DISRUPTION OF CLATHRIN MEDIATED-ENDOCYTOSIS THROUGH SMALL MOLECULE INHIBITION OF DYNAMIN AND CLATHRIN

Kylie Anne MacGregor
B.Sc.(Hons)

A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from the University of Newcastle

January 2012
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that some of the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis statements clearly outlining the extent of collaboration, with whom and under what auspices.

--

Kylie Anne MacGregor

January 2012
ACKNOWLEDGEMENTS

To my supervisor, Adam McCluskey, thank you for the opportunity to work on such an interesting and colourful project, and for allowing me the flexibility to pursue my studies as I saw fit.

Financial support from the University of Newcastle, in the form of an Australian Postgraduate Award (APA) scholarship, is gratefully acknowledged.

Thank you to the researchers in the collaborating groups at the Children’s Medical Research Institute (CMRI), Calvary Mater Newcastle and the University of Berlin, who performed the biological screening of compounds in this thesis. I would particularly like to thank Ngoc Chau and Ainslie Whiting, who were always willing to offer a helping hand whenever I needed it.

To my office mates, Debra, Yaser, Duong, Hanadi and Hengky, thank you for all the good times we have shared over the past few years.

To Michele, my one-time lab partner, long time best friend. Thanks for all the good memories of our time in the lab, and for all of the support you have provided me with during my PhD.

To my family, thank you for all of your love, understanding and support over the course of my educational journey. At last, but by no means least, to Kurt – thank you for believing in me, and for encouraging me to continue on the many occasions when I wanted to give up. I could not have completed this without you.
CONTENTS

ABSTRACT .. v

ABBREVIATIONS ... vii

1. INTRODUCTION ... 1

1.1. INTRODUCTION .. 1
1.2. CLATHRIN-MEDIATED ENDOCYTOSIS ... 2
1.3. CHEMICAL INHIBITION OF CLATHRIN-MEDIATED ENDOCYTOSIS .. 6
1.4. CLATHRIN ... 8
1.5. DYNAMIN .. 12
1.6. CURRENT INHIBITORS OF DYNAMIN AND CLATHRIN ... 17
1.7. CHAPTER SUMMARY .. 23
1.8. PROJECT AIMS ... 24

2. PROJECT BACKGROUND AND LEAD SELECTION ... 25

2.1. INTRODUCTION .. 25
2.2. PROJECT BACKGROUND ... 25
2.3. SELECTION OF COMPOUNDS FOR FURTHER DEVELOPMENT ... 31
2.4. CHAPTER SUMMARY .. 32

3. DEVELOPMENT OF 2,5-SUBSTITUTED-1,4-BENZOQUINONES AS NOVEL INHIBITORS OF DYNAMIN GTPASE ... 33

3.1. INTRODUCTION .. 33
3.2. EVALUATION OF THE PARENT COMPOUND .. 33
3.3. LIBRARY 3A – AROMATIC SUBSTITUTION ... 39
3.4. LIBRARY 3B – ALKYLATED ANALOGUES ... 45
3.5. LIBRARY 3C – BENZYLAMINE ANALOGUES ... 52
3.6. LIBRARY 3D – NAPHTHOQUINONES ... 56
3.7. CHAPTER SUMMARY .. 62
3.8. EXPERIMENTAL ... 63

4. DEVELOPMENT OF N-SUBSTITUTED-1,8-NAPHTHALIMIDES AS NOVEL INHIBITORS OF DYNAMIN GTPASE ... 65

4.1. INTRODUCTION .. 65
4.2. INVESTIGATION OF THE LEAD COMPOUND .. 65
4.3. LIBRARY 4A – ANHYDRIDE VARIATION I .. 72
4.4. LIBRARY 4B – ANHYDRIDE VARIATION II .. 84
4.5. LIBRARY 4C - IMIDE SUBSTITUENT MODIFICATION I ... 90
4.6. LIBRARY 4D – IMIDE SUBSTITUENT MODIFICATION II ... 95
4.7. LIBRARY 4E – IMIDE SUBSTITUENT MODIFICATION III ... 99
5. DISCOVERY AND DEVELOPMENT OF 1,8-NAPHTHALIMIDES AS NOVEL INHIBITORS OF THE CLATHRIN TERMINAL DOMAIN .. 109
 5.1. INTRODUCTION .. 109
 5.2. HIGH-THROUGHPUT SCREENING AND HIT IDENTIFICATION 109
 5.3. HIGH-THROUGHPUT SCREENING OF SYNTHESISED NAPHTHALIMIDES 111
 5.4. LEAD COMPOUND VALIDATION AND INVESTIGATION .. 114
 5.5. LIBRARY 5A – ANHYDRIDE MODIFICATION .. 121
 5.6. LIBRARY 5B – IMIDE SUBSTITUENT MODIFICATION ... 127
 5.7. CHAPTER SUMMARY ... 137
 5.8. EXPERIMENTAL ... 138

6. CELLULAR EFFECTS OF DYNAMIN AND CLATHRIN INHIBITION 141
 6.1. INTRODUCTION .. 141
 6.2. EFFECTS OF DYNAMIN AND CLATHRIN INHIBITION ON CLATHRIN-MEDIATED ENDOCYTOSIS .. 141
 6.3. “MOONLIGHTING” ROLES FOR DYNAMIN AND CLATHRIN IN MITOSIS 158
 6.4. FURTHER CYTOTOXICITY EVALUATION OF COMPOUND 133 167
 6.5. CHAPTER SUMMARY ... 168
 6.6. EXPERIMENTAL ... 169

7. CONCLUSIONS AND FUTURE DIRECTIONS .. 173
 7.1. CONCLUSIONS .. 173
 7.2. FUTURE DIRECTIONS ... 176

8. EXPERIMENTAL ... 179
 8.1. GENERAL PROCEDURES ... 179
 8.2. SYNTHESIS OF QUINONE-BASED INHIBITORS OF DYNAMIN I GTPase (CHAPTER 3) .. 180
 8.3. SYNTHESIS OF NAPHTHALIMIDE-BASED INHIBITORS OF DYNAMIN I (CHAPTER 4) ... 212
 8.4. SYNTHESIS OF NAPHTHALIMIDE-BASED INHIBITORS OF CLATHRIN-TD (CHAPTER 5) ... 265

9. REFERENCES .. 287

APPENDIX 1. PUBLICATIONS .. 303

APPENDIX 2. STATEMENT OF COLLABORATION .. 304

APPENDIX 3. PERMISSION TO REPRINT FIGURES ... 305
ABSTRACT

Since the first evidence of clathrin-mediated endocytosis was reported almost 50 years ago, extensive research has been devoted to understanding the mechanisms of this process. Whilst molecular tools have contributed significantly to elucidating the mechanism of CME and the protein interaction network that underlies it, these tools suffer from pitfalls that limit their utility. Chemical inhibitors of endocytosis have been proposed as an attractive alternative to the current methods for disrupting protein function, but despite the extensive structural and biochemical knowledge about CME that is available, the development of chemical tools to interfere with this process is still in its infancy. The development of novel inhibitors to use in conjunction with existing inhibitors will assist in the molecular and functional dissection of the endocytic pathway, resulting in an increased understanding of many physiological phenomena and disease processes that rely on this pathway. Such understanding may also contribute to the rational discovery and development of novel, targeted therapeutic agents.

This thesis focused on the development of novel series of compounds that specifically targeted the endocytic proteins dynamin and clathrin. Parent compounds for further development were sourced from both virtual screening and high-throughput screening strategies. Using an approach combining focused library development and molecular modelling-guided drug design, preliminary structure-activity profiles were generated, and a number of noteworthy analogues were identified. The cellular effects of selected dynamin and clathrin inhibitors were also investigated, specifically their effects on clathrin-mediated endocytosis and cell proliferation.

The 1,4-benzoquinone derivative 2,5-bis(2-carboxyanilino)-1,4-benzoquinone (31-1) was selected as a parent compound for the development of novel dynamin inhibitors based on the benzoquinone scaffold. Compound 31-1 was found to possess a good level of dynamin inhibitory activity (IC$_{50}$: 22 ± 5 μM), and was predicted to bind to the GTP-binding site of dynamin, and possess a GTP-competitive mechanism of action. Examination of the binding conformation of 31-1 revealed that the inhibitory activity of this compound is due to a favourable hydrogen bonding, electrostatic and hydrophobic interactions with the binding site. The synthesis of four discrete analogue libraries revealed a number of structure-activity relationships, including a preference for polar substituents that are capable of increased electrostatic and hydrogen bonding interactions with the binding site. The most potent and noteworthy analogue in this series was 31-7, which exhibited a dynamin I inhibitory activity 4-
fold greater than that of the parent compound. Further biological evaluation of 31-7 revealed that this compound could inhibit RME in cells, presumably via inhibition of dynamin.

Through the synthesis of discrete analogue libraries based on 4-amino-3-sulfo-N-(2-hydroxyethyl)-1,8-naphthalimide (D1), a family of naphthalimides with dynamin inhibitory activity were developed. Biological evaluation of these analogue libraries allowed for the development of a preliminary structure-activity relationship profile for dynamin inhibitors based on the naphthalimide scaffold. Of the 61 analogues synthesised and subjected to biological evaluation, 21 were found to exhibit dynamin inhibitory activities comparable to, or better than, the parent compound. The most potent analogue, L1, exhibited a dynamin inhibitory activity 15-fold greater than the parent compound. The effects of selected inhibitors on transferrin uptake were evaluated, revealing that dynamin inhibitors based on the naphthalimide scaffold can inhibit endocytosis, provided the inhibitor is sufficiently lipophilic to enter the cell.

Following a HTS and scaffold simplification approach, C12 was identified as an inhibitor of the interaction between clathrin-TD and amphipysin B/C (IC50: 18 μM). Co-crystallisation of C12 in complex with the clathrin-TD revealed that the binding site of C12 largely overlaps that used by clathrin-box-motif-containing accessory proteins. Synthesis of two discrete analogue libraries based on C12 revealed that the presence of a 3-sulfonate moiety is pivotal to activity, whilst hydrophobic substituents on the benzyl imide moiety improved activity due to increased hydrophobic interactions with the binding site. Examination of the cellular effects of selected inhibitors revealed an inability to inhibit RME, and this was attributed to poor membrane permeability. However, intracellular application of C12 by microinjection resulted in an inhibition of SVE, indicating that inhibition of clathrin-TD can result in inhibition of clathrin-mediated endocytosis.
ABBREVIATIONS

Ala Alanine
AP180 Assembly Protein 180
AP2 Adaptor Protein 2
Arg Arginine
Asn Asparagine
Asp Aspartic Acid
BAR Bin-Amphiphysin-Rvs
CBM Clathrin-Box Motif
CCV Clathrin-Coated Vesicle
CHC Clathrin Heavy Chain
CHC-TD Clathrin Heavy Chain – Terminal Domain
CME Clathrin-Mediated Endocytosis
Cys Cysteine
DEPTQ Distortionless Enhancement by Polarisation Transfer Quaternary
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
EM Electron Microscopy
Eps15 Epidermal Growth Factor Receptor Substrate 15
FCHo F-BAR Domain-containing Fer/Cip4 Homology Domain-only Protein
GAP GTPase Activating Protein
GDP Guanosine Diphosphate
GED GTPase Effector Domain
Gln Glutamine
Glu Glutamic Acid
Gly Glycine
GPCR G-Protein Coupled Receptor
GTP Guanosine-5’-triphosphate
GTPase Guanosine Triphosphatase
hDynI Human Dynamin I
His Histidine
HMBC Heteronuclear Multiple Bond Correlation
HSC70 Heat Shock Cognate 70
HSQC Heteronuclear Single Quantum Coherence
HTS High-Throughput Screening
Ile Isoleucine
kDa Kilodalton
LDL Low-Density Lipoprotein
LDLR Low-Density Lipoprotein Receptor
Leu Leucine
Lys Lysine
Met Methionine
NMR Nuclear Magnetic Resonance
NTD N-Terminal Domain
PDB Protein Data Bank
PH Pleckstrin Homology
Phe Phenylalanine
Pi Inorganic Phosphate
PIP2 Phosphatidinyl-4,5-bisphosphate
PPI Protein-Protein Interaction
PRD Proline-Rich Domain
Pro Proline
RME Receptor-Mediated Endocytosis
RTIL Room-Temperature Ionic Liquid
SAR Structure-Activity Relationships
Ser Serine
SH3 Src Homology 3
SV Synaptic Vesicle
SV2A Synaptic Vesicle Glycoprotein 2A
SVE Synaptic Vesicle Endocytosis
Tf Transferrin
Tf-A594 Alexa Fluor-594 Conjugated Transferrin
TfR Transferrin Receptor
Thr Threonine
Trp Tryptophan
Tyr Tyrosine
Val Valine
VLS Virtual Library Screening