Extraction and Preparation of Bioactive Components from Green Teas

Quan Van Vuong
Msc. in Food Technology

Thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

…………………………
Quan Van Vuong
DECLARATION OF AUTHORSHIP

I hereby certify that this thesis is submitted in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a signed statement from each co-author; and endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

..................................

Quan Van Vuong
ACKNOWLEDGEMENTS

I would firstly like to express my sincere thanks to my supervisor Dr Paul D Roach, who has been very patient and has given me unconditional and enormous support throughout my PhD. I would like to thank my co-supervisors Dr John B. Golding and Dr Minh H. Nguyen, who have encouraged and given me valuable advice and precious support throughout my PhD studies.

I would like to thank Dr Costas E. Stathopoulos, Dr Michael C. Bowyer and Dr Christopher J. Scarlett for their expert advice and fruitful cooperation in my studies and publications. I would like to express my gratitude to Dr Mirella Atherton for her valuable comments and for editing some of my manuscripts prior to publication.

I would like to thank all those who have contributed to the work of this thesis or have supported me throughout my PhD studies, especially Sing P. Tan for her contribution and assistance in running experiments for research paper VI, James Krahe and Nenad Naumovski for their technical help in dealing with HPLC, Matt Pearse for his help in harvesting fresh tea samples, and Ms. Leonie Holmesby for her assistance with chemicals and equipment during my experiments. Appreciation is extended to the Gosford Primary Industries Institute, NSW Department of Primary Industries, Ourimbah, NSW, Australia for kindly supplying freshly picked green tea leaves.

I would like to thank my parents and friends for their continuous encouragement. A very special thank you is given to my wife Dang Thi Thuy Quynh and my lovely kids Vuong Dang Nhat Quang and Vuong Quynh Anh, who have always been behind me, encouraging and inspiring me during my PhD journey.

I would like to thank my case managers from Austraining International, who have been very helpful in assisting me during my award. Finally, I would like to express my appreciation to the Australian Government Department of Education, Employment and Workplace Relations (DEEWR) for granting me an Endeavour Scholarship to conduct my whole PhD program.
LIST OF PUBLICATIONS INCLUDED AS PART OF THE THESIS

Paper V: Quan V. Vuong and Paul D. Roach. Caffeine in green tea: its removal and isolation. Submitted to *Food Research International* on 30 June 2012.

STATEMENTS

OF CONTRIBUTION BY OTHERS
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, Costas E. Stathopoulos, Minh H. Nguyen, John B. Golding, and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the literature review for this paper and for the writing of the published review paper entitled “Isolation of Green Tea Catechins and Their Utilization in the Food Industry” in the *Food Reviews International*, Volume 27, Issue 3, Pages 227-247, 2011. DOI: 10.1080/87559129.2011.563397.

Dr Costas E. Stathopoulos
Date: 10/5/2012

A/Prof Dr Minh H. Nguyen
Date: 2/5/2012

Dr John B. Golding
Date: 10-5-12

Dr Paul D. Roach
Date: 10/5/12

Quan Van Vuong
Date: 10/5/2012

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (Al),
Date: 11/5/2012
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, Minh H. Nguyen, John B. Golding, and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the literature review for this paper and for the writing of the published review paper entitled "Extraction and isolation of catechins from tea" in the Journal of Separation Science, Volume 33, Issue 21, Pages 3415-3428, 2010. DOI: 10.1002/jssc.201000438.

A/Prof Dr Minh H. Nguyen
Date: 25/5/2012

Dr John B. Golding
Date: 10-5-12

Dr Paul D. Roach
Date: 10/05/12

Quan Van Vuong
Date: 10/5/2012

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 10/7/2012
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, Michael C. Bowyer and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the literature review for this paper and for the writing of the published review paper entitled “L-Theanine: properties, synthesis and isolation from tea” in the Journal of the Science of Food and Agriculture, Volume 91, Issue 11, Pages 1931-1939, 2011. DOI: 10.1002/jsfa.4373.

Dr Michael C. Bowyer
Date: 9/5/12

Dr Paul D. Roach
Date: 10/05/12

Quan Van Vuong
Date: 10/5/12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 11/07/12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

I, Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the literature review for this paper and for the writing of the submitted review paper entitled “Caffeine in Tea: Its Removal and Isolation” to the Food Research International on 29 June 2012.

Dr Paul D. Roach
Date: 10/07/12

Quan Van Vuong
Date: 10/07/12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (A)
Date: 11/07/12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, John B. Golding, Costas E. Stathopoulos, Minh H. Nguyen and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the published research paper entitled “Optimizing Conditions for the Extraction of Catechins from Green tea Using Hot Water” in the Journal of Separation Science, Volume 34, Issue 21, Pages 3099-3106, 2010. DOI: 10.1002/jssc.201000863.

Dr John B. Golding
Date: 10/5/12

Dr Costas E. Stathopoulos
Date: 10/5/2012

A/ Prof Dr Minh H. Nguyen
Date: 7/5/11

Dr Paul D. Roach
Date: 10/05/12

Quan Van Vuong
Date: 10/5/12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Camer
Assistant Dean Research Training
Date: 10/7/12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, John B. Golding, Costas E. Stathopoulos, Minh H. Nguyen and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the published research paper entitled “Optimum Conditions for the Water Extraction of L-theanine from Green Tea” in the Journal of Separation Science, Volume 34, Issue 18, Pages 2468-2474, 2011. DOI: 10.1002/jssc.201100401.

Dr John B. Golding
Date: 10/5/12

Dr Costas E. Stathopoulos
Date: 10/5/12

A/ Prof Minh H. Nguyen
Date: 25/5/2012

Dr Paul D. Roach
Date: 10/05/12

Quan Van Vuong
Date: 10/5/2012

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 5/5/12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, John B. Golding, Costas E. Statopoulos and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the submitted research paper entitled “Effects of Aqueous Brewing Solution pH on Extraction of the Major Green Tea Constituents” to the Food Research International on the 5 of July 2012.

Dr John B. Golding
Date: 10-7-12

Dr Costas E. Statopoulos
Date: 10/7/12

Dr Paul D. Roach
Date: 10/7/12

Quan Van Vuong
Date: 10/7/12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 11-7-12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, John B. Golding, Minh H. Nguyen and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the published research paper entitled “Production of Caffeinated and Decaffeinated Green Tea Catechin Powders from Underutilised Old Tea Leaves” in the Journal of Food Engineering, Volume 110, Issue 1, Pages 1-8, 2012. DOI: 10.1016/j.jfoodeng.2011.12.026.

Dr John B. Golding
Date: 10-5-12

A/ Prof Dr Minh H. Nguyen
Date: 27-5-12

Dr Paul D. Roach
Date: 10-05-12

Quan Van Vuong
Date: 10-5-12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 11-8-12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, John B. Golding, Minh H. Nguyen and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the submitted research paper entitled "Preparation of Decaffeinated and High Caffeine Powders from Green Tea" to the Journal of Powder Technology on 2 January 2012.

Dr John B. Golding
Date: 11-7-12

Prof Dr Minh H. Nguyen
Date: 11-7-12

Dr Paul D. Roach
Date: 10-10-12

Quan Van Vuong
Date: 14-1-12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 11-7-12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, John B. Golding, Minh H. Nguyen and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the submitted research paper entitled "Preparation of Decaffeinated and High Caffeine Powders from Green Tea" to the Journal of Powder Technology on 2 January 2012.

Dr John B. Golding
Date: 11-7-12

A/Prof Dr Minh H. Nguyen
Date: 11-7-12

Dr Paul D. Roach
Date: 10-10-12

Quan Van Vuong
Date: 4-12-12

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 1-7-12
STATEMENT OF CO-AUTHORS

To Whom It May Concern,

We, Sing P. Tan, Costas E. Stathopoulos and Paul D. Roach, attest that Research Higher Degree candidate, Quan Van Vuong, was the principle contributor to the planning, execution and analyses of the experiments for this paper and for the writing of the published research paper entitled “Improved Extraction of Green Tea Components from Teabags using the Microwave Oven” in the Journal of Food Composition and Analysis, 2012, DOI: http://dx.doi.org/10.1016/j.jfca.2012.06.001.

Sing P. Tan
Date: 18/6/11

Dr Costas E. Stathopoulos
Date: 18/6/2012

Dr Paul D. Roach
Date: 18/6/12

Quan Van Vuong
Date: 18/6/2012

I have seen this paper and I agree with the signatories above that it represents a substantial amount of research work and can be part of Quan Van Vuong’s PhD thesis.

Associate Professor Jenny Cameron
Assistant Dean Research Training (ADRT)
Date: 11/07/11
LIST OF ADDITIONAL PUBLICATIONS, ACHIEVEMENTS AND AWARDS

JOURNAL ARTICLES

BOOK CHAPTER

CONFERENCE PRESENTATIONS (In Abstract Form)

2. Quan V Vuong, Minh H Nguyen, Costas E Stathopoulous, John B Golding, Paul D Roach. Preparation of spray dried decaffeinated and high caffeine green tea powders from Australian grown green tea. *Proceedings of The Australian Institute of Food Science Technology(AIFST), Adelaide, Australia (2012).*

3. Quan V. Vuong, Sing P. Tan, CE Stathopoulos, PD Roach. Improving the extraction of the catechins from green tea in teabags using the microwave oven. *Proceedings of NSNZ & NSA Joint Annual Scientific Meeting, Queenstown, New Zealand (2011).*

4. Quan V Vuong, Minh H Nguyen, Costas E Stathopoulous, John B Golding, Paul D Roach. Optimising conditions for extracting catechins from green tea using hot water. *Proceedings of The Australian Institute of Food Science Technology(AIFST), Sydney, NSW, Australia (2011).*

5. Quan V Vuong, John B Golding, Minh H Nguyen, Paul D Roach. Production of partially decaffeinated instant tea from Australian grown green tea. *Proceedings of The Australian Institute of Food Science Technology(AIFST), Sydney, NSW, Australia (2011).*

ACHIEVEMENTS AND WARDS

1. Endeavour scholarship granted by the Australian Department of Education, Employment and Workplace Relations for PhD program (2008-2012).

2. Outstanding Post Graduate (research) Student Achievement Award granted by the Faculty of Science and IT, The University of Newcastle in 2010.

3. Travel grant given by the Australian Nutrition Society for attending the annual conference in Perth, November 2010.

4. Best poster presentation award granted by the Australian Institute of Food Science and Technology at the 44th Annual AIFST Convention in Sydney, July 2011.

5. Travel grant given by the School of Environmental and Life Sciences for attending the International Food Technology conference in New Orleans, America, June 2011.

6. Travel grant given by the Australian Nutrition Society for attending the annual conference in Queenstown, New Zealand, November 2011.

7. Best poster presentation award granted by the Australian Institute of Food Science and Technology at the 45th Annual AIFST Convention in Adelaide, July 2012.
TABLE OF CONTENTS

LIST OF ABBREVIATIONS ... xxi
ABSTRACT ... xxii
PART 1: OVERVIEW ... 1
 1.1. Background ... 2
 1.2. Synopsis of Literature Review ... 7
 1.3. Literature Review Paper ... 9
 1.3.1. Epidemiological evidence linking tea consumption to human health: A review 10
 1.3.2. Isolation of green tea catechins and their utilisation in the food industry 59
 1.3.3. Extraction and isolation of catechins from tea .. 80
 1.3.4. L-Theanine: properties, synthesis and isolation from tea ... 94
 1.3.5. Caffeine in green tea: its removal and isolation .. 103
 1.4. Experimental Rationale .. 144
 1.5. Hypothesis, Aims and Objectives ... 145
PART 2: RESULTS .. 147
 2.1. Synopsis of Research Result Papers .. 148
 2.2. Research Result Papers ... 152
 2.2.1. Optimizing conditions for the extraction of catechins from green tea using hot water .. 153
 2.2.2. Optimum conditions for the water extraction of L-theanine from green tea 161
 2.2.3. Effects of aqueous brewing solution pH on extraction of the major green tea constituents .. 168
 2.2.4. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves ... 176
 2.2.5. Preparation of decaffeinated and high caffeine powders from green tea 185
 2.2.6. Improved extraction of green tea components from teabags using the microwave oven ... 192
PART 3: GENERAL DISCUSSION AND CONCLUSIONS ... 200
 3.1. Discussion ... 201
 3.2. Conclusions ... 208
BIBLIOGRAPHY ... 210
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter(s)</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>C</td>
<td>Catechin</td>
</tr>
<tr>
<td>CG</td>
<td>Catechin Gallate</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>EC</td>
<td>Epicatechin</td>
</tr>
<tr>
<td>ECG</td>
<td>Epicatechin Gallate</td>
</tr>
<tr>
<td>EGC</td>
<td>Epigallocatechin</td>
</tr>
<tr>
<td>EGCG</td>
<td>Epigallocatechin Gallate</td>
</tr>
<tr>
<td>et al.</td>
<td>and others</td>
</tr>
<tr>
<td>g</td>
<td>gram (s)</td>
</tr>
<tr>
<td>GC</td>
<td>Gallocatechin</td>
</tr>
<tr>
<td>GCG</td>
<td>Gallocatechin Gallate</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IS</td>
<td>Internal Standard</td>
</tr>
<tr>
<td>MAE</td>
<td>Microwave Assisted Extraction</td>
</tr>
<tr>
<td>MAP</td>
<td>Modified Atmosphere Packaging</td>
</tr>
<tr>
<td>min</td>
<td>Minute (s)</td>
</tr>
<tr>
<td>MIPs</td>
<td>Molecularly Imprinted Polymers</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre (s)</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>POD</td>
<td>Peroxidase</td>
</tr>
<tr>
<td>PPO</td>
<td>Polyphenol oxidase</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Revered-phase HPLC</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>sec</td>
<td>Second (s)</td>
</tr>
<tr>
<td>SFE-CO2</td>
<td>Supercritical Fluid Extraction with Carbon dioxide</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Phase Extraction</td>
</tr>
<tr>
<td>SWE</td>
<td>Subcritical Water Extraction</td>
</tr>
<tr>
<td>UAE</td>
<td>Ultrasound Assisted Extraction</td>
</tr>
<tr>
<td>UHPE</td>
<td>Ultrahigh Pressure Extraction</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet – Visible</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume by Volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight by Volume</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight by Weight</td>
</tr>
</tbody>
</table>
ABSTRACT

Background

Green tea is a rich source of the strong antioxidant compounds, the catechins, and the unique amino acid, theanine, which have been linked with health benefits such as prevention of certain types of cancers and cardiovascular diseases, decrease in obesity and improvement of the immune system. However, epidemiological studies suggest that the volume of green tea required to obtain health benefits is rather large, ranging from 5-10 cups a day. Therefore, it is questionable whether individuals, especially in western countries where they are not used to drinking green tea, can consume a large enough quantity of green tea to obtain the levels of the green tea bioactive compounds needed for health benefits.

Therefore, extraction of the catechins and theanine from green tea to provide concentrated preparations for use as food supplements or as additives for functional foods has been considered as a way to increase the consumption of these green tea bioactive compounds. In addition, green tea extracts and powders can be utilised in various foods to prolong their shelf-life. Green tea also contains a high level of caffeine, which can work as a mild central nervous stimulant. However, caffeine can cause some negative effects in some people and therefore, its removal from green tea products needs to be addressed. Furthermore, as a consequence of the concerns relative to the use of organic solvents, which are usually used for extractions of plant materials in the food industry, water is the only solvent which should be used.

Another way of increasing the intake of the beneficial green tea components is to ensure that they are well extracted when people prepare their green tea themselves. A low extraction of the compounds could be one of the reasons why large amounts of the beverage appear to be needed to obtain the health benefits.

Hypothesis and Aims

The current study hypothesised that the aqueous extraction of the three bioactive components, the catechins, theanine and caffeine, from loose leaf green tea or green tea in tea bags, could be improved and that aqueous extractions could be used to prepare decaffeinated, normal caffeine and caffeine-enriched green tea catechin powders.

The overall aims were to 1) improve the aqueous extraction of the three main bioactive components, catechins, theanine and caffeine from loose leaf green tea, 2) to prepare decaffeinated,
normal caffeine and caffeine-enriched green tea catechin powders from freshly harvested young and old green tea leaves using water as the only solvent for the extractions and freeze drying and spray drying to dry the aqueous extracts, and 3) to improve the extraction of the three green tea bioactive components form green tea in teabags using water and the microwave oven.

Results

The results showed that the extraction of the catechins from loose leaf green tea could be improved by brewing ground green tea (≤ 1 mm) twice: once at 80°C for 30min with a water-to-tea ratio of 12:1 mL/g and once at 80°C for 30min with a water-to-tea ratio of 8:1 mL/g. The extraction of the theanine from loose leaf green tea could be also improved by brewing ground green tea (0.5-1 mm) at 80°C for 30min with a water-to-tea ratio of 20:1 mL/g. Water was also found to be effective for decaffeinating freshly harvested young (apical bud to fourth leaf on the growing shoot) and old tea leaves (the fifth to tenth leaves down the stem). Blanching the young tea leaves at 100°C for 4 min at a water-to-tea ratio of 20:1 mL/g removed 83% of the caffeine while retaining 94% of the catechins whereas blanching the old tea leaves at 100°C for 10 min at a water-to-tea ratio of 20:1 mL/g removed 80% of the caffeine while retaining 83% of the catechins.

Three types of green tea powders: decaffeinated, normal caffeine and caffeine-enriched green tea powders were also prepared by brewing, filtering, concentrating extracts and then either freeze drying or spray drying them into powders. Both freeze drying and spray drying were found to be suitable for drying the green tea aqueous extracts. However, in terms of cost-effectiveness, spray drying was considered as a method of choice and its optimal conditions were found to be 180°C for the inlet temperature and 115°C for the outlet temperature. These green tea powders had catechin levels of 174-197 mg/g and theanine levels of 7-22 mg/g. The caffeine levels were 6.1-7.3 mg/g for decaffeinated powder, 21.3-21.8 mg/g for normal caffeine powder and 94.8 mg/g for caffeine-enriched powder. In addition, these green tea powders had excellent physical properties such as high water solubility ($\geq 96\%$) and low moisture content ($<2.5\%$).

Finally, the results indicated that brewing teabags for 3 min at room temperature in 200 mL of boiled water, as suggested by the manufacturers, was not efficient as only 62% of the catechins, 76% of the caffeine and 80% of the theanine were extracted from the teabags. However, the extraction of these three bioactive components could be improved by first brewing the teabags in freshly boiled water for 0.5 min at room temperature followed by irradiation for 1 min in a microwave oven. This method improved the extraction of the catechins, caffeine and theanine by 34%, 29% and 14%, respectively, in comparison with the common brewing method of 3 min in 200 mL of boiled water.
Conclusions

In conclusion, the hypothesis was supported and the aims were achieved. The aqueous extraction of the three main bioactive components, the catechins, theanine and caffeine from green tea was optimised and improved. In addition, using water as the only solvent, this study developed methods to prepare decaffeinated dried green tea and decaffeinated, normal caffeine and caffeine-enriched green tea catechin powders from freshly harvested young and old green tea leaves. Finally, this study developed a method using the microwave oven to improve the extraction of the three green tea bioactive components from green tea in teabags.