
Available from: http://dx.doi.org/10.1016/j.jmir.2012.06.002

Accessed from: http://hdl.handle.net/1959.13/940940
A Retrospective Planning Analysis Comparing Volumetric Modulated Arc Therapy (VMAT) to Intensity Modulated Radiation Therapy (IMRT) for Radiotherapy Treatment of Prostate Cancer.

Authors:
Craig A Elith, Fred Cao, Shane E Dempsey, Naomi Findlay, Helen Warren-Forward

Corresponding Author:
Craig Elith

Key Words: IMRT, VMAT, Radiation Therapy, Prostate

Full Details of the Authors:

Craig A Elith
Position: Resource Radiation Therapist, British Columbia Cancer Agency, Fraser Valley Centre
Affiliation: 1) British Columbia Cancer Agency, Fraser Valley Centre, Surrey, BC, Canada
2) School of Health Sciences, University of Newcastle, Australia.
Qualifications: B.MRS(RT), B.Sc(Hons)
Address: BCCA, Fraser Valley Centre, 13750 96th Avenue, Surrey, BC, Canada, V3V 1Z2
Phone: + 1 604 930 4055 Ext 654582
Fax: + 1 604 930 4042
Email: celith@bccancer.bc.ca

Fred CAO
Position: Senior Medical Physicist, British Columbia Cancer Agency, Fraser Valley Centre
Affiliation: 1) British Columbia Cancer Agency, Fraser Valley Centre, Surrey, BC, Canada
Qualifications: Ph.D (Physics) M.Sc (Computer Science); MCCPM
Address: BCCA, Fraser Valley Centre, 13750 96th Avenue, Surrey, BC, Canada, V3V 1Z2
Phone: + 1 604 930 4055 Ext 654565
Fax: + 1 604 930 4042
Email:

Shane E. Dempsey
Position: Senior Lecturer, Medical Radiation Science
Affiliation: 2) School of Health Sciences, University of Newcastle, Australia.
Address: Medical Radiation Science, Box 16 Hunter Building
Phone: + 61 2 49216667
Fax: + 61 2 49217053
Email: shane.dempsey@newcastle.edu.au

Naomi Findlay
Position: Senior Lecturer, Medical Radiation Science
Affiliation: 2) School of Health Sciences, University of Newcastle, Australia.
Qualifications: PhD (Med.Rad.Sci) BApSci(MRS), GradCertHEd,
Address: Medical Radiation Science, Box 16 Hunter Building
Phone: + 61 2 49216663
Fax: + 61 2 49217053
Email: naomi.findlay@newcastle.edu.au

Helen M. WARREN-FORWARD
Position: Associate Professor, Medical Radiation Science
Affiliation: 2) School of Health Sciences, University of Newcastle, Australia.
Qualifications: PhD (Med. Physics) BSc(Hons) (Physics with medical physics)
Address: Medical Radiation Science, BSc (Hons), PhD
Phone: + 61 2 49217142
Fax: + 61 2 49217053
Email: helen.warren-forward@newcastle.edu.au
Abstract:

Purpose:
This study aims to compare Intensity Modulated Radiation Therapy (IMRT) to Volumetric Modulated Arc Therapy (VMAT) for the treatment of prostate cancer. Particular focus was placed on the impact IMRT and VMAT have on departmental planning and treatment resources.

Materials and Methods:
Twenty prostate cancer cases were retrospectively planned to compare 5-field IMRT to VMAT using a single arc (VMAT-1A) and two arcs (VMAT-2A). The impact on departmental resources was assessed by comparing the time needed to generate the dose distributions and to deliver the treatment plan. A comparison of plan quality was also performed by comparing homogeneity, conformity, the number of monitor units (MUs) and dose to the organs at risk.

Results:
IMRT and VMAT-2A were able to produce adequate plans for all cases. Using VMAT-1A, planning guidelines were achieved in 8 of the 20 cases. IMRT provided an improved dose distribution and the best homogeneity to the planning target volume. Also, the IMRT plans were generated significantly faster than both VMAT techniques. VMAT planning provided significantly improved conformity and utilized significantly less MUs than IMRT. VMAT-1A treatments were significantly faster than both IMRT and VMAT-2A. VMAT plans delivered lower dose to the bladder and heads of femur, and an increased dose to the rectum in the low dose region.

Conclusion:
IMRT may have an advantage over VMAT for the treatment of prostate cancers. This is primarily due to the uncertainty of achieving planning guidelines using VMAT and the extended time needed to generate the VMAT plans.
Introduction:

Intensity Modulated Radiation Therapy (IMRT) was introduced in the early 1990s and represented a major shift in modern radiotherapy over the pre-existing techniques of 2D radiation therapy and 3D conformal radiation therapy. IMRT has enabled the delivery of a highly conformal dose distribution to the target while limiting dose to surrounding tissues and organs. The advantages of IMRT come at a cost of increased treatment times and monitor units (MUs), resulting in a greater integral body dose from leakage and scatter radiation, increasing the risk of developing a secondary malignancy.

On a linear accelerator, IMRT is conventionally delivered at fixed gantry angles using either the step-and-shoot or sliding window technique. In 2008, Otto reported a novel form of IMRT called Volumetric Modulated Arc Therapy (VMAT). In VMAT, treatment is delivered using a cone beam that rotates around the patient. The cone beam is modulated by the intertwining of dynamic multi-leaf collimators (MLCs), variable dose rates and gantry speeds to generate IMRT quality dose distributions in a single optimized arc around the patient.

Since 2008, VMAT has rapidly attained widespread use. Published literature has reported the use of VMAT to treat various anatomical sites, most commonly: prostate, head and neck cancers, inter cranial tumours, anal canal, breast cancers and stereotactic body radiation therapy (SBRT) of the lung and abdomen. The majority of publications agree that VMAT reduces both treatment time and monitor units significantly when compared
to conventional IMRT techniques10. This allows for quicker treatment times which improves patient comfort and allows for more time to be dedicated to patient care and support.

In mid 2010, the Fraser Valley Centre (FVC) of the British Columbia Cancer Agency (BCCA), Canada, upgraded its infrastructure to be able to deliver VMAT treatments using Varian Medical Systems RapidArcTM. To progress the development of VMAT treatments at FVC, the current study was undertaken to retrospectively compare single arc and dual arc VMAT plans to the FVC standard fixed field IMRT for the treatment of localized prostate cancers. The comparison of IMRT and VMAT focuses on their impact within the planning and treatment resources in our department, but also examines the quality of the treatment plans produced using these techniques.

Prostate cancer was specifically selected for our department’s initial foray into VMAT planning for two reasons. Firstly, the prostate is a relatively simple anatomical site on which to perform radiotherapy planning. It was therefore considered that generating a dose distribution for prostate treatments could provide a less complex experience when utilizing VMAT for the first time. Secondly, and more importantly, treatment of early stage prostate cancers accounts for a high volume of work at our centre (approximately 10\% of workload in 2010). If VMAT was demonstrated in this study to reduce treatment times as reported previously, VMAT treatment of prostate cancers could have the greatest potential to increase patient throughput and reduce the waitlist for our department.
Materials and Methods:

Approval for this study was provided by the University of Newcastle, Australia, Human Research Ethics Committee (approval number: H-2011-0073) and the BCCA Research Ethics Board (approval number: H11-00108).

Cases and Plans:

This study used de-identified CT data sets from 20 patients that had been treated between July 2009 and September 2010 at FVC with IMRT to the prostate only (Table 1).

The original IMRT treatment plans were not used in this study. Instead the IMRT plan was redone to establish consistency for comparison to VMAT planning. Two VMAT plans were generated for each data set; a VMAT single arc plan and a VMAT distribution using two arcs. All planning was done by the same Radiation Therapist using Varian Medical Systems Eclipse planning software version 8.6 (v8.6). Each plan was prescribed 7400cGy in 37 fractions and intended to meet the FVC prostate IMRT planning guidelines outlined in Table 2.

CT Simulation:
The original CT data sets were obtained on a Phillips Brilliance Big Bore scanner using 2mm slices with the patient in a supine position. Patients were instructed to have a full bladder at time of simulation and treatment however bowel preparation to ensure an empty bowel was not performed.

Contouring:

All original contours from the actual treatment plans were transferred onto the de-identified data sets.

A Radiation Oncologist contoured the prostate, bladder and rectum from the sigmoid colon to the anus. A planning target volume (PTV) was generated by expanding the prostate contour with a 10 mm margin in all directions. If the data set included prostate fiducial markers, the PTV was created using a 6 mm margin to the prostate posteriorly to spare additional rectal tissue from receiving radiation dose.

Optimization structures were created for the PTV, rectum and bladder. A PTV\textsubscript{opti} was created by copying the PTV and extending the contour superiorly and inferiorly by one slice. The size of the PTV\textsubscript{opti} on the new superior and inferior slices was reduced by half. The creation of the PTV\textsubscript{opti} was done to allow the superior and inferior ends of the PTV to receive adequate dose coverage via primary and scatter dose. Rectum\textsubscript{opti} and Bladder\textsubscript{opti}
structures were created by subtracting the rectum and bladder structures from the PTV_{opti} plus a 3mm margin.

In addition to the contours transferred from the original planning data, the heads of femur were also contoured. The dose to the heads of femur are not routinely considered for IMRT planning at FVC but were considered in this study. The heads of femur were contoured superiorly from the caudal ishial tuberosity.

A couch structure was added to the plans so that beam attenuation from the treatment couch was considered. The couch structure was added differently for IMRT and VMAT planning due to different calculation algorithms being used for IMRT and VMAT (see below). For IMRT planning, the couch was contoured and combined with the body contour. For VMAT planning, a couch structure was added using the pre-defined couch structures available within the Varian Eclipse software.

IMRT:

At our centre a 5 field sliding window IMRT technique is standardly used to treat the prostate. A template is used to expedite the planning process. The template defines the gantry angles of the 5 treatment fields as well as the optimization parameters. Each treatment beam uses 6MV photons with the gantry angles fixed at 0°, 75°, 135°, 225° and
285°. Dosimetric calculations were performed using the pencil beam convolution (PBC), with heterogeneity correction and a 5 mm calculation grid.

VMAT:

VMAT plans were produced using Varian Medical Systems RapidArc software (v8.6). RapidArc is based on Otto’s original VMAT optimization platform $^8,^{10-12}$.

In this study both single arc and two arc VMAT plans were developed. Similarly to IMRT, plan templates defining beam parameters and the initial optimization objectives were created to expedite the planning process. The single arc technique (VMAT-1A) utilized one complete counter clockwise (CCW) rotation to deliver radiation treatment. The gantry start angle was 179.9° and the stop angle was 180.1°. The collimator was set at 45° to minimize MLC tongue and groove effect 13.

The two arc plan (VMAT-2A) combined both a complete CCW rotation and a full clockwise (CW) gantry rotation for treatment. The parameters for the first arc were identical to the VMAT-1A technique. The second arc had the gantry rotating in the opposite direction to minimize set-up time. The gantry start angle was 180.1° and a stop angle of 179.9°. For the two arc plan the collimator rotation was set to 135° to increase modulation. Routinely at our centre, dose calculations are performed using the PBC as described for IMRT. However, VMAT calculations necessitate using the anisotropic
analytical algorithm (AAA). In this study, VMAT calculations utilized AAA with heterogeneity correction on and a 2.5 mm calculation grid.

Analysis:

Plan Quality:

Plan quality was assessed by examining the ability of each planning technique to achieve the dosimetric guidelines. This qualitative assessment was aided by comparing the dose volume histogram (DVH) for the IMRT, VMAT-1A and VMAT-2A plans.

Plan quality was quantitatively assessed by calculating the homogeneity index (HI) and conformity number (CN) for each plan. The HI is defined as:

\[
HI = \frac{D_{2\%} - D_{98\%}}{D_{Median}}
\]

(Where \(D_n \) = the dose covering \(n \) of the target volume).

A HI value closer to zero indicates more homogeneous dose coverage within the PTV.
Dose conformity evaluates the dose fit of the PTV relative to the volume covered by the prescription dose \(^{14}\). Ideally the prescribed dose should fit tightly to the target volume, therefore reducing the side effects occurred by treating surrounding tissues and organs. The CN simultaneously takes into account irradiation of the target volume and irradiation of healthy tissues \(^{15}\). The CN is defined as:

\[CN = \frac{V_{TPres}}{TV} \times \frac{V_{Pres}}{V_{TPres}} \]

(Where \(V_{Pres}\) is the total volume receiving the prescription, \(TV\) is the target volume and \(V_{TPres}\) is the target volume covered by the prescription) \(^{16}\).

A CN value closer to 1, indicates that the dose distribution fits more tightly to the target volume preserving healthy tissue.

Dose to Organs at Risk (OAR):

The dose to the OAR was compared by determining the percentage volume (V) of an organ receiving n dose (\(V_n\)). To get a complete understanding of how IMRT and VMAT planning impacts on dose delivered across the rectum and bladder, the \(V_{15}\), \(V_{20}\), \(V_{30}\) (rectum only), \(V_{40}\), \(V_{50}\), \(V_{60}\), \(V_{65}\) (bladder only), \(V_{70}\) and \(V_{75}\) (bladder only) were recorded. For each of the left and right heads on femur, the \(V_{30}\) and \(V_{40}\) were measured.
Planning Time:

The time taken to perform the dosimetric calculations for each plan was recorded. For the purposes of this study, planning time does not include the time needed to perform contouring as this is considered neutral for both IMRT and VMAT planning. Instead, time measurement includes a sum of the time to place fields, plan optimization, dose calculation and the period of evaluation of the final dose distribution to assess if the planning guidelines were achieved.

Treatment Time:

The time taken to treat the IMRT, VMAT-1A and VMAT-2A plans was measured and recorded. This was done by running the treatment plan for all three techniques in stand-by mode on a Varian Trilogy linear accelerator. Time measurement was started at the initial beam on and was ended when the final monitor unit was delivered. The treatment time does include the time taken to move parameters such as gantry and collimator angles during treatment and between fields. The measured treatment time does not include patient set-up time or the time that may be needed to verify treatment position.

Number of Monitor Units:
The total number of monitor units (MUs) needed to deliver each treatment plan was summed and recorded.

Statistical Analysis:

A sample size of 20 cases was calculated using already published data to give a power of at least 0.8 at the 95% level. Statistical analysis was conducted using Graphpad InStat version 3 for windows (www.graphpad.com). The data was analyzed first to test for normality, and if it passed it was analyzed for statistical difference with the parametric paired t-test and Repeated Measures Analysis of Variance (ANOVA). If the data was not normal, then statistical difference was analyzed using Wilcoxon matched-pairs and the Friedman Test (Nonparametric Repeated Measures ANOVA). A paired test was chosen as the same datasets were used for each treatment option. To be statistically different the values needed to be significant at the 95% level.
Results:

An example dose distribution produced using IMRT, VMAT-1A and VMAT-2A for a single data set is displayed in Figure 1. The planning guidelines were able to be achieved for all 20 data sets for both the IMRT and VMAT-2A techniques. For the VMAT-1A technique, the planning guidelines were achieved for only 8 data sets. The 12 VMAT-1A cases that did not meet guidelines, failed due to the dose range across the PTV being beyond the minimum 90% and maximum 107% constraints.

When the PTV DVH is compared for a single data set, the trend is for the IMRT plan to have the steepest dose gradient across the PTV, followed by the VMAT-2A technique then the VMAT-1A plan (Figure 2). This trend is observed in all data set DVHs and indicates that dose uniformity across the PTV is best for the IMRT plan, followed by the VMAT-2A and finally the VMAT-1A plan.

The results for HI, CN, planning time, treatment time and number of MUs are presented Table 3.

Like the dose uniformity observed in the DVHs, the median HI is best for IMRT planning which is significantly better than VMAT-2A which in turn is significantly better than the VMAT-1A plans.
CN values indicate the conformity of the VMAT-1A plans is best, being significantly better than both the VMAT-2A and IMRT plans. The VMAT-2A plans demonstrate significantly improved CN compared to the IMRT plans.

IMRT plans were generated in a median time of 10.10 minutes. VMAT-1A plans took significantly longer time to generate (30.57 min) while VMAT-2A plans took significantly longer time still (45.85 min).

The times presented here to produce an IMRT, VMAT-1A or VMAT-2A plan represents the time needed to generate a dose distribution with only one optimization and a single calculation. It does not include the time required to run multiple optimizations and calculations in order to meet the FVC guidelines. If the planning guidelines were not achieved after the first optimization and calculation, further attempts were made to meet these guidelines. However, the additional planning time required beyond the first optimization and calculation was not recorded.

The planning guidelines were met at the first attempt in all cases using IMRT. Using VMAT-1A, 18 cases required more than one attempt to achieve the planning guidelines and still, the guidelines were not achieved in all cases. For the VMAT-2A technique, 8 of the 20 data sets required more than 1 attempt to achieve the planning criteria.

VMAT-1A treatments were delivered significantly faster than both IMRT and VMAT-2A. Median values report VMAT-1A could be delivered in 1.3 minutes. IMRT and
VMAT-2A treatments required 3.2 minutes and 3.3 minutes respectively. There was no significant difference in the time needed to treat using IMRT or VMAT-2A.

The VMAT-1A technique required the lowest median number of MUs (512) to deliver a single 200cGY treatment. The VMAT-2A method required the next lowest median number of MUs (566). There was not a statistically significant difference between the number of MUs utilized in both VMAT planning techniques. IMRT required significantly more MUs (614, median) than both VMAT-1A and VMAT-2A to deliver a single fraction.

The dose delivered to the OAR from each planning technique is reported in Table 4. IMRT delivers significantly less dose to the rectum than both VMAT methods at V_{20} and V_{30}. VMAT delivers a significantly lower dose than IMRT to the bladder and heads of femur in the V_{60}-V_{70} and V_{30}-V_{40} range, respectively.
Discussion:

For each of the 20 data sets, both the IMRT and VMAT-2A techniques were able to produce plans that meet the defined guidelines. When using the VMAT-1A technique, the same planning guidelines were able to be achieved for only 8 of the 20 data sets.

The IMRT technique demonstrated a better coverage and a more homogeneous dose across the PTV compared to both VMAT methods. Similarly, VMAT-2A plans had a significantly improved HI than VMAT-1A. The poor homogeneity observed for the VMAT-1A plans contributes to this method failing to achieve the FVC planning guidelines in 12 of the data sets.

Other prostate planning studies have reported lower HI in VMAT plans when compared to IMRT\(^\text{10,17,18}\). Unlike this study, in the previous publications, all VMAT plans were able to produce plans adequate for treatment. This is likely due to the planning guidelines for the PTV and OAR reported in the other studies differing to those adhered to here.

In this study IMRT plans were produced significantly faster than both VMAT techniques. On average, IMRT plans were generated 3 times faster when compared to VMAT-1A plans and 5 times faster than VMAT-2A plans. Similar trends have been previously reported\(^\text{5,14,19,20}\). In reality, the results presented here are flattering to VMAT techniques as they assume the planning guidelines are met at the first attempt. This was indeed the case for the IMRT plans generated with a clinically proven template. However, all but 2
of the VMAT-1A plans required several attempts and still did not guarantee the planning guidelines were achieved. There was no indication as for which data sets the VMAT-1A technique would successfully achieve the planning guidelines versus those which would fail. The VMAT-2A technique proved more successful with only 8 of the 20 data sets requiring more than 1 attempt to achieve the planning criteria.

It is important to recognize the impact increased planning time may potentially have on a radiotherapy department. Presumably, when using VMAT, it is preferable to treat with one arc to take advantage of the reported reduction in MUs and shortened treatment time. However, from the results presented, it is unlikely that the FVC planning guidelines will be met on the first attempt, if at all, when planning with a single arc. The introduction of a second arc may be needed to successfully achieve the planning guidelines, but with a significant increase in planning time. Such uncertainty and exaggerated planning time for VMAT planning observed here may have significant impact on a radiotherapy departments planning resources, potentially reducing patient throughput and increasing waitlists. IMRT planning at FVC minimizes the uncertainty of achieving planning guidelines and reduces planning time significantly giving this technique a distinct advantage when comparing overall planning time.

The VMAT treatment planning systems are still in the early stages of development. The results presented here are obtained using Varian Medical Systems RapidArc v8.6 which uses aperture based optimization. More recent versions of RapidArc use an optimizer that is both aperture and fluence based. Anecdotally, the primary author’s early experience
with this new optimization process in RapidArc version 10.0 (v10.0) is that the overall planning time for VMAT is reduced compared to v8.6. Further improvements in optimization, dose calculation and computer processor speed will continue to reduce overall planning time 14,19.

The discussion so far highlights an important consideration for VMAT planning. The quality of the plans produced using VMAT can depend greatly on the experience of the planner. It is critical that planners understand the optimization process in order to achieve the desired dose distribution in a timely manner 10. Although this article shares our department’s first experience with VMAT, inexperience is not likely accountable for the inability of the VMAT-1A technique to achieve departmental planning guidelines and the extended planning times using VMAT. One of the authors of this paper has had previous experiences with VMAT planning 21. Still the planning times using VMAT could not be shortened than reported here and the planning guidelines were not always achieved with VMAT-1A.

In this study, VMAT did demonstrate some advantages over IMRT. The VMAT-1A plans were treated 3 times faster than IMRT. The observed reduction in treatment time using the VMAT-1A technique has the potential to increase the patient throughput of a Radiation Therapy department 5,22. Alternatively, the time saved by reducing the beam on time could be used to implement online imaging without increasing a patient’s total time in the treatment room 8,22,23. Additionally, a shorter delivery time indicates improved patient comfort and a reduced probability of treatment errors caused by patient motion
during a treatment 17,18,24. Both improved target localization provided by online imaging and reduced patient motion during treatment has the potential to allow the size of the PTV to be reduced. A smaller PTV could mean less healthy tissue is irradiated ultimately reducing radiation associated morbidities.

A shorter treatment time may also prove to be biologically advantageous. Evidence has shown that the radiation survival is not only a function of the total dose delivered but also depends on the duration that the radiation is delivered 25,26. There is a potential tumour cell killing benefit to deliver radiation doses in a shorter time 19.

Importantly, the time taken to deliver the VMAT-2A and IMRT treatments did not different significantly. Therefore the time advantage VMAT offers for the treatment of prostate cancers is reduced when using more than one arc.

The results of this study upheld previous reports where VMAT treatments required significantly fewer MUs than IMRT $^{5,8,17-19,22,27}$. As previously discussed, because VMAT uses fewer MUs to deliver a dose, the chances of secondary malignancies might be reduced. This is particularly relevant for patients with prostate cancer as they have a significant chance of long term survival 27.

Dose conformity has been demonstrated to be better for the VMAT plans compared to IMRT. The improved conformity is inherent to arc delivery which delivers dose from 360°. Like any reduction in MUs, the improved conformity could reduce the risk of
secondary cancers developing in the high dose region when compared to IMRT28. Improved conformity also increases the opportunity of dose escalation which in prostate treatments has been demonstrated to improve local control22. Despite VMAT demonstrating improved conformity, dose escalation utilizing VMAT may still be limited by the planning hotspots which have been reported to be greater for VMAT plans than for IMRT10,17.

It has been reported that VMAT plans become less conformal in the low dose range14,17,18,22. This can be attributed to the dose being delivered from all directions. For IMRT plans, radiation dose is only deposited along the path of the fixed gantry angles. As a result, the volume of tissues receiving a low dose in VMAT is increased compared to IMRT. Therefore, the theoretical risk of secondary malignancies is not eliminated with VMAT5. For many sites this may not be a concern. However it may be problematic for some sites such as pediatric cancers18.

VMAT plans were demonstrated to deliver lower dose to the bladder and heads of femur, and an increased dose to the rectum in the low dose region when compared to IMRT. The results in the literature are conflicting regarding outcome for the dose delivered to the OAR. For example, it has been reported that sparing of the rectum, bladder and femoral heads can be improved when using VMAT compared to IMRT5,10,13,17,18,28. In contrary, to these reports, but in support of the present findings, others have reported that dose to the rectum is higher when using VMAT compared to IMRT14,20,29. The inconsistency across the studies is likely the result of the individual study characteristics. For example,
variables such as PTV definition, OAR dose constraints, optimization values and the number of treatment fields in IMRT or rotation arcs used in VMAT, could create inconsistencies between studies.
Conclusion:

VMAT has been demonstrated to reduce the MUs and time required to treat prostate cancer compared to conventional IMRT. Despite these findings, our department is unlikely to adopt VMAT to treat the prostate primarily due to the uncertainty of achieving planning guidelines and increased planning time. This is not to rule out adopting VMAT for the treatment of prostate cancer in the future if improvements are made to plan optimization, dose calculation and computer processor speed. The current version of VMAT may well yet prove to have an advantage for other sites being treated using IMRT at FVC such as head and neck cancers and stereotactic body radiation therapy techniques.
Table 1: The presentation history and contoured volumes of the 20 cases used in this study.

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yr)</th>
<th>Weight (kg)</th>
<th>Stage (TNM)</th>
<th>PTV Volume (cm³)</th>
<th>Bladder Volume (cm³)</th>
<th>Rectum Volume (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>84</td>
<td>73.7</td>
<td>T3a NX M0</td>
<td>212.5</td>
<td>108.7</td>
<td>84.2</td>
</tr>
<tr>
<td>Case 2</td>
<td>67</td>
<td>83.5</td>
<td>TX N0 M0</td>
<td>216.9</td>
<td>823.7</td>
<td>63.5</td>
</tr>
<tr>
<td>Case 3</td>
<td>65</td>
<td>107.3</td>
<td>T2 N0 M0</td>
<td>132.8</td>
<td>171.3</td>
<td>51.8</td>
</tr>
<tr>
<td>Case 4</td>
<td>73</td>
<td>87.5</td>
<td>T2a</td>
<td>222.7</td>
<td>515.6</td>
<td>124.1</td>
</tr>
<tr>
<td>Case 5</td>
<td>62</td>
<td>79.5</td>
<td>T2 NX M0</td>
<td>249.1</td>
<td>266.1</td>
<td>78.2</td>
</tr>
<tr>
<td>Case 6</td>
<td>65</td>
<td>110</td>
<td>T1c N0 M0</td>
<td>141.4</td>
<td>317.7</td>
<td>51.1</td>
</tr>
<tr>
<td>Case 7</td>
<td>76</td>
<td>87</td>
<td>T2a NX M0</td>
<td>249.9</td>
<td>158.1</td>
<td>101.5</td>
</tr>
<tr>
<td>Case 8</td>
<td>74</td>
<td>67.4</td>
<td>T1c NX M0</td>
<td>152.9</td>
<td>208.5</td>
<td>143.5</td>
</tr>
<tr>
<td>Case 9</td>
<td>71</td>
<td>71.4</td>
<td>T2b</td>
<td>283.5</td>
<td>537.8</td>
<td>98.9</td>
</tr>
<tr>
<td>Case 10</td>
<td>75</td>
<td>118</td>
<td>T2b N0 M0</td>
<td>221.2</td>
<td>541</td>
<td>49.2</td>
</tr>
<tr>
<td>Case 11</td>
<td>72</td>
<td>64</td>
<td>T2a NX MX</td>
<td>190.3</td>
<td>338.4</td>
<td>63</td>
</tr>
<tr>
<td>Case 12</td>
<td>75</td>
<td>73.6</td>
<td>T2b N0 M0</td>
<td>137</td>
<td>255.9</td>
<td>46.3</td>
</tr>
<tr>
<td>Case 13</td>
<td>68</td>
<td>96.5</td>
<td>T1c N0 M0</td>
<td>181.5</td>
<td>79.5</td>
<td>168.6</td>
</tr>
<tr>
<td>Case 14</td>
<td>76</td>
<td>75.5</td>
<td>T2a</td>
<td>261.1</td>
<td>159.1</td>
<td>45.5</td>
</tr>
<tr>
<td>Case 15</td>
<td>69</td>
<td>78</td>
<td>T1c NX M0</td>
<td>139.9</td>
<td>51.5</td>
<td>50.1</td>
</tr>
<tr>
<td>Case 16</td>
<td>69</td>
<td>84.6</td>
<td>T2a</td>
<td>152</td>
<td>363.2</td>
<td>111.1</td>
</tr>
<tr>
<td>Case 17</td>
<td>61</td>
<td>92.4</td>
<td>T2a N0 M0</td>
<td>227.5</td>
<td>133.1</td>
<td>42.7</td>
</tr>
<tr>
<td>Case 18</td>
<td>80</td>
<td>80</td>
<td>T2a</td>
<td>66.9</td>
<td>239.8</td>
<td>63.4</td>
</tr>
<tr>
<td>Case 19</td>
<td>72</td>
<td>110</td>
<td>T2b</td>
<td>155.1</td>
<td>277.4</td>
<td>157.1</td>
</tr>
<tr>
<td>Case 20</td>
<td>82</td>
<td>88.7</td>
<td>T2a NX M0</td>
<td>142.1</td>
<td>182</td>
<td>97.5</td>
</tr>
</tbody>
</table>
Table 2: The planning objectives for IMRT and VMAT treatment of the prostate.

<table>
<thead>
<tr>
<th>Volume/Organ at Risk (OAR)</th>
<th>Dose Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Target Volume (PTV)</td>
<td>99% of the volume to get ≥ 95% of the prescription</td>
</tr>
<tr>
<td></td>
<td>Minimum dose > 90% of the prescription</td>
</tr>
<tr>
<td></td>
<td>Mean dose > 99% of the prescription</td>
</tr>
<tr>
<td></td>
<td>Maximum dose <107% of the prescription</td>
</tr>
<tr>
<td></td>
<td>The maximum dose must be within the PTV</td>
</tr>
<tr>
<td>Rectum</td>
<td><65% of the volume to receive 50Gy</td>
</tr>
<tr>
<td></td>
<td><55% of the volume to receive 60Gy</td>
</tr>
<tr>
<td></td>
<td><25% of the volume to receive 70Gy</td>
</tr>
<tr>
<td></td>
<td><15% of the volume to receive 75Gy</td>
</tr>
<tr>
<td></td>
<td><5% of the volume to receive 78Gy</td>
</tr>
<tr>
<td>Bladder</td>
<td><50% of the volume to receive 65Gy</td>
</tr>
<tr>
<td></td>
<td><35% of the volume to receive 70Gy</td>
</tr>
<tr>
<td></td>
<td><25% of the volume to receive 75Gy</td>
</tr>
<tr>
<td></td>
<td><15% of the volume to receive 80Gy</td>
</tr>
</tbody>
</table>
Table 3: Summary data representing the planning time, treatment time, monitor units required, homogeneity index and conformity number for the IMRT, VMAT-1A and VMAT-2A plans.

<table>
<thead>
<tr>
<th></th>
<th>IMRT (N = 20)</th>
<th>VMAT-1A (N = 8)</th>
<th>VMAT-2A (N = 20)</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>95% CI</td>
<td>Median</td>
<td>95% CI</td>
</tr>
<tr>
<td>Planning Time (min)</td>
<td>10.1</td>
<td>9.23 – 10.71</td>
<td>30.57</td>
<td>28.82 – 32.05</td>
</tr>
<tr>
<td>Treatment Time (min)</td>
<td>3.23</td>
<td>3.16 – 3.32</td>
<td>1.34</td>
<td>1.33 – 1.35</td>
</tr>
<tr>
<td>Monitor Units</td>
<td>613.5</td>
<td>590.11 – 647.1</td>
<td>511.5</td>
<td>485.5 – 575.0</td>
</tr>
<tr>
<td>Homogeneity Index</td>
<td>0.0375</td>
<td>0.032 – 0.049</td>
<td>0.0655</td>
<td>0.058 – 0.071</td>
</tr>
<tr>
<td>Conformity Number</td>
<td>0.793</td>
<td>0.779 – 0.802</td>
<td>0.826</td>
<td>0.811 – 0.848</td>
</tr>
</tbody>
</table>

* Shaded area illustrates where a significant difference was NOT observed.
Table 4: The dose to the rectum, bladder and heads of femur represented as the percentage volume (V) of the organ receiving n dose (Vn).

<table>
<thead>
<tr>
<th></th>
<th>IMRT (N = 20)</th>
<th>VMAT-1A (N = 8)</th>
<th>VMAT-2A (N = 20)</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>95% CI</td>
<td>Median</td>
<td>95% CI</td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V15</td>
<td>78.2</td>
<td>71.7 – 83.8</td>
<td>83.4</td>
<td>73.4 – 88.8</td>
</tr>
<tr>
<td>V20</td>
<td>69.7</td>
<td>63.9 – 77.0</td>
<td>80.0</td>
<td>70.0 – 85.8</td>
</tr>
<tr>
<td>V30</td>
<td>60.5</td>
<td>54.0 – 66.5</td>
<td>71.0</td>
<td>62.1 – 79.1</td>
</tr>
<tr>
<td>V40</td>
<td>47.2</td>
<td>40.1 – 51.3</td>
<td>58.8</td>
<td>51.1 – 66.2</td>
</tr>
<tr>
<td>V50</td>
<td>31.3</td>
<td>27.3 – 36.8</td>
<td>36.0</td>
<td>31.6 – 45.1</td>
</tr>
<tr>
<td>V60</td>
<td>22.2</td>
<td>18.7 – 27.3</td>
<td>22.7</td>
<td>18.6 – 32.0</td>
</tr>
<tr>
<td>V70</td>
<td>12.6</td>
<td>10.4 – 16.7</td>
<td>12.9</td>
<td>9.4 – 19.7</td>
</tr>
<tr>
<td>Bladder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V15</td>
<td>47.2</td>
<td>41.4 – 65.3</td>
<td>42.8</td>
<td>26.8 – 84.2</td>
</tr>
<tr>
<td>V20</td>
<td>43.6</td>
<td>38.1 – 61.6</td>
<td>36.7</td>
<td>23.3 – 80.2</td>
</tr>
<tr>
<td>V30</td>
<td>24.2</td>
<td>22.2 – 39.7</td>
<td>23.9</td>
<td>13.3 – 57.7</td>
</tr>
<tr>
<td>V40</td>
<td>19.3</td>
<td>17.9 – 32.7</td>
<td>18.1</td>
<td>9.9 – 43.9</td>
</tr>
<tr>
<td>V50</td>
<td>15.3</td>
<td>14.3 – 26.5</td>
<td>12.3</td>
<td>6.8 – 33.7</td>
</tr>
<tr>
<td>V65</td>
<td>13.2</td>
<td>12.4 – 23.1</td>
<td>10.1</td>
<td>5.6 – 29.2</td>
</tr>
<tr>
<td>V70</td>
<td>10.5</td>
<td>10.0 – 18.9</td>
<td>8.0</td>
<td>4.5 – 24.5</td>
</tr>
<tr>
<td>V75</td>
<td>2.7</td>
<td>1.9 – 5.1</td>
<td>3.3</td>
<td>0.7 – 13.3</td>
</tr>
<tr>
<td>LT Femur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V30</td>
<td>25.1</td>
<td>20.5 – 32.5</td>
<td>0.3</td>
<td>-0.3 – 4.8</td>
</tr>
<tr>
<td>V50</td>
<td>6.9</td>
<td>4.4 – 11.2</td>
<td>0.1</td>
<td>-0.1 – 0.2</td>
</tr>
<tr>
<td>RT Femur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V30</td>
<td>30.2</td>
<td>23.7 – 36.5</td>
<td>0.5</td>
<td>-0.3 – 3.7</td>
</tr>
<tr>
<td>V40</td>
<td>10.2</td>
<td>7.6 – 16.9</td>
<td>0</td>
<td>-0.03 – 0.2</td>
</tr>
</tbody>
</table>

* Shaded area illustrates where a significant difference was observed.
Figure 1:
Example of dose distribution achieved using a) IMRT, b) VMAT-1A and c) VMAT-2A beam arrangement for a single data set. 107%-30% isodose range is displayed.
Figure 2: The dose volume histograms for IMRT, VMAT-1A and VMAT-2A beam arrangement for a single CT data set.

- IMRT
- VMAT-1A
- VMAT-2A
References:

1. Nutting C. Intensity-modulated radiotherapy (IMRT): The most important advance in radiotherapy since the linear accelerator?. *Br J Radiol.* 2003;76(910):673.

