Quality Attributes Modeling in Feature Models and Feature Model Validation in Software Product Lines

A thesis submitted in fulfillment of requirement for the degree of Doctor of Philosophy

GUOHENG ZHANG
School of Electrical Engineering and Computer Science
The University of Newcastle,
Callaghan, NSW, 2308, Australia

March 2013
Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository.

Guoheng Zhang
Acknowledgement

I would like to acknowledge the support and encouragement of several people, without whom, this thesis would not be possible.

Firstly, I am grateful for my two supervisors, Associate Prof. Huilin Ye and Dr. Yuqing Lin. I have learnt almost everything about research from them. In the last four years, they have given me guidance and encouragement, support and generosity in sharing their time, knowledge, and expertise during the preparation of my Ph.D thesis and throughout my research work.

My research has been funded by Australian Research Council under Discovery Project DP0772799. I would like to thank the Council for this great opportunity.

I wish to thank my wife for her love, encouragement and continuous support. I am grateful to my parents for their support and education.

During several conferences, I had the pleasure to meet many passionate people from the software product line community. I wish to give my thanks to David Benavides, Xin Peng and Wei Zhang in sharing with me their ideas in SPLC 2011 and RE 2010.
Table of Contents

Acknowledgement .. ii
Table of Contents ... iii
Abstract .. vii
1. Introduction ... 1
 1.1 Problem Statement ... 3
 1.2 Proposed Approach ... 6
 1.3 Contributions ... 8
 1.4 Thesis Structure ... 12
 1.5 Publication List .. 13
2. Background ... 15
 2.1 Software Product Lines .. 15
 2.2 Feature Models ... 21
 2.2.1 Feature Diagram and Product Configuration ... 22
 2.2.2 Two Problems .. 28
 2.3 Feature Model Validation .. 30
 2.3.1 Feature Model Errors .. 30
 2.3.2 Related Works ... 33
 2.4 Quality Assessment in Product Configuration .. 35
 2.4.1 Quality Attributes Modeling in Feature Models ... 35
 2.4.2 Related Works ... 37
 2.5 Summary .. 41
3. An Efficient Approach for Feature Model Validation ... 43
 3.1 Causes of Feature Model Errors .. 43
 3.2 Feature Relationship Propagation ... 46
 3.3 Detecting Feature Model Errors .. 56
 3.4 Explaining Feature Model Errors ... 64
 3.5 Concluding Remarks .. 68
4. An Approach for Quality Attributes Modeling in a Feature Model ... 71
4.1 Overview .. 71
4.2 Identify and Represent Quality Attributes in Feature Models ... 73
4.3 Measure Interdependencies between Features and Quality Attributes ... 80
 4.3.1 Identifying Contributors ... 83
 4.3.2 Prioritizing Contributors ... 85
 4.3.3 Identifying Feature Relationships .. 88
 4.3.4 Calculating the Overall Impact ... 90
 4.3.5 Normalizing the Overall Impact ... 92
 4.3.6 Evaluating Domain Experts’ Judgments .. 95
 4.3.7 Representing the Interdependencies ... 101
 4.3.8 Managing Relationships among Quality Attributes ... 106
4.4 Quality-Aware Product Configuration ... 109
 4.4.1 Validating Quality Requirements ... 111
 4.4.2 Making Decisions .. 113
 4.4.3 Modifying Configured Products ... 118
4.5 Concluding Remarks .. 121
5. Prototype Tool ... 123
 5.1 Feature Model Editor Tool .. 123
 5.2 Feature Model Validation Tool ... 126
 5.3 Quality Attributes Modeling Tool .. 128
 5.4 Product Configuration Tool .. 132
 5.5 Concluding Remarks .. 135
6. Evaluation .. 136
 6.1 Evaluation of Feature Model Validation ... 136
 6.2 Evaluation of Quality Assessment ... 142
7. Conclusion .. 156
 7.1 Summary .. 156
 7.2 Future Work .. 159
Figure 1.1 The Proposed Framework ... 7
Figure 2.1 Framework of Software Product Line Engineering............................. 17
Figure 2.2 A Feature Model of Tourist Guide System Software Product Line 25
Figure 2.3 Examples of Feature Model Errors ... 31
Figure 3.1 Examples of Feature Model Errors (same with Figure 2.3) 44
Figure 3.2 Transferred Feature Model of Tourist Guide Software Product Line 51
Figure 3.3 A Feature Model for Illustrating Feature Relationship Propagation 56
Figure 3.4 An Example for Illustrating Minimal Explanations............................ 67
Figure 4.1 Overview of Modeling Quality Attributes in Feature Models 73
Figure 4.2 A Softgoal Model of Banking System.. 75
Figure 4.3 A Portion of Sort Catalogue of Security and Performance 78
Figure 4.4 A Portion of Operationalization Method Catalogue of Security 77
Figure 4.5 The Extended Feature Model of Tourist Guide Software Product Line 80
Figure 4.6 The Comparison Matrix of Contributors of Data Transfer Speed 88
Figure 4.7 The Relative Importance Values of Individual Contributors of Data Transfer Speed 88
Figure 4.8 A Feature Diagram for the Contributors of Data Transfer Speed 93
Figure 4.9 The Representation Schema for Interdependency................................ 102
Figure 4.10 The Representation Schema for Data Transfer Speed 104
Figure 4.11 Process of Quality-Aware Product Configuration............................. 110
Figure 4.12 Variation Point View of Tourist Guide SPL Feature Model 118
Figure 5.1 Function View of Editing Feature Models in FMETool 124
Figure 5.2 Function View of Generating Feature Models in FMETool 125
Figure 5.3 XML Format for Representing Feature Models 126
Figure 5.4 Function View of Validating Feature Models in FMVTool 128
Figure 5.5 Function View of Loading Feature Models in QAMTool 129
Figure 5.6 Function View of Identifying Contributors in QAMTool 130
Figure 5.7 Function View of Prioritizing Contributors in QAMTool 131
Figure 5.8 Function View of Validating Quality Requirements in QAPCTool 133
Figure 5.9 Function View of Making Feature Selections in QAPCTool 134
Figure 5.10 Function View of Modifying Product Configuration 135
Figure 6.1 The Experiment for Evaluating Feature Model Validation Approach 137
Figure 6.2 An Example of Random Feature Model ... 141
Figure 6.3 The Experiment for Evaluating Quality Assessment Approach 143
Figure 6.4 Functionalities of a CAD System for Police 144
Figure 6.5 Feature Model of CAD Software Product Line (1) 145
Figure 6.6 Feature Model of CAD Software Product Line (2) 146
Figure 6.7 Quality Attribute Feature Tree of CAD Software Product Line 147
Figure 6.8 Interdependency of Ease of Use.. 148
Figure 6.9 Interdependency of Data Access Security .. 149
Figure 6.10 Interdependency of Dispatch Respond Time 149
Figure 6.11 Interdependency of MLC, DTS and DTSS 152
Table 2.1 The Notations and Semantics of Feature Relationships in CBFM............................24
Table 2.2 Matrix for Maintaining Constraints in Tourist Guide Software Product Line..........26
Table 3.1 Illustration of Adjacent Features in Tourist Guide Software Product Line50
Table 3.2 Examples of Generating Minimal Explanations...68
Table 4.1 Intensity of Importance in Analytic Hierarchical Process..86
Table 4.2 Illustration of Calculating OIV (DTS, VS) ...92
Table 4.3 Valid Selections for Data Transfer Speed in Tourist Guide Software Product Line94
Table 4.4 Comparison Matrix for the Contributors of QA...96
Table 4.5 Quality Attribute Knowledge Base Tables...107
Table 4.6 The QAKB Table of Data Transfer Speed and Data Transfer Security.....................109
Table 4.7 Product Configuration Process in Feature Model of Tourist Guide SPL..................117
Table 4.8 Modification Solutions ..121
Table 6.1 Validation Results from FAMA and FMVTool on Pre-designed Feature Models.......138
Table 6.2 Validation Results from FMVTool on Randomly Generated Feature Models140
Table 6.3 Time Spent for Identifying Feature Model Errors by FMVTool and FAMA142
Table 6.4 Contributors of DAS, EOU and DRT ..150
Table 6.5 Configured Products from Feature Model of CAD Software Product Line............150
Table 6.6 Comparison between Quality Assessment Approach and Testing Domain Expert ...151
Abstract

In a software product line, a feature model represents the commonalities and variabilities among a family of software systems. Each valid combination of features authorized by a feature model corresponds to a possible product of the software product line. In feature-based product configuration, the desired features are selected from a feature model based on the customers’ requirements, but the selected features must satisfy the selection constraints specified in the feature model.

In practice, two problems arise as the major obstacles of using feature models in product configuration. Firstly, a feature model may have errors which must be resolved for the effective product configuration. The feature model validation aims to identify the feature model errors and provide explanations for each identified error. The current validation approaches transform a feature model into a constraint satisfaction problem (CSP) and use solvers to reason on the CSP. However, the use of solvers might take an infeasible amount of time for validating large-scale feature models, as CSP exhibits the exponential complexity and requires a combination of heuristics and combinational search methods. A more efficient feature model validation approach is needed. Another problem is to assess the product quality in feature-based product configuration. In software development, the product quality is mostly handled until the final product is generated and tested. However, if the final product cannot satisfy the customers' quality requirements, it will be very costly to fix the problems. Therefore, the product quality should be assessed in feature-based product configuration which is considered as the first stage of deriving valid products. To achieve this aim, the quality attributes must be modelled in a
feature model. The current quality attributes modeling approaches have several limitations, such as requiring real products which are difficult to obtain or involving onerous human efforts. A systematic quality attributes modeling approach is needed to reduce the efforts involved in domain experts’ judgments.

This research aims to address the above problems. First, we developed an efficient validation approach based on the contradictory feature relationships behind the errors. As the contradictory feature relationships were found based on feature relationship propagation, the solvers were not required by this approach. Second, we developed a quality attributes modeling approach which uses domain experts to make judgments and uses analytic hierarchical process to reduce the efforts involved in the judgments. A knowledge database called quality attribute knowledge base is generated to maintain the captured quality knowledge. Finally, we enhanced the feature-based product configuration with the captured quality knowledge. A desired product is configured from a feature model in a quality-aware manner. A prototype tool was developed to implement the concepts of the proposed approaches and a set of empirical experiments were carried out to evaluate the proposed approaches.