 3-4 weeks. (A, B) Colonies were stained with Crystal Violet. Photos show a representative field from one of the wells at 5X magnification and the insets show the colonies in detail seen under 40X magnification. (C-F) Colonies from 10 different fields in were counted and 25 colonies measured for each experiment using the Axiovision software package. Analysis showed there was a significant reduction in colony numbers and size after MIF knockdown for both MelCV and Me1007. Values
Figure 4.6 - MIF expression modulates Akt signalling in melanoma cell lines. Representative Western blots showing specific immunoreactive bands for MIF, Akt and key cell cycle regulators in the 6 indicated melanoma cell lines. Cells were transfected with MIF and NC siRNA and after 3 days, cells were lysed and submitted to Western blotting. (A) Inhibition of MIF expression 3 days after knockdown was confirmed for all the cell lines analysed. The normalised ratio of expression comparing MIF to control NC knockdown was determined by dividing the optical density of the MIF specific band (~12.5KDa) by GAPDH (~36KDa) using the Multi Gauge software package, as described in Section 2.8. (B) Phosphorylation of Akt (Ser 473) was reduced with MIF knockdown in different levels across the cell lines. In this case, the ratio shows the optical density of the phospho-Akt (~60KDa) band divided by the total Akt (~60KDa). (C) Cell cycle regulators Cyclin D1 (~37KDa) and CDK4 (~34KDa) were also reduced after MIF knockdown in all cell lines, while the cyclin-dependent kinase inhibitor p27 (27KDa) was also increased in most cell lines. The ratio was determined by dividing the optical density of the specific band by that of GAPDH. The ratios shown are the means of 3 independent experiments.

Figure 4.7 - MIF is upregulated in melanoma cell lines under hypoxia. Representative Western blot showing MIF immunoreactive bands (~12.5KDa) for Me1007 and MelCV cell lines after 3 days under normoxia (N; atmospheric O₂ and 5% CO₂) or hypoxia (H; 0.1% O₂ and 5% CO₂). The bar graph reports the optical density (OD) values of MIF relative to GAPDH (~36KDa) with data normalised to control cells kept under normoxic conditions. Values are mean + SEM (t-test, n=3, compared to normoxia; *p<0.05).

Figure 4.8 - Effects of MIF depletion on melanoma cell viability under conditions of hypoxia. (A) Representative Western blot showing MIF immunoreactive bands (~12.5KDa) and GAPDH (~36KDa) for Me1007 and MelCV cell lines 3 days after transfection with MIF or NC siRNA under normoxia (N) or hypoxia (H). (B) Cell viability measured by MTS reduction represented as percentage of cells transfected with NC siRNA under normoxia for each cell line. Values are mean + SEM (t-test, n=3, compared to normoxia; *p<0.05 and **p<0.01).

Figure 5.1 – Cellular distribution of MIF in human melanoma cell lines. The indicated cell lines were grown on glass coverslips, fixed, permeabilised and immunostained with MIF mAb antibody and a fluorescent secondary conjugate (Alexa488 anti-mouse IgG). The cells were imaged using epifluorescence microscopy. The left panels are standard immunofluorescence (IF) microphotographs whereas the middle and right panels are optical sections of cells showing MIF staining or the nuclear marker DAPI as indicated. Scale bar = 20µm.
Figure 5.2– Cellular distribution of CD44 in human melanoma cell lines. The indicated cell lines grown on glass coverslips were fixed, permeabilised and immunostained with CD44 mAb antibody (Hermes3) and a fluorescent secondary conjugate (Alexa488 anti-mouse IgG). The left panels are immunofluorescence (IF) microphotographs whereas the middle and the right panels are optical sections of cells showing CD44 staining or the nuclear marker DAPI as indicated. Scale bar = 20µm.

Figure 5.3- Distribution of CD44 in HT-29 cells. Cells grown on glass coverslips were fixed, permeabilised and immunostained with (i) detection reagents alone (anti-mouse IgG Alexa488 conjugate) or (ii - ix) mAb directed against the extracellular domain of CD44. The clones used were: (ii) Hermes-3 (in house); (iii) E1/2 (in house); (iv) Bu52 (Serotec); (v) F10-44-2 (SouthernBioTech); (vi) 2F10 (RD); (vii) 3E8 (in house); (viii) 5F12 (NeoMarkers); (ix) Bu52 (Ancell). The cells were analysed using confocal microscopy. The images are optical sections of cells stained with each CD44 antibody against the extracellular domain in combination with a fluorescent secondary conjugate (Alexa488 anti-mouse IgG). Scale bar = 20µm.

Figure 5.4 – Immunofluorescence analysis showing the distribution of CD44 in MCF10A cells. The photomicrographs represent optical sections of cells stained with the CD44 antibody (clone E1/2) against the extracellular domain in combination with the secondary antibody Alexa555® anti-mouse IgG or other indicated markers. Cell nuclei were counterstained using DAPI. (A) Immunofluorescence analysis of MCF10A cultured under different conditions (low density, high density and acini) showing CD44 staining (red; left panel), nuclear staining by DAPI (blue; middle panel) and the merged images (right panel). No co-localization of CD44 and the nuclear marker is observed. (B; next page) Immunofluorescence analysis of MCF10A cells under low magnification showing filamentous actin staining (Green; Top left panel) using Alexa488® phalloidin probe (Life Technologies); CD44 staining (Red; Top right panel); DAPI nuclear staining (Blue; Bottom left panel) and the merged images (Bottom right panel). A large number of cells can be observed in the small magnification images but no co-localization of CD44 and the nuclear marker is observed. (C, next page) MCF10A cells stained with anti-cytochrome C antibody as a mitochondrial marker (Green; top left panel), CD44 staining (Red; top right panel), DAPI (Blue, bottom left panel) or the merged images (bottom right panel). The Zenon® labelling kit was used to prepare direct fluorophore labelled-primary antibodies as described in Section 2.16 Some intracellular CD44 appears withing the cytosol but no CD44 is seen in the cell nucleus.

Figure 5.5– Detection of CD44 by Western blotting using antibodies against extracellular and intracellular domain. (A) HT-29 cells were transfected with siRNA against CD44 (siCD44) or scrambled siRNA (siNC) and after 3 days, were harvested and submitted to Western blotting.
with an antibody against the extracellular domain of CD44 (Hermes-3). The immunoreactive bands detected correspond to the different isoforms of CD44 with molecular weights ranging from ~90-150kDa (FL CD44). (B) Blotting with an antibody against the cytoplasmic tail of CD44 (CD44 ICD). Besides the full length molecule (90kDa), two additional specific bands were observed. The 25KDa band corresponds to the membrane bound cleaved CD44 containing the cytoplasmic domain (CD44 CTF). The CD44 intracytoplasmic domain (ICD) was also detected (~16kDa). (C) HT-29 cells were treated with 100 or 500ng/mL of PMA for 30 minutes. PMA treatment caused the appearance of bands at ~25 and ~16kDa representing the cleavage products of CD44. Note that different percentages of acrylamide were used to optimally detect FL CD44 (7.5%, A) and the cleaved products (12%, B and C) and therefore the migration patterns of markers appear different.

Figure 5.6 - Subcellular localization of CD44 after cell fractionation using detergent-based lysis. Nuclear and cytoplasmic fractions prepared from the HT-29 cell line were analysed by Western blotting using antibodies against CD44 extracellular domain (Hermes-3; A); CD44 ICD (B); GAPDH (C); Lamin A/C (D) and CD9 (E). Specific CD44 bands are highlighted as per Figure 5.3: full-length CD44 (FL CD44), intracytoplasmic domain (CD44 ICD) and membrane-bound C-terminal fragment (CD44-CTF). Numbers on the left are Molecular Weights (KDa).

Figure 5.7 - Sub-cellular localization of CD44 in HT-29 cells after nitrogen decompression lysis and cell fractionation. Cells were disrupted by nitrogen decompression and the subcellular fractions were separated by differential centrifugation. Fraction 1 is the nuclear fraction (Nuc), pelleted at 1000 x g; fraction 2 is the mitochondrial fraction (Mito) pelleted at 20,000 x g; Fraction 3 contains light cell membranes (Mem) pelleted at 100,000 x g and the supernatant is the cytosolic fraction (Cyto; fraction 4). The different fractions were analysed by Western blotting using antibodies against CD44 extracellular domain (Hermes-3; A); GAPDH (B); Lamin A/C (C) or CD9 (D).
Abstract

There is currently no effective treatment for melanoma once the tumour has spread beyond the primary site. Unlike many other cancers, metastatic melanoma is frequently resistant to all conventional forms of anti-cancer treatment. This inherent resistance of melanoma cells is in large part due to their hyper-activation of survival signalling pathways, most notably ERK and Akt. This often results from mutations of key proteins such as in BRAF, NRAS and PTEN, and consequently these molecules have been the subject of intensive investigation. These efforts have led to the revolutionary new treatments such as those targeting mutated BRAF that occurs in ~50% of melanomas. However, while these agents demonstrate a high initial response rate, their clinical benefit has been plagued by the development of acquired drug resistance. In any case this treatment is not applicable to those patients not presenting with the BRAF mutation and finding other therapeutic targets is urgent.

Another important mechanism driving survival signalling pathways in melanoma is the aberrant production of growth factors that act in an autocrine manner. The work presented in this thesis fits within this area with studies focused on the role of macrophage migration inhibitory factor (MIF). MIF is an atypical cytokine for which a number of diverse roles have been described including those of both hormone and enzyme. In the context of cancer, MIF is believed act as the autocrine factor driving activation of survival pathways. MIF signalling is known to be initiated by binding to the cell surface CD74/CD44 receptor complex or to the chemokine receptors CXCR2 and CXCR4. Although MIF signalling has been implicated in several tumours, the role of MIF in melanoma had not been previously studied in great detail.

This thesis first investigated the expression of MIF in melanocytic tumours in vivo using a combination of in silico analysis of microarray data and immunocytochemistry staining of ex vivo tumour sections. The results presented herein show that MIF expression generally increases with disease progression and in advanced tumours it preferentially localises to the nucleus of cancer cells. Analysing the available survival data it was shown that MIF was a significant prognostic factor for patients with metastatic melanoma, with higher expression levels predicting poorer outcome since patients underwent faster relapse. MIF expression was only important in the context of secondary tumours since the analysis of MIF levels in primary
melanoma samples failed to show outcome differences. Similar prognostic analyses of the known MIF receptors, CD74, CD44 that acts as a co-receptor, and CXCR2 and CXCR4 were also performed. Only CD44 expression appeared to be associated with prognosis since high CD44 levels in tumours were also predictive of shorter survival in metastatic disease. The conclusion from these data suggested that high levels of MIF expression in metastatic melanoma are associated with tumour aggressiveness.

Further experiments undertaken in a large panel of 20 human melanoma cell lines showed that MIF, CD44 and CXCR4 were ubiquitously expressed. CD74 was only expressed in 50% of cell lines and CXCR2 in none. The function of MIF was then examined in six of these cell lines using siRNA to deplete MIF. With respect to control treated cells, MIF siRNA significantly decreased cell proliferation in 4 out of 6 cell lines. Further analysis showed that MIF also influenced cell survival and anchorage-independent growth. The sensitivity of cells to MIF depletion appear to be associated with the presence of MIF in the cell nucleus, but it was independent of BRAF mutational status. Analysis of signalling pathways showed that MIF acts to regulate the Akt pathway in a high proportion of melanoma cell lines and this finding is highly significant with respect to targeting survival signalling in this disease.

The receptor systems that MIF likely utilises in melanoma were also investigated. It was noticeable that MIF effects on melanoma cell lines were independent of CD74 expression since cells not expressing CD74 were also sensitive to MIF knockdown. Analyses focussed on the nuclear localisation of MIF and the presumed involvement of CD44 in this process, since CD44 had been previously shown to translocate to the nucleus. Extensive imaging and biochemical analyses failed to demonstrate this was the mechanism of MIF nuclear translocation in melanoma.

In conclusion, the work presented here implicates MIF in melanoma progression and reveals MIF as a potential prognostic factor for metastatic melanoma. MIF actions are likely to involve the activation of Akt signalling pathway to regulate the cell-cycle, a key finding that has implications for melanoma proliferation and progression. Taken together, these results indicate MIF as a potential new therapeutic target for melanoma and one that is potentially independent of - and complementary to - current therapies.