Multi-link Mechanical Locomotors in Natural Gaits - Controller Design and Experiments

Md Nurul Islam

A thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

School of Electrical Engineering and Computer Science

The University of Newcastle
Callaghan, NSW-2308
Australia

MARCH, 2013
Declaration

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institute and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this thesis is the result of original research, completed subsequent to admission to candidature for the degree.

Md Nurul Islam
March, 2013
Acknowledgement

I have spent the most eventful time in my life during the graduate program that allowed me to acquire the most valuable knowledge and experiences. I like to express my heart-felt appreciation to the following people who have made direct impact on my research during this epic and amazing journey.

First of all, I am extremely grateful to my principal supervisor, Dr Zhiyong Chen, for his regular follow-up and useful discussions and brainstorming sessions, especially during the difficult conceptual development stage. His deep theoretical knowledge helped me at various stages of my experimental research. I also remain indebted for his continuous support to pursue my graduate degree.

I am also grateful to Kenneth Sayce, Technical Officer. He helped me much on the occasions of the mechanical design of the robotic systems developed in this research.

I would like to acknowledge the most important person in my life - my wife Khadiza Zaman Koli. She has been a constant source of strength and inspiration. There were sometimes during the past four years when I have felt hopeless and uncertain about the research outcome. Her constant encouragement ultimately made it possible for me to see this project through to the end.

Finally, I have heart-felt thanks for my mother and my parent in-laws for their constant unconditional support - both emotionally and financially. I am also indebted to my brothers and sisters for their all-time mental encouragement.
Dedicated to my beloved mum (Momotaz Begum),
wife (Khadiza Zaman), and son (Musab Ayman).

"Excellence is the result of caring more than others think is wise, risking more than
others think is safe, dreaming more than others think is practical, and expecting more
than others think is possible."
Contents

1 INTRODUCTION 1

1.1 Limbless Locomotion of Animals 2

1.2 Mechanical Rectifier System 6

1.2.1 Oscillation 7

1.2.2 Orientation 10

1.2.3 Locomotion 11

1.3 Thesis Outline 12

1.4 Publications 13

1.5 Technical Difficulties 13

2 MODELING OF THE THREE SYSTEMS 15

2.1 Mathematical Modeling of PMR 15

2.2 Modeling of Fully-actuated System 18

2.2.1 Modeling based on Euler Lagrange Equation .. 20

2.2.2 Modeling based on Newton’s law 25

2.3 Modeling of Under-actuated System 29

2.3.1 Modeling based on Euler Lagrange Equation .. 30

2.3.2 Modeling based on Newton’s law 33

3 PROTOTYPE MECHANICAL RECTIFIER 38
3.1 Introduction .. 38

3.2 Mechanical and Electrical Design 40

3.2.1 Overview .. 40

3.2.2 Mechanical Description 41

3.2.3 Electrical Description 42

3.2.4 Equations of motion of PMR 43

3.3 Controller Design 44

3.3.1 Preliminaries 44

3.3.2 Entrainment to Natural Oscillation of Links 46

3.3.3 Rotation of Disk 49

3.4 Simulation and Experiments 52

3.5 Discussion .. 55

4 FULLY-ACTUATED SYSTEM 58

4.1 Introduction .. 58

4.2 Mechanical and Electrical Design 61

4.2.1 Overview .. 61

4.2.2 Mechanical Description 62

4.2.3 Electrical Description 63

4.2.4 Dynamic Equations of Motion 65

4.3 Controller Design 66

4.3.1 Entrainment to Natural Oscillation 68

4.3.2 Locomotion 70

4.4 Simulation and Experiments 72
UNDER-ACTUATED SYSTEM

5.1 Introduction ... 77
5.2 Mechanical and Electrical Design .. 81
 5.2.1 Overview ... 81
 5.2.2 Mechanical Description .. 82
 5.2.3 Electrical Description .. 84
 5.2.4 Dynamic Equations of Motion ... 85
5.3 Controller Design ... 86
 5.3.1 Entrainment to Natural Oscillation 88
 5.3.2 Orientation ... 90
 5.3.3 Locomotion ... 91
5.4 Simulation and Experiments ... 92
5.5 Environment Adaptation .. 97
 5.5.1 New CPG Controller ... 98
 5.5.2 Natural Oscillation for the Links 99
 5.5.3 Feedback Control Design ... 100
 5.5.4 Adaptive CPG Network .. 103
 5.5.5 Simulated Results ... 103
5.6 Discussion ... 109

CONCLUSION

6.1 Summary ... 110
6.2 Future Plan ... 112
6.2.1 Environmental Adaptation 112

6.2.2 3-D Locomotion with Flapping-wing gait 112
List of Figures

1.1 Theoretical idea to build a PMR system proposed by [1] 1
1.2 Ray fish with pectoral fins for flapping-wing gait 2
1.3 Typical flapping-wing forward flight of a pigeon according to [2] 3
1.4 Natural snake with serpentine locomotion with courtesy of www.youtube.com/watch?v=ZKaYbMZqTkY. It undulates the body and generates thrust force .. 4
1.5 Anguilliform locomotion of Eel with courtesy of lyle.smu.edu /propulsion /Pages /undulatory.htm. It undulates the body and generates thrust force .. 5
1.6 Multi-link rectifier model with different nominal positions. Top: for flapping-wing gait; bottom: for serpentine gait 6
1.7 CPG controller used in feedback loop to ensure stable oscillation (θ) of the Mechanical Rectifier(MR) system to have stable locomotion (v). 10

2.1 Schematic diagram of the PMR system ... 16
2.2 Schematic diagram of the fully-actuated system for flapping-wing gait 19
2.3 Schematic diagram of the under-actuated system for serpentine gait 30

3.1 The PMR system developed at the University of Newcastle 40
3.2 Control system hardware configuration ... 42
3.3 Solution to $a(x) = x$. The solid curves represent $y = a(x)$ for $k = [3.8, 3]^T$ and $k = [6.8, 4]^T$, and the dashed line is $y = x$. The intersection $a(x) = x$ occurs at $x = 4.6$ and $x = 5.8$, respectively. 53
3.4 Simulation profile with $k = [3.8, 3]^T$. Top-left: self-generated disk speed v. Bottom-left: undulatory trajectories ϑ_1 and ϑ_2 of two links. Top-right: angle of arm tip trajectory relative to the disk center. Top-right: radius of arm tip trajectory relative to the disk center. 54

3.5 Experimental profile with $k = [3.8, 3]^T$. The four graphs correspond to those in Fig. 3.4. 54

3.6 Simulation and experimental profiles of arm tip trajectories. *: disk center. 55

3.7 Simulated profile with $k = [6.8, 4]^T$. Top: undulatory trajectories ϑ_1 and ϑ_2 of two links. Bottom: disk rotational speed. 56

3.8 Experimental profile with $k = [6.8, 4]^T$. Top: undulatory trajectories ϑ_1 and ϑ_2 of two links. Bottom: disk rotational speed. 56

4.1 Manta rays locomotion [3]. As the manta ray flaps its fins (left to right, descending) it uses vertical undulations to generate thrust with flexible pectoral fins. 59

4.2 Fully-actuated system developed at the University of Newcastle to analyze the ray fish-like flapping-wing gait. 62

4.3 CAD model of the fully-actuated system. 63

4.4 ATmega128 micro-controller built-in on RBC connects the robot with PC. 64

4.5 wCK modules are connected on UART communication protocol. 65

4.6 Solution to $a(x) = x$. The solid curve represents $y = a(x)$ and the dashed line is $y = x$. The intersection $a(x) = x$ occurs at $x = 0.045$. 71

4.7 Simulated locomotion profile of the system with flapping-wing gait. Top: link undulation, Bottom: forward velocity. 73

4.8 Snapshots of the system with simulated data. 73

4.9 Experimental locomotion profile of the system with flapping-wing gait. Top: link undulation, Bottom: forward velocity. 75
4.10 Snapshots of the system with real experimental data.

4.11 Different body patterns exhibited by the system during experiment.

5.1 Formation of serpentine curve during locomotion (top to bottom) with the courtesy of http://www.peachpit.com/articles/article

5.2 Under-actuated system developed at the University of Newcastle to analyze the snake-like serpentine motion.

5.3 CAD model of the under-actuated system developed at the University of Newcastle.

5.4 A wCK module and connection between two successive modules.

5.5 ATmega128 micro-controller built-in RBC connects the robotic system with PC.

5.6 wCK modules are connected on UART communication protocol.

5.7 Solution to \(a(x) = x \). The solid curve represents \(y = a(x) \) and the dashed line is \(y = x \). The intersection \(a(x) = x \) occurs at \(x = 0.053 \).

5.8 Simulated locomotion profile of the system with serpentine gait.

5.9 Snapshot of the system locomotion with simulated data.

5.10 Experimental locomotion profile of the system with serpentine gait.

5.11 Snapshot of the system locomotion with experimental data.

5.12 Real snapshots of the system.

5.13 Solution to \(a(x) = x \). The solid curves represent \(y = a(x) \) descending for \(\mu_n = 10 \), \(\mu_n = 7 \) and \(\mu_n = 5 \) and the dashed line is \(y = x \). The intersections \(a(x) = x \) occur at \(x = 0.07 \) for \(\mu_n = 10 \) and at \(x = 0.05 \) for \(\mu_n = 7 \). No intersection for \(\mu_n = 5 \).

5.14 Simulated oscillation and locomotion profile on different ground frictions.

5.15 Change in CPG frequency according to different ground friction to maintain constant locomotion.
5.16 Locomotion body curvature at friction $\mu_n = 10$ 108

5.17 Locomotion body curvature at friction $\mu_n = 5$ 108

5.18 Locomotion body curvature at friction $\mu_n = 7$ 108
List of Tables

3.1 System and controller parameters of PMR 52
3.2 Theoretical/simulated/experimental locomotion profiles with different stiffness . 55

4.1 System and controller parameters of fully-actuated system 72
4.2 Locomotion profiles of flapping-wing gait 74

5.1 System and controller parameters of under-actuated system 93
5.2 Locomotion profiles of serpentine gait 97
5.3 Oscillation and locomotion profile @ $\mu_n = 10 Ns/m$ 106
5.4 Oscillation and locomotion profile @ $\mu_n = 7 Ns/m$ 106
5.5 Oscillation and locomotion profile @ $\mu_n = 5 Ns/m$ 106
A multi-link mechanical system designed for locomotion, can be regarded as a mechanical rectifier as periodic oscillations of the links are rectified to induce locomotion of the system. The essential mechanism underlying the limbless locomotion of many animals can be viewed as rectification that converts periodic body movements to thrust force through interaction with the environment. It inspires the mechanical design of multi-link locomotors. To undercover the fundamental engineering mechanism underlying the rectifier model, we developed a prototype mechanical rectifier (PMR) comprising of two-link system and a disk at the first stage. A biologically-inspired central pattern generator (CPG) controller was developed to achieve the locomotion of the disk with a certain sense of natural oscillation of the links. This PMR system is simply enough to reveal the animal locomotion mechanism. However it is too simple to understand the complicated locomotion gaits. Later on, we designed and manufactured a multi-link fully-actuated system to examine the ray fish-like flapping-wing gait and a multi-link under-actuated system to analyze the snake-like serpentine gait. These two systems were developed to realize the complex natural locomotion gait and at the same time to validate the effectiveness of the CPG controller to achieve the stable autonomous locomotion gaits with the undulation of the body links at natural oscillation.