Role of long chain omega-3 polyunsaturated fatty acids on weight management

Irene A Munro

B Ed MES

Thesis submitted in fulfilment of the requirement to obtain the degree of Doctor of Philosophy in Human Physiology

School of Biomedical Sciences and Pharmacy
University of Newcastle, Australia

November 2012
Statement of originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give my consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provision of the Copyright Act 1968.

..
Irene Munro
Statement of authorship

I hereby certify that this thesis is in the form of a series of published papers of which I am a joint author. I have included as part of my thesis a written statement from each co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

............................

Irene Munro
Acknowledgements

A PhD thesis, like any body of work, has more than one contributor. To all those who have contributed to this research and thesis, including the participants who took part in the research, a very special thank you for your help. I wish to acknowledge NuMega Ingredients Pty Australia who supplied the fish oil and sunola oil capsules for all of the clinical trials. Also Nestle Nutrition, Australia who supplied the Optifast® bars and shakes for the meal replacements.

A special thank you to Professor Carla Treloar who provided me with the initial opportunity to commence a PhD. Her knowledge and experience exposed me to many different types of research and her initial support, understanding and kindness have been a very positive influence on my work.

I have been extremely fortunate that this experience has not only been filled with hard work but also with much enjoyment and laughter, thanks to my fellow postgraduate students, now Dr Michelle Micallef and Dr Brendan Plunkett. Brendan taught me the laboratory skills I needed to complete my research, with great patience and humour. Michelle shared the discovery of running clinical trials with me and set an example for writing journal articles that I have tried to emulate. She also helped with the collection of blood from my participants. Thanks to fellow students, Jency Thomas for her continuing friendship, support and wise counsel, also to Amani Alhazmi. And thank you to Melinda Phang for assistance with analysis of fatty acids and blood collection.

I would like to thank my husband, Don for essential advice with statistics, and to my daughters Karen and Lisa for their enthusiasm and support.

Finally, I would like to acknowledge my supervisor, Professor Manohar Garg for enabling me to undertake this work with him. It has been a really amazing experience and I am really sorry that it has finally come to an end. For me it has always been about the journey and not the destination.
Research publications central to this thesis

1. **Chapter 3**

 Statement of contribution: Major contribution to: the conception and design of the study; the recruitment of participants, collection and recording of data; drafting of the manuscript; revision of the manuscript.

2. **Chapter 4**

 Statement of contribution: Recruited participants; conducted the intervention and collected the clinical data; sample analysis; entered, analysed and interpreted the data; wrote the manuscript.

3. **Chapter 5**

 Statement of contribution: Recruited participants; conducted the intervention and collected the clinical data; sample analysis; entered, analysed and interpreted the data; wrote the manuscript.

4. **Chapter 6**

 Statement of contribution: Recruited participants; conducted the intervention and collected the clinical data; all sample analysis; entered, analysed and interpreted the data; wrote the manuscript.
Oral presentations with published abstracts

Poster presentation with published abstracts

Additional publications relevant to this thesis

Additional oral presentations with published abstracts relevant to this thesis

2. **Munro, I.A.** & Garg, M.L. Weight loss and metabolic profiles in obese individuals using two different approaches. *14th World Congress on Clinical Nutrition and 5th International Congress on Cardiovascular Disease (4-7th June 2009) Kosice, Slovakia. Proceedings: P32.*
List of contents

LIST OF PUBLICATIONS CENTRAL TO THESIS .. 5
Research publications .. 5
Conference publications ... 6
Statements of authorship, endorsed by ADRT. ... Appendices
Additional research publications and oral presentations relevant to this thesis 7
LIST OF ABBREVIATIONS ... 17
SYNOPSIS OF THESIS .. 20

CHAPTER 1: INTRODUCTION

1.1 OBESITY .. 23
 1.1.1 Classification of obesity and risk to health .. 23
 1.1.2 Prevalence and cost of obesity ... 23
 1.1.3 Recording body measurements ... 24
1.2 REDUCING BODY WEIGHT/FAT MASS .. 25
 1.2.1 Weight loss .. 25
 1.2.2 Reducing energy intake ... 25
 1.2.3 Popular weight loss diets ... 26
 1.2.4 Very low energy diets with meal replacements ... 27
 1.2.5 Pharmacotherapy .. 27
 1.2.6 Comparing weight management strategies ... 28
 1.2.7 Weight maintenance .. 28
1.3 ADIPOSE TISSUE ... 29
 1.3.1 What is adipose tissue? ... 29
 1.3.2 Adipocytes .. 30
 1.3.3 Adipocyte size and adipocyte number ... 30
 1.3.4 Adipose tissue development in childhood ... 31
 1.3.5 Adipose tissue development in adulthood ... 32
 1.3.6 Visceral and subcutaneous adipose tissue .. 32
1.4 INFLAMMATION .. 33
 1.4.1 Obesity and inflammation .. 33
 1.4.2 Macrophages .. 34
 1.4.3 Adipose tissue inflammation ... 34
 1.4.4 Chronic inflammation .. 36
1.4.5 Inflammatory adipocytokines .. 36
1.4.5.1 Tumour necrosis factor-α .. 37
1.4.5.2 Interleukin-6 .. 38
1.4.5.3 C-reactive protein .. 38
1.4.5.4 Leptin .. 39
1.4.5.5 Adiponectin ... 39

1.5 LIPIDS .. 40
1.5.1 Early observations on influences of LCω-3PUFA and CVD 40
1.5.2 Composition of lipids .. 40
1.5.3 Fatty acids .. 41
1.5.4 Polyunsaturated fatty acids ... 41
1.5.4.1 Structure of polyunsaturated fatty acids 41
1.5.4.2 Sources of polyunsaturated fatty acids 41
1.5.4.3 Metabolism of polyunsaturated fatty acids 42
1.5.5 Dietary intake of omega-6 and omega-3 43
1.5.6 Lipid storage and metabolism ... 44
1.5.7 Function of LCω-3PUFA .. 44
1.5.8 Gender differences .. 45

1.6 INFLAMMATORY MEDIATORS .. 45
1.6.1 Eicosanoids .. 45
1.6.2 Phospholipids .. 46
1.6.3 Prostaglandins .. 46
1.6.4 Cyclooxygenase and lipoxygenase 46

1.7 GENES ... 47

1.8 BLOOD LIPIDS AND GLUCOSE .. 47
1.8.1 Blood glucose .. 47
1.8.2 Triglycerides .. 48
1.8.3 Lipoprotein lipase ... 49
1.8.4 Cholesterol ... 49
1.8.5 Low density lipoprotein-cholesterol 49
1.8.6 High density lipoprotein-cholesterol 49

1.9 EFFECTS OF LCω-3PUFA SUPPLEMENTATION 50
1.9.1 Effect of LCω-3PUFA on body weight and fat mass 50
1.9.1.1 Cross sectional studies: humans 50
1.9.1.2 Animal studies ... 51
1.9.1.3 Randomised controlled trials: humans 52
1.9.2 Effects of LCω-3PUFA on inflammatory markers 53
1.9.3 Effects of LCω-3PUFA on blood lipids 54

1.10 CONCLUSION ... 55
1.11 AIMS .. 55
1.12 HYPOTHESES .. 56

CHAPTER 2: GENERAL METHODS

2.1 ETHICAL APPROVAL ... 58
2.2 CLINICAL ASSESSMENT .. 58
 2.2.1 Anthropometric measurements ... 58
 2.2.2 Bioelectrical impedance measurements 58
 2.2.3 Physical activity .. 59
 2.2.4 Dietary analysis ... 60
2.3 CLINICAL TRIALS ... 60
 2.3.1 Intervention ... 60
 2.3.2 Procedure .. 61
2.4 BIOCHEMICAL ANALYSIS .. 65
 2.4.1 Blood collection .. 65
 2.4.2 Blood processing ... 65
 2.4.3 Fatty acid analysis (plasma) .. 66
 2.4.4 Assays ... 67
 2.4.4.1 Cytokine analysis .. 67
 2.4.4.2 Adipokine analysis .. 67
2.5 STATISTICAL ANALYSIS ... 68

CHAPTER 3: PLASMA ω-3 POLYUNSATURATED FATTY ACIDS ARE NEGATIVELY ASSOCIATED WITH OBESITY

3.1 ABSTRACT ... 70
3.2 INTRODUCTION .. 71
3.3 EXPERIMENTAL METHODS .. 72
 3.3.1 Participants .. 72
 3.3.2 Anthropometric assessment .. 72
 3.3.3 Plasma fatty acid analysis ... 73
 3.3.4 Statistical analysis ... 73
3.4 RESULTS .. 73
CHAPTER 4: DIETARY SUPPLEMENTATION WITH LONG CHAIN OMEGA-3 POLYUNSATURATED FATTY ACIDS AND WEIGHT LOSS IN OBESE ADULTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 ABSTRACT</td>
<td>81</td>
</tr>
<tr>
<td>4.2 INTRODUCTION</td>
<td>82</td>
</tr>
<tr>
<td>4.3 METHODS</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1 Participants</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2 Study design</td>
<td>83</td>
</tr>
<tr>
<td>4.3.3 Dietary assessment</td>
<td>84</td>
</tr>
<tr>
<td>4.3.4 Anthropometric assessment</td>
<td>84</td>
</tr>
<tr>
<td>4.3.5 Biochemical analysis</td>
<td>85</td>
</tr>
<tr>
<td>4.3.5.1 Blood sample collection</td>
<td>85</td>
</tr>
<tr>
<td>4.3.5.2 Plasma fatty acid analysis</td>
<td>85</td>
</tr>
<tr>
<td>4.3.5.3 Analysis of inflammatory markers</td>
<td>85</td>
</tr>
<tr>
<td>4.4 STATISTICAL ANALYSIS</td>
<td>86</td>
</tr>
<tr>
<td>4.5 RESULTS</td>
<td>86</td>
</tr>
<tr>
<td>4.5.1 Diet and supplementation</td>
<td>86</td>
</tr>
<tr>
<td>4.5.2 Anthropometric measurements</td>
<td>87</td>
</tr>
<tr>
<td>4.5.3 Blood biomarkers</td>
<td>87</td>
</tr>
<tr>
<td>4.6 DISCUSSION</td>
<td>91</td>
</tr>
<tr>
<td>4.7 CONCLUSION</td>
<td>94</td>
</tr>
</tbody>
</table>

CHAPTER 5: DIETARY SUPPLEMENTATION WITH ω-3 PUFA DOES NOT PROMOTE WEIGHT LOSS WHEN COMBINED WITH A VERY-LOW-ENERGY DIET

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 ABSTRACT</td>
<td>96</td>
</tr>
<tr>
<td>5.2 INTRODUCTION</td>
<td>97</td>
</tr>
<tr>
<td>5.3 METHODS</td>
<td>98</td>
</tr>
<tr>
<td>5.3.1 Participants</td>
<td>98</td>
</tr>
<tr>
<td>5.3.2 Study design</td>
<td>98</td>
</tr>
<tr>
<td>5.3.3 Dietary assessment</td>
<td>100</td>
</tr>
<tr>
<td>5.3.4 Anthropometric assessment</td>
<td>100</td>
</tr>
<tr>
<td>5.3.5 Biochemical analysis</td>
<td>101</td>
</tr>
<tr>
<td>5.3.5.1 Blood sample collection</td>
<td>101</td>
</tr>
<tr>
<td>5.3.5.2 Plasma fatty acid analysis</td>
<td>101</td>
</tr>
<tr>
<td>5.3.5.3 Analysis of inflammatory markers</td>
<td>101</td>
</tr>
</tbody>
</table>
CHAPTER 7: GENERAL DISCUSSION

7.1 DISCUSSION

The influence of supplementation with LCω-3PUFA and dietary energy restriction on adiposity

7.2 THE INFLUENCE OF SUPPLEMENTATION WITH LCω-3PUFA AND DIETARY ENERGY RESTRICTION ON ADIPOSITY

7.3 THE EFFECT OF LCω-3PUFA SUPPLEMENTATION AND DIETARY ENERGY RESTRICTION ON PLASMA LIPIDS

7.4 THE INFLUENCE OF LCω-3PUFA SUPPLEMENTATION AND DIETARY ENERGY RESTRICTION ON INFLAMMATORY MEDIATORS

7.4.1 Leptin

7.4.2 Adiponectin

7.4.3 C-reactive protein

7.4.5 Tumour necrosis factor-α and Interleukin-6

7.5 MECHANISMS OF ACTION

7.6 CONCLUSION

7.7 LIMITATIONS

REFERENCES

APPENDICES:

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Authorisation from publisher to use figure (1)</td>
<td>164</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Authorisation from publisher to use figure (2)</td>
<td>166</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Statement from co-authors (1)</td>
<td>169</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Statement from co-author (2)</td>
<td>173</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Statement from co-author (3)</td>
<td>175</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Statement from co-author (4)</td>
<td>177</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Participant information statement: Clinical trial 1</td>
<td>179</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>Participant information statement: Clinical trial 2</td>
<td>183</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Participant information statement: Clinical trial 3</td>
<td>187</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Participant letter of information for first visit</td>
<td>191</td>
</tr>
<tr>
<td>Appendix 11</td>
<td>Participant consent form: Clinical trial 1</td>
<td>193</td>
</tr>
<tr>
<td>Appendix 12</td>
<td>Participant consent form: Clinical trial 2</td>
<td>195</td>
</tr>
<tr>
<td>Appendix 13</td>
<td>Participant consent form: Clinical trial 3</td>
<td>197</td>
</tr>
<tr>
<td>Appendix 14</td>
<td>Pre-trial medical questionnaire</td>
<td>199</td>
</tr>
<tr>
<td>Appendix 15</td>
<td>Post-trial medical questionnaire</td>
<td>202</td>
</tr>
<tr>
<td>Appendix 16</td>
<td>Record for 3-day food diary</td>
<td>205</td>
</tr>
<tr>
<td>Appendix 17</td>
<td>Publication related to this research</td>
<td>208</td>
</tr>
<tr>
<td>Appendix 18</td>
<td>Statement from co-author (5)</td>
<td>215</td>
</tr>
</tbody>
</table>
Appendix 19 Publication related to this research ... 217
Appendix 20 Statement from co-authors (6) .. 227
List of figures

Figure 1.1 Monocytes attach to activated endothelial cells, transmigrate through the cell wall, differentiating into macrophages which accumulate around adipocytes ... 35
Figure 1.2 The macrophages accumulate around the dead adipocytes and clear the necrotic debris .. 35
Figure 1.3 The link between obesity, inflammatory biomarkers and CVD risk 37
Figure 2.1 Flow diagram: Initial procedure for all three clinical trials 61
Figure 2.2 Flow diagram: Procedure for Clinical Trial 1 over 12 weeks 62
Figure 2.3 Flow diagram: Procedure for Clinical Trial 2 over 14 weeks 63
Figure 2.4 Flow diagram: Procedure for Clinical Trial 3 over 8 weeks 64
Figure 2.5 Flow diagram: Procedure for blood processing after each collection 66
Figure 3.1 Quartiles of plasma n-3 PUFA concentration for (A) BMI (kg/m2), (B) waist circumferences (cm) and (C) hip circumference (cm) 76
Figure 6.1 Baseline values and percent changes for LCω-3PUFA at prior supplementation and weight loss phases (0, 4 & 8 weeks) 122
List of tables

Table 1.1 Metabolism of ω-3 and ω-6 PUFAs ... 43
Table 3.1 Subject characteristics .. 74
Table 3.2 Association between plasma n-3 PUFA (% of total fatty acids) and measure of anthropometry in obese subjects ... 75
Table 4.1 Baseline values and changes or percent changes from baseline for daily energy and nutrient intake and LCn-3PUFA ... 88
Table 4.2 Baseline values and changes from baseline for anthropometric measurements .. 89
Table 4.3 Baseline values and changes from baseline for blood biomarkers 90
Table 5.1 Baseline values and changes for long chain n-3 PUFA (LCn-3PUFA) 103
Table 5.2 Baseline values and changes for anthropometric measurements 106
Table 5.3 Baseline values and changes for blood biomarkers .. 107
Table 6.1 Baseline values and changes for anthropometric measurements at preparation and weight loss phases (4 and 8 weeks) .. 124
Table 6.2 Baseline values and changes for blood biomarkers at preparation and weight loss phases (4 and 8 weeks) ... 125
List of abbreviations

AF adipose fraction
AGHE Australian Guide to Healthy Eating
ALA alpha linolenic acid
AMPK activated protein kinase
ANOVA analysis of variance
apoE apolipoprotein E
BIA bioelectrical impedance assessment
BL baseline
BMI body mass index
CCL2 chemokine ligand 2
CCR2 chemokine receptor 2
CETP cholesteryl ester transfer protein
CHD coronary heart disease
CHO carbohydrate
cm centimetre
CoA coenzyme A
COX cyclooxygenase
CPT-1 carnitine palmitoyl transferase-1
CRP C-reactive protein
CV coefficient of variation
CVD cardiovascular disease
d day
DEXA dual-energy X-ray absorptiometry
DLGA dihomo-gamma-linoleic acid
DNA deoxyribonucleic acid
EDTA ethylene-diamine-tetra-acetic acid
ELISA enzyme linked immunosorbent assay
FA fatty acid
FFM fat free mass
FM fat mass
FO fish oil
g gram
GC gas chromatography
GI glycaemic index
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL-C</td>
<td>high density lipoprotein-cholesterol</td>
</tr>
<tr>
<td>HEWLD</td>
<td>healthy eating weight loss diet</td>
</tr>
<tr>
<td>hs</td>
<td>high sensitivity</td>
</tr>
<tr>
<td>IL-6</td>
<td>interleukin-6</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kJ</td>
<td>kilojoule</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LA</td>
<td>linoleic acid</td>
</tr>
<tr>
<td>LCω-3</td>
<td>long chain omega-3</td>
</tr>
<tr>
<td>LCn-3</td>
<td>long chain omega-3</td>
</tr>
<tr>
<td>LCω-3PUFA</td>
<td>long chain omega-3 polyunsaturated fatty acids</td>
</tr>
<tr>
<td>LDL-C</td>
<td>low density lipoprotein-cholesterol</td>
</tr>
<tr>
<td>LOX</td>
<td>lipoxygenase</td>
</tr>
<tr>
<td>LPL</td>
<td>lipoprotein lipase</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LT</td>
<td>leukotrienes</td>
</tr>
<tr>
<td>LX</td>
<td>lipoxins</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>MM</td>
<td>muscle mass</td>
</tr>
<tr>
<td>mmol</td>
<td>millimol</td>
</tr>
<tr>
<td>MR</td>
<td>meal replacement</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acids</td>
</tr>
<tr>
<td>NEFA</td>
<td>non-esterified fatty acid</td>
</tr>
<tr>
<td>NFκB</td>
<td>nuclear factor kappa-B cells</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>PB</td>
<td>placebo</td>
</tr>
<tr>
<td>PG</td>
<td>prostaglandins</td>
</tr>
<tr>
<td>pg</td>
<td>picogram</td>
</tr>
<tr>
<td>PGI</td>
<td>prostacyclins</td>
</tr>
<tr>
<td>PI</td>
<td>post intervention</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acids</td>
</tr>
<tr>
<td>RQ</td>
<td>respiratory quotient</td>
</tr>
</tbody>
</table>
SEM standard error of mean
sd standard deviation
SAT subcutaneous adipose tissue
SFA saturated fatty acids
SPSS Statistical Package for the Social Sciences
SR scavenger receptor
SREBP sterol regulatory element-binding protein
SVF stroma vascular fraction
TBW total body water
TC total cholesterol
TG triglyceride
TLR4 toll like receptor 4
TNF-α tumour necrosis factor-alpha
TX thromboxanes
T2D type 2 diabetes
VAT visceral adipose tissue
VLED very low energy diet
VLC very long chain
VLDL very low density lipoprotein
WC waist circumference
µg microgram
^{14}C (radioisotope) carbon-14
Synopsis of thesis

Despite an ever-growing body of research on obesity, investigating causes and possible solutions to address the problem, the prevalence of obesity continues to escalate. A major cause of obesity is attributed to poor eating behaviours driven by food advertising, lack of nutrition knowledge, lack of physical activity, lack of time and lack of will power to control food intake, and there is a plethora of research with a focus on changing dietary behaviour for weight management.

In part, this research also addressed dietary change, employing a reduced energy intake for weight loss supported with nutrition education and counselling to enable maintenance of the weight lost. However, consideration was also given to the internal interactions and changes that occur in the body when energy intake exceeds energy output resulting in weight gain and obesity, and whether these mechanisms could be manipulated to reduce weight gain through the inclusion of long chain omega-3 polyunsaturated fatty acids (LCω-3PUFA) in the diet.

Prospective studies in humans have reported that high levels of LCω-3PUFA were associated with low levels of obesity in males while higher intakes of LCω-3PUFA were associated with higher rates of obesity in females. The data on LCω-3PUFA concentrations in males and females had been sourced from dietary records with questionable reliability. Thus the first aim of this research was to investigate whether there was a relationship between plasma LCω-3PUFA and weight status in humans. The first research chapter (Chapter 3) reports on the relationship observed between plasma LCω-3PUFA composition and weight status in free living adults. Obese individuals, both males and females, had significantly lower levels of LCω-3PUFA compared to healthy-weight individuals.

Thus the aim of the first clinical trial (Chapter 4) was to investigate whether LCω-3PUFA supplementation, combined with a healthful diet with portion control and energy restriction would facilitate weight loss, improve blood lipids and inflammatory mediators. This was a double-blinded randomised controlled trial with two parallel groups. Both groups were instructed to follow the same diet for 12 weeks, one group consumed fish oil capsules and the other group consumed placebo capsules (monounsaturated oil). Despite a two-fold increase of EPA and
DHA in the treatment group, there were no significant differences in outcome measures between the two groups. Both the placebo and the fish oil supplemented groups lost similar amounts of weight, fat mass and fat free mass. Overall dietary compliance was poor representing a possible confounding factor on the outcomes.

The aim of the next clinical trial (Chapter 5) was to investigate whether LCω-3PUFA supplementation would facilitate weight loss, but this time in combination with a very-low-energy-diet (VLED), using meal replacements (MRs), to improve dietary compliance. The protocol for this trial was the same as the previous one apart from the change to the diet and with a shortened intervention of 4 weeks. Also, because of the anticipated rapid weight loss, a 10 week weight maintenance phase with continued supplementation was included. Although there was a greater than two-fold increase of EPA and DHA in the treatment group, there were no significant differences in outcome measures between the two groups after 4 weeks of weight loss. However, after a further 10 weeks of supplementation during weight maintenance, there was a significant reduction in anthropometric measurements, apart from fat free mass, in the treatment group but not the placebo group. The differences between the two groups were not significant.

The final clinical trial (Chapter 6) investigated potential benefits of loading the body cells/membranes with LCω-3PUFA prior to following a weight loss program. The protocol for the trial was similar to the previous two, but commenced with 4 weeks of prior-supplementation with fish oil or placebo in the treatment and placebo groups, respectively, while consuming their usual diet. This was followed by 4 weeks of dietary intervention where both groups again consumed a VLED with MRs plus continued supplementation. The same measurements were taken as for the previous trials. After 4 weeks of prior-supplementation there were no significant differences in outcome measures for either group. However, at 8 weeks a significant 3-way interaction between time, group and gender was observed for percentage reduction in weight and BMI, suggesting a significant effect of LCω-3PUFA for the fish oil group. There was also a significant reduction in percentage weight loss for females in the fish oil group. These results suggest that prior-supplementation with LCω-3PUFA, followed by supplementation with LCω-3PUFA and a VLED regimen may assist weight loss.