THE IMPACT OF BUILDING INFORMATION MODELLING ON ESTIMATING PRACTICE

Analysis of perspectives from four organizational Business Models

Oluwole Alfred OLATUNJI
B. Tech (Hons) – Quantity Surveying, PG Cert PTTT
RQS (Nigeria), AAIQS, MNIQS, MICRM

Doctor of Philosophy, Construction Management (Building)

November 2012
TABLE OF CONTENTS

TABLE OF FIGURES ... v

LIST OF TABLES .. vii

STATEMENT OF ORIGINALITY .. ix

ACKNOWLEDGMENT ... x

ABSTRACT .. xi

GLOSSARY .. xvi

1 **INTRODUCTION** .. 1

1.1 RESEARCH BACKGROUND .. 2

1.2 DEFINITION OF TERMS ... 6

1.3 RESEARCH GAPS ... 7

1.3 RESEARCH QUESTIONS .. 10

1.4 RESEARCH AIM AND OBJECTIVES .. 10

1.5 RESEARCH METHODS .. 11

1.5.1 Research Scope .. 11

1.5.2 Research instruments .. 11

1.6 RESEARCH SIGNIFICANCE AND MOTIVATIONS .. 13

1.7 OVERVIEW OF THESIS CONTENT ... 15

1.8 SUMMARY: THE LINK BETWEEN BIM AND ESTIMATING 16

2 **INFORMATION TECHNOLOGY AND CONSTRUCTION ESTIMATING PRACTICE** ... 18

2.1 INTRODUCTION ... 19

2.2 PROCESS IMPROVEMENT MODELS ... 21

2.2.1 A Taxonomy of Estimating Methods based on Kagioglou’s Process Protocols 25

2.2.2 Approaches to integrated estimating platforms ... 26

2.3 ESTIMATING METHODS AND PROCEDURES.. 29

2.3.1 Project Development Phases and Estimating Goals ... 32

2.3.2 Estimating methods during the Pre-Planning Phase .. 38

2.3.3 Estimating Methods during the Pre-Construction Phase ... 45

2.3.4 Estimating During Construction .. 65

2.3.5 Estimating during operation of facilities: Post-Occupancy and Lifecycle estimating 69
2.4 CONCLUSION: A SUMMARY OF THE REVIEW ON THE IMPACT OF IT ON ESTIMATING METHODS ... 71

3 ORGANIZATIONAL BEHAVIOUR AND ESTIMATING PRACTICE...... 74
3.1 INTRODUCTION.. 75
3.2 CONSTRUCTION ORGANIZATION STRUCTURES AND ESTIMATING PRACTICE.. 77
3.2.1 Matrix structured Practice model .. 79
3.2.2 Divisional structured Practice Model ... 87
3.2.3 Functional business-unit Model ... 92
3.2.4 Networked structure Model .. 96
3.3 CHANGE MANAGEMENT THEORIES AND MODELS 103
3.3.1 Bleicher’s Model ... 109
3.3.2 Sun et al’s Model .. 113
3.3.3 Best Practice Models ... 116
3.4 CHANGE AGENTS.. 118
3.5 SUMMARY ON ORGANIZATIONAL AND CHANGE MANAGEMENT MODELLING ... 120

4 BUILDING INFORMATION MODELLING (BIM) AND ESTIMATING PROCEDURES ... 122
4.1 INTRODUCTION AND BACKGROUND .. 123
4.2 CAD AND ESTIMATING OUTCOMES .. 124
4.3 DEFINITIONS OF BIM .. 126
4.3.1 BIM uptake and maturity in Australia .. 131
4.3.2 Forms of Building Information models .. 133
4.4 BENEFITS OF BIM DELIVERABLES TO ESTIMATING PROCESSES 147
4.5 SUMMARY ON BUILDING INFORMATION MODELLING: THE ESTIMATING PERSPECTIVE ... 158

5 RESEARCH METHODOLOGY ... 160
5.1 INTRODUCTION .. 161
5.2 RESEARCH PHILOSOPHY ... 161
5.2.1 Related Work on BIM and Estimating Procedures 165
5.2.2 Approach to Research Design ... 167
5.3 RESEARCH STRATEGY AND INSTRUMENTS 172
The Research process ... 177
Research instruments for data collection 180
PROCESS MODELLING FOR 3D CAD AND BIM ESTIMATING 197
STATISTICAL INSTRUMENTS USED FOR DATA ANALYSIS 207
SUMMARY OF THE STUDY METHODOLOGIES 211

DATA, ANALYSIS AND INTERPRETATIONS 213
INTRODUCTION .. 214
Demographic Background .. 216
Participants’ background in CAE, CAD and BIM 218
EXPLORATORY DATA ON CAD ESTIMATION PROCESSES 222
Estimating processes based on direct export of data from CAD designs ... 223
Stage 1: Preliminary data mining .. 225
Stage 2: Feasibility Budgeting ... 231
Stage 3: Cost Planning ... 234
Stage 4: Estimating and Tendering ... 237
Stage 5: Post-Tender Estimating and Contract Management 241
Summary of estimating stages based on 3D CAD Data 244
EXPLORATORY DATA ON BIM ESTIMATION PROCESS 245
Stage 1: Project conceptualization and design planning 253
Stage 2: 3D visualisation and Virtual Reality 256
Stage 3: Estimation and Tendering ... 259
Stage 4: Contractor Selection based on Virtual Models and estimating ... 263
Stage 5: Post-construction cost management and extending estimate data into facilities management model .. 268
Summary of BIM estimating processes ... 270
SUMMARY STATISTICS ON THE RATINGS FOR ACTIVITIES AND STAGES IN 3D CAD AND BIM ESTIMATING ... 272
COMPARATIVE STATISTICS ON STAGES AND ACTIVITIES LEADING TO ESTIMATING OUTCOMES IN CAD AND BIM ... 275
SUMMARY OF STATISTICAL ANALYSIS 306

TOWARDS AN IMPLEMENTATION OF THE PROCESS MODELS 309
INTRODUCTION .. 310
System architecture for the process models 310
System Architecture for 3D CAD estimating 310
7.2.2 System Architecture for BIM estimating... 314
7.3 EXPRESS-G MODELS FOR THE PROCESS MODELS .. 318
7.3.1 EXPRESS-G models for 3D CAD estimating... 319
7.3.2 EXPRESS-G for BIM estimating .. 322
7.4 INTEGRATION DEFINITION FORMAT (IDEF0) MODELS ... 330
7.4.1 Integration Definition Format (IDEF0) for 3D CAD estimating............................... 332
7.4.2 Integration Definition Format (IDEF0) for BIM estimating 335
7.5 SUMMARY: IMPLEMENTATION OF PROCESS MODELS FOR 3D-CAD AND BIM ESTIMATING .. 337

8 CONCLUSIONS ... 339
8.1 INTRODUCTION .. 340
8.2 STUDY ACHIEVEMENTS .. 341
8.3 BENEFITS OF THE RESEARCH .. 344
8.4 RECOMMENDATIONS ... 345
8.5 AREAS FOR FURTHER RESEARCH ... 346
8.6 LIMITATIONS OF THE RESEARCH ... 347

REFERENCES ... 348

Appendix 1: A Summary of estimating methods ... 385
Appendix 2: Research Ethics and Methodology documentation ... 399
Appendix 3: Graphical representations in Data Analysis .. 411
Appendix 3a – Residual values and Q-Q plots .. 412
Appendix 3b – Canonical Plots for the DA on 3D CAD and BIM estimating 415
Appendix 4: Illustrative secondary EXPRESS-G model for BIM estimating 416
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Construction project development process model</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>IT deployment tracks in construction processes</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Matrix Structure Model</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Multidivisional business model</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>Functional business-unit model</td>
<td>93</td>
</tr>
<tr>
<td>3.4</td>
<td>Networked business structure</td>
<td>98</td>
</tr>
<tr>
<td>3.5</td>
<td>The framework for transitioning to Networked organization</td>
<td>100</td>
</tr>
<tr>
<td>3.6</td>
<td>Transformation ontology for organizational change</td>
<td>105</td>
</tr>
<tr>
<td>3.7</td>
<td>Bleicher’s integrated change management model</td>
<td>110</td>
</tr>
<tr>
<td>3.8</td>
<td>The Sun’s change management model</td>
<td>113</td>
</tr>
<tr>
<td>3.9</td>
<td>The Australian Business Excellence Framework</td>
<td>116</td>
</tr>
<tr>
<td>4.1</td>
<td>Some common interpretations of BIM terms</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>BIM interpretation framework</td>
<td>129</td>
</tr>
<tr>
<td>4.3</td>
<td>Australia in global maturity index for BIM adoption</td>
<td>132</td>
</tr>
<tr>
<td>4.4</td>
<td>System typology and simultaneous access to design visualization model</td>
<td>139</td>
</tr>
<tr>
<td>4.5</td>
<td>Automatic quantification in BIM design models</td>
<td>148</td>
</tr>
<tr>
<td>4.6</td>
<td>Visualizing shape differentials of objects of common quantity descriptors</td>
<td>152</td>
</tr>
<tr>
<td>5.1</td>
<td>Sequence of learning actions in an expansive learning cycle</td>
<td>169</td>
</tr>
<tr>
<td>5.2</td>
<td>A taxonomy of the research design</td>
<td>170</td>
</tr>
<tr>
<td>5.3</td>
<td>The ontology used for coding the data from the first phase of data collection</td>
<td>188</td>
</tr>
<tr>
<td>5.4</td>
<td>Bell Curve representation for normal distribution</td>
<td>208</td>
</tr>
<tr>
<td>6.1</td>
<td>Years of experience of participants from the different organization models</td>
<td>218</td>
</tr>
<tr>
<td>6.2</td>
<td>LCA Design Software</td>
<td>245</td>
</tr>
<tr>
<td>6.3</td>
<td>VICO Software</td>
<td>246</td>
</tr>
<tr>
<td>6.4</td>
<td>CostX Software</td>
<td>247</td>
</tr>
<tr>
<td>6.5</td>
<td>Synchro Software</td>
<td>248</td>
</tr>
<tr>
<td>7.1</td>
<td>System architecture for estimating with 3D CAD</td>
<td>310</td>
</tr>
<tr>
<td>7.2</td>
<td>System architecture for estimating with BIM</td>
<td>314</td>
</tr>
<tr>
<td>7.3</td>
<td>Primary entities of EXPRESS-G model for 3D CAD estimating</td>
<td>318</td>
</tr>
<tr>
<td>7.4</td>
<td>Indicative secondary entities for EXPRESS-G model for 3D CAD estimating</td>
<td>320</td>
</tr>
</tbody>
</table>
Figure 7.5: Primary entities of EXPRESS-G model for BIM estimating………………………… 322
Figure 7.6a: Indicative descriptors of the first five activities in BIM estimating……………… 324
Figure 7.6b: Indicative descriptors of another six activities in BIM estimating……………… 325
Figure 7.6c: Indicate descriptors of the middle set of six activities in BIM estimating……… 326
Figure 7.6d: Indicative descriptors of the top six of the last 10 activities in BIM…………… 328
Figure 7.6e: Indicative descriptors of the last four activities in BIM estimating…………… 329
Figure 7.7: IDEF0 (A0) model descriptors of 3D CAD estimating…………………………… 332
Figure 7.8: IDEF0 model for BIM estimating…………………………………………………… 335
LIST OF TABLES
Table 2.1: Estimating techniques for each phase of project development.......................... 30
Table 3.1: The contrast between the functional-unit practice model and functional matrix model.. 93
Table 3.2: The difference between estimators’ practice domains... 101
Table 4.1: Forms of Project Models and their relevance to estimating practice......................... 134
Table 5.1: An outline of research framework and techniques.. 175
Table 5.2: Summary of participants’ discrimination... 192
Table 6.1: Demographic background of research participants.. 217
Table 6.2: Software applications used by participants for estimating processes 224
Table 6.3: Variables of estimation process in Stage 1 - Preliminary data mining 230
Table 6.4: Variables of estimation process in Stage 2 – Feasibility Budgeting 233
Table 6.5: Variables of estimation process in Stage 3 – Cost Planning..................................... 236
Table 6.6: Variables of estimation process in Stage 4 – Estimating and Tendering..................... 240
Table 6.7: Variables of estimation process in Stage 5 – Post-Tender and Contract Management 242
Table 6.8: Importance rating of stages in estimating processes under 3D CAD regime............. 243
Table 6.9: Variables of Stage 1 of BIM estimation processes – Project conceptualization and design planning... 255
Table 6.10: Variables of Stage 2 of BIM estimation processes – 3D Visualization and Virtual Reality.. 257
Table 6.11: Variables of Stage 3 of BIM estimation processes – Automated Estimation and tendering.. 262
Table 6.12: Variables of Stage 4 of BIM estimation processes - Contractor selection and construction based on a virtual construction model.. 267
Table 6.13: Variables of Stage 5 of BIM estimating processes - Extending construction estimate data into facilities management model.. 269
Table 6.14: Estimating stages and activities in BIM regime.. 269
Table 6.16: Summary of statistics on overall ratings for activities leading to estimates in 3D CAD and BIM .. 271
Table 6.17: Means and standard deviations of practice domains by stages in 3D CAD estimating... 274
Table 6.18: Means and standard deviations of practice domains by stages in BIM estimating....... 275
Table 6.19: Correlation and first scoring factor (F1) of the 4 practice domains in 3D CAD......... 275
Table 6.20: Correlations and first scoring factor (F1) of the 4 practice domains in BIM 276
Table 6.21: Analysis of Variance of CAD domains... 276
Table 6.22: Multiple comparisons of CAD domains.. 276
Table 6.23: Analysis of Variance of BIM domains.. 277
Table 6.24: Multiple comparisons of BIM domains.. 277
Table 6.25: Correlation coefficient for estimating activities in CAD regime............... 280
Table 6.26: Cronbach Alpha Reliability estimates of activities in CAD regime............ 282
Table 6.27: Correlation coefficient for estimating activities in BIM estimating............. 285
Table 6.28: Cronbach Alpha Reliability estimates of activities in BIM estimating......... 290
Table 6.29a: Eigen values of discriminant functions for 3D CAD (per-reliability test)..... 295
Table 6.29b: Eigen values of discriminant functions for 3D CAD (post-reliability test data)...... 295
Table 6.30a: Eigen values of discriminant functions for BIM (prior to reliability test)..... 297
Table 6.30b: Eigen values of discriminant functions for BIM (post-reliability test)......... 297
Table 6.31: Discriminant Function Scoring Coefficient.. 299
Table 6.32: Accuracy of classification... 305
STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

...

Candidate’s Signature
ACKNOWLEDGMENT

I am grateful to the Almighty God for the success of this work.

I also thank the University of Newcastle for offering me the scholarships for my entire research higher degree candidature. Moreover, I will like to thank the Head of School, Professor Anthony Williams for his support and kindness.

I am most grateful to primary supervisor, Associate Professor Willy Sher for his stimulating support and commitment to my success. It will be an understatement to say I dedicate this work to him. I feel very humbled by his humility and mental strength. I am also deeply indebted to Dr Ning Gu, my superb secondary supervisor. He is bright and motivating.

Of special mention are the following people for their roles in facilitating the success of this work:

- Dr Sue Sherrat for her support throughout my candidature and for editing my draft thesis.
- Professor Kingsley Agho, who assisted with the robust statistical procedure reported in the thesis.
- Mr Sharma D, who also helped with a substantial part of the statistical analysis.
- All the 22 anonymous participants who facilitated the contributions of their organizations to the success of this work.
- All the anonymous reviewers, their constructive comments all of which I have found very useful.

My family has stood behind me like the rock of Gibraltar. Most importantly, I recognize the support of Lola, my wife; Sam and Israel, my sons. I also thank my mum, Felicia Olatunji; my brothers – Seun, Emman and Abayo; my sisters – Nike, Dammy and Bukky.

I am indebted to the CAC and RCCG families. Of special mention are Dr and Dr (Mrs) Kehinde Olatunbosun, Dr and Mrs Niyi Borire, Mrs Marie Mulder and family, Dr and Mrs Paul Nnantwi, and all others whose name there is limited space to mention here.

Finally, I will like to thank the construction management family – Dr Jamie Mackie, Associate Prof Graham Brewer, Dr Gajendran Thayaparan, Dr Michael MAK, Dr Patrick Tang, Dr Helen Giggings, Marcus Jefferies, Peter Ward, Trevor Hilaire and John Smolders. I also want to thank Rongrong Yu, Wenli, Briana and my very dearest Jia Xiao Shen (Jessica).
ABSTRACT
This study aims to explore the impact of 3D CAD and BIM on estimating practices based on the notion that both paradigms, in varying degrees, improve the cost performance of projects compared to the use of conventional design tools such as 2D-CAD. The objectives are: (1) to explore the activities required to develop workable estimates in different estimating practice domains and represent them in the form of process models; (2) to establish the degree of association and reliability of the identified activities; (3) to compare 3D CAD and BIM estimating processes across different practice domains (using discriminant analysis); and (4) to suggest how the process models can be implemented and further strengthened for application development.

The theoretical framework of the study was based on Kagioglou et al.’s (1999) process re-engineering model - to define the forms and goals of estimates in the different phases of the development of construction projects. Further review of literature shows that there are several estimating methods that are applicable to the various project development stages, which are ontologically stratified across the various construction business domains. Consequently, different perspectives of estimating practice in construction businesses are developed from four business structure models viz. the MModel (representing client organizations), the DModel (representing contracting organizations), the FModel (representing consulting practices) and the NModel (representing specialist project delivery systems such as IPD).

Mixed and plural research methodologies were used to explore the stages and activities that are involved in 3D CAD and BIM estimating. Firstly, products of four software development organizations were investigated to ascertain how the applications were used for 3D CAD and BIM estimating. Data was also explored from 5 presentations on 3D CAD and BIM estimating by the software development companies to 77 subject-experts who offered their views on estimators’ expectations of BIM applications. Secondly, participants, 17 in total, were sourced from the 4 business models indicated above to discuss their 3D CAD and BIM estimating processes. Data were captured through focus group sessions and individual interviews.

The estimating themes for 3D CAD and BIM were garnered from the aforementioned qualitative data using a combination of direct observation, focus group discussions and interview sessions. Through these methods, the stages and activities involved in the preparation of estimates based on 3D CAD and BIM across the four business structure
models were identified and rated. These ratings were statistically analysed to test whether the variables were sufficiently robust to be used to create process models, which the different practice domains can deploy to generate workable estimates with 3D CAD and BIM. The data were normally distributed and were analysed parametrically. First scoring factor analyses showed that the views of participants from DModel and FModel practices were highly correlated in both 3D CAD and BIM regimes. In addition, multiple comparisons using Fisher-Hayter and ANOVA procedures showed the key characteristics of the variations between how participants from the different practice domains viewed the importance of activities leading to estimating outcomes.

Additionally, reliability tests (Cronbach’s Alpha) were used to measure the internal correlation of the estimating activities that were identified in both 3DCAD and BIM. In 3D CAD, 16 out of the 31 themes were discounted for lack of internal consistencies. The resultant process model has an Alpha value of 0.96. In BIM regime, analyses show the Alpha value to be 0.95, while only four themes (estimating activities) were discounted for lack of statistical consistencies. The themes retained after the reliability tests formed the centroid (group representative) process models for the 3D CAD and BIM estimating. However, the derived variables in the centroid models apply differently to the practice domains. Consequently, both ad-hoc and post-hoc data were analysed to determine the discrimination of the centroid models across the four practice domains.

Implementation of the process models was also discussed. First, illustrations were made on system architectures for the process models. Second, indicative EXPRESS-G structures were provided to show how the process models can be advanced for implementation in the form of applications, training and for future research. Third, indicative integrated definition formats (IDEF0) were developed to illustrate how the outcomes of the process models can be strengthened with case-based control measures.

This study has established that estimators still use conventional methods to estimate 3D CAD projects, and more than 50% of activities leading to estimate outcomes in this domain do not add value to estimating outcomes. This study also presented the key characteristics and enablers of opportunities for estimators in BIM. Recommendations were also drawn on how to develop change management models for dealing with operational issues when transiting from conventional practices to digital systems.
SUPPORTING PUBLICATIONS (SELECTED)

The research work reported in this thesis is supported with nine articles published by the author of this dissertation. These include four journal articles, three conference papers and two book chapters. The contents of the publications are summarized below:

Journal articles

- In (Olatunji, 2010c), the author explores the relationships between macro-variability and construction costs. Analysis in the study shows that construction costs are impacted by varying economic indicators such as variability in the relationship between construction GDP and other activities in the main economy (e.g. balance of trade, government policies and cost of finance). It is also found that, more usually than represented in project drawings, and largely unpredictable so, these indicators pressure construction cashflow through hard-to-control changes in resource costs and stochastic conditions in cost of finance.

- In (Olatunji, 2011c), the author reviews the legal implications of model ownership in project implementation with BIM. The overriding argument in this study is that the process integration triggered by BIM involves substantial trust in the integrity of data that have come from different disciplines. The study concludes that the repercussion of this perception is significant to project economics. This is because the methodology for valuing intellectual property in BIM is yet undefined, and existing legal frameworks in the industry promotes fragmentation.

- In (Olatunji, 2011b), the author explores the cost implications of corporate implementation of BIM in construction SMEs. It emphasizes that BIM implementation in construction business requires strategic actions which involves changes to resource utilization and corporate philosophies on business behaviours. It presents a validated regression model for predicting the cost of BIM implementation in construction SMEs in Australia.

- In (Olatunji et al., 2010b), the authors review the relationship between quantity measurement, estimating and (mis)conception about the integrity of BIM data. The study reports that workable estimates are not promoted by putting superficial costs into model objects or by simply applying costs to quantity data that are auto-generated from BIM models; rather by conscious engineering of model data and resource data in ways that best meet project goal.
Book Chapters

- In (Olatunji and Sher, 2010b), BIM is presented as a novel platform for storing data on project lifecycle processes. The study relies on past studies in facilities management (FM) processes to explain a framework for utilizing BIM for FM. Conclusion were drawn in the study on how BIM supports data and process integration and automation of FM processes.

- In (Olatunji et al., 2010a), the authors argue that BIM requires effective collaboration to drive satisfactory project outcomes. The three primary components of gaming theory – Pareto optimal, hawk dove and prisoners’ dilemma – were used to explain the practical implications collaboration in null, partial and full forms. Different collaboration scenarios were used to outline potential outcomes when BIM project teams do not collaborate, when they collaborate partially and when they collaborate fully.

Conference Papers

- In (Olatunji, 2010a), the author developed a conceptual model to explain the implication of BIM-triggered changes to the business structure of estimating practices. The model covers the varying requirements that estimating businesses and their different levels of staff need to implement in order to fulfil their goal with BIM.

- In (Olatunji and Sher, 2009), the authors make predictions about the potentials of BIM in 2020. The paper covers the chronicles of advancements in CADD and CAD since the 19th century with conclusion on the potential of BIM in conjunction with mobile computing, remote site access technologies and laser scanning.

- In (Olatunji et al., 2010c), the authors explore BIM and its impact on construction estimating. The paper argues that estimators’ views about model objects are not the same as designers’, and for model data to meet estimators’ requirements, they must be structured in ways that promote probity and accountability.

List of Publications

GLOSSARY

3D Three-dimensional
AAQS Association of African Quantity Surveyors
ABS Australian Bureau of Statistics
AI Artificial Intelligence
AIA American Institute of Architects
AIB Australian Institute of Building
AIQS Australian Institute of Quantity Surveyor
ANN Artificial Neural Network
ARIMA Auto-Regressive Integrated Moving-Average
AS Australian Standards
ASMM Australian Standard of Measurement
BAS Building Automation System
BCA Benefit-Cost Analysis
BCIS British Cost Information Service
BESMM Building and Engineering Standard Method of Measurement
BIM Building Information Modelling
BoQ Bill of Quantities
BPIBR Business Process Initiatives and Behavioural Re-Engineering
CAD Computer-Aided Design
CADD Computer-Aided Design and Drafting
CAE Computer-Aided Estimating
CBA Cost Benefit Analysis
CCI Construction Cost Index
CCP Comparative Cost Planning
CIOB Chartered Institute of Building
CMSS Change Management Support System
CMM Change Management Model
CMR Construction Management Research
CoF Cost of Finance
CP Cost Planning
CPM Critical Path Method
CPS Cyber-Physical Systems
CSG Constructive Solid Geometry
DLP Defect Liability Period
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBPA</td>
<td>Design-Based Protocol Analysis</td>
</tr>
<tr>
<td>DModel</td>
<td>Divisional business structure model</td>
</tr>
<tr>
<td>ECP</td>
<td>Elemental Cost Planning</td>
</tr>
<tr>
<td>ERA</td>
<td>Evaluated Risk Assessment</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>ES</td>
<td>Exponential Smoothing</td>
</tr>
<tr>
<td>FGs</td>
<td>Focus Groups</td>
</tr>
<tr>
<td>FIDIC</td>
<td>Federation of International Council of Engineers’ Condition of Contract</td>
</tr>
<tr>
<td>FL</td>
<td>Fuzzy Logic</td>
</tr>
<tr>
<td>FM</td>
<td>Facilities Management</td>
</tr>
<tr>
<td>FModel</td>
<td>Functional-unit practice structure model</td>
</tr>
<tr>
<td>FU</td>
<td>Organizational Functional Units</td>
</tr>
<tr>
<td>GDO CAD</td>
<td>Geometric-Data Only Computer-Aided Design</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>IAI</td>
<td>International Alliance on Interoperability</td>
</tr>
<tr>
<td>ICE</td>
<td>Institution of Civil Engineering</td>
</tr>
<tr>
<td>ICEC</td>
<td>International Cost Engineering Council</td>
</tr>
<tr>
<td>IFC</td>
<td>Intermediate Form of building Contract</td>
</tr>
<tr>
<td>IFCs</td>
<td>Industry Foundation Classes</td>
</tr>
<tr>
<td>IPD</td>
<td>Integrated project delivery</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IDEF0</td>
<td>Integration Definition Format</td>
</tr>
<tr>
<td>JCT</td>
<td>Joint Contracts Tribunal</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Laser Altimetry Techniques</td>
</tr>
<tr>
<td>LND</td>
<td>Logarithmic Normal Density</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>LSM</td>
<td>Least Square Method</td>
</tr>
<tr>
<td>MModel</td>
<td>Matrix structure model</td>
</tr>
<tr>
<td>nD</td>
<td>nth-Dimensional</td>
</tr>
<tr>
<td>NEC</td>
<td>New Engineering Contracts</td>
</tr>
<tr>
<td>NIBS</td>
<td>National Institute of Building Sciences</td>
</tr>
<tr>
<td>NIQS</td>
<td>Nigerian Institute of Quantity Surveyors</td>
</tr>
<tr>
<td>NModel</td>
<td>Networked business structure model</td>
</tr>
<tr>
<td>NPWC</td>
<td>National Public Works Council</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
</tbody>
</table>

xvii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWPWD</td>
<td>New South Wales Public Work Department</td>
</tr>
<tr>
<td>OOP-CAD</td>
<td>Object-Oriented and Parametric Computer-Aided Design</td>
</tr>
<tr>
<td>PDFs</td>
<td>Probability Density Functions</td>
</tr>
<tr>
<td>PERT</td>
<td>Program Evaluation and Review Technique</td>
</tr>
<tr>
<td>RIFD</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RIBA</td>
<td>Royal Institution of British Architects</td>
</tr>
<tr>
<td>RICS</td>
<td>Royal Institution of Chartered Surveyors</td>
</tr>
<tr>
<td>SA</td>
<td>Simple Algorithm</td>
</tr>
<tr>
<td>SFCA</td>
<td>Standard Form of Cost Analysis</td>
</tr>
<tr>
<td>SMA</td>
<td>Simple Moving Average</td>
</tr>
<tr>
<td>SMM</td>
<td>Standard Method of Measurement</td>
</tr>
<tr>
<td>SMMIEC</td>
<td>Standard Method of Measurement of Industrial Engineering Construction</td>
</tr>
<tr>
<td>TEN</td>
<td>Tetrahedral Networks</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VBPM</td>
<td>Value-Based Performance Management</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
<tr>
<td>VDC</td>
<td>Virtual Design and Construction</td>
</tr>
<tr>
<td>VM/E</td>
<td>Value Management and Engineering</td>
</tr>
</tbody>
</table>