Non-response bias in a web-based health behaviour survey of New Zealand tertiary students

Kypros Kypri PhD*1, 2
Ari Samaranayaka PhD2
Jennie Connor PhD2
John D. Langley PhD2
Brett Maclennan PhD2

*Corresponding author:
1Centre for Clinical Epidemiology & Biostatistics,
School of Medicine and Public Health
University of Newcastle
Callghan NSW 2308 Australia
kypros.kypri@newcastle.edu.au +61 2 4913 8231 (Fax +61 2 4913 8148)

2Injury Prevention Research Unit, Department of Preventive & Social Medicine,
University of Otago, Dunedin, New Zealand

Sources of support: Health Research Council of New Zealand, Alcohol Advisory Council of New Zealand
Abstract

Objective: There has been little investigation of non-response bias in web-based health surveys. We hypothesised that non-respondents have a higher prevalence of risk behaviours than respondents.

Method: In 2005, random samples of students aged 17-25 years from 12 New Zealand tertiary institutions (n=7130) were invited to complete a web-based health behaviour survey, with three e-mail reminders. Early respondents (before 2nd reminder) were compared with late respondents (after 2nd reminder). Late respondents served as a proxy for non-respondents.

Results: 2607 students (37%) responded early, 676 (9%) responded late, and 3847 (54%) did not respond. There were differences between early and late respondents in highschool binge drinking (38% vs 47%, p=0.002) and non-compliance with physical activity guidelines (12% vs 18%, p=0.004). Differences in overweight/obesity (26% vs 31%, p=0.058), smoking (18% vs 22%, p=0.091) and non-compliance with dietary guidelines (76% vs 77%, p=0.651) were non-significant but point estimates were in the expected direction. Estimated bias in prevalence of risk behaviours was an absolute difference of 1-4% and a relative difference of 0-21%.

Conclusion: Respondents whose participation was hardest to elicit reported more risk behaviour. Assuming non-respondents’ behaviour is similar or more extreme than that of late respondents, prevalence will have been substantially underestimated.

Key words: Internet, web, survey, health, risk behaviour, non-response, bias
Introduction

Falling survey response rates present a significant challenge for health research, primarily because of the increasing effects of selective non-response on estimates of the prevalence of health problems and risk behaviour. A typical approach to studying non-response bias is to undertake intensive follow-up of non-respondents and to compare estimates with those obtained using standard survey procedures (Wild et al., 2001).

An alternative is to compare respondents and non-respondents in surveys imbedded within larger studies (Van Loon et al., 2003). In one such study, involving a postal survey of cancer risk factors of individuals participating in a larger study of behavioural risk factors for chronic disease, smoking, physical inactivity, obesity, and poorer self-rated health were found to be more prevalent among non-respondents (Van Loon et al., 2003).

In a third paradigm, utilising archival records, mortality subsequent to postal and telephone health surveys has been found to be higher among non-respondents (Barchielli and Balzi, 2002; Cohen and Duffy, 2002), as have sickness absence rates (Martikainen et al., 2007) and hospital utilisation (Gundgaard et al., 2008; Kjoller and Thoning, 2005). These findings suggest that people with poorer health tend to avoid participating in health surveys.

There are, however, contrary findings which suggest context specific effects. For example, studies of respiratory health find that respondents have worse respiratory health than non-respondents (Hardie et al., 2003; Kotaniemi et al., 2001; Verlato et al., 2010). Perhaps in some contexts, less healthy people perceive a greater benefit in responding than healthier people. Differences between respondents and non-respondents have been observed across postal, telephone, and face-to-face surveys. There has been a rapid increase in use of web-based surveys but little is known about non-response bias in this modality.

A theoretical framework for studying respondent behaviour is the continuum of resistance model, which posits that willingness of individuals to participate can be inferred from
the effort required to elicit participation (Lin and Schaeffer, 1995). Two methods are used to test
the model. In the more commonly used approach, the sampling frame is used to compare the
demographic characteristics of those who respond versus those who do not respond. The method
is useful to the extent that the usually minimal information in the sampling frame (often only
demographic data) is correlated with the attributes of interest.

In the second approach, persons who respond only after considerable effort from
the survey administrators—late respondents—are compared with early respondents. Differences
in prevalence between early and late respondents serve as the basis for inferences about non-
respondents, on the assumption that non-respondents lie beyond the late respondents on the
continuum of resistance. The method requires accurate documentation of efforts to elicit, and the
timing of, the survey response.

In one such study, a web-based survey of alcohol use at a New Zealand university,
with 82% response (Kypri et al., 2004a), utilising several evidence-based methods (Edwards et
al., 2002), late respondents drank more, had a higher prevalence of heavy drinking, and more
alcohol-related problems than early respondents (Kypri et al., 2004b). On the basis of these
studies, we hypothesised that people who do not comply with health guidelines on drinking,
smoking, diet and physical activity, and have greater body mass, would be less inclined to
participate in a health behaviour survey.

Methods

Sample

New Zealand has eight universities and 19 polytechnic colleges which provide vocational
training and some degree courses. All eight universities were invited to participate in a web-
based study, and five accepted, representing six campuses (one of them providing data from two
campuses in different cities). Ten of the polytechnic colleges were invited to participate in order
to maximise geographic coverage of the country for a study aimed at examining environmental determinants of various health behaviours (i.e., polytechnics in the same cities as universities were not invited). Six of the invited polytechnics accepted, bringing the total number of tertiary education institutions involved in the study to 12.

Māori (the indigenous people of New Zealand) comprise 15% of the New Zealand population, 10% of university students and 18% of polytechnic students (Ministry of Education, 2011). We sought to invite random samples of 430 Māori and 430 non-Māori students aged 17-25 years from each campus in order to maximize the explanatory power of the study for Māori, who have traditionally been poorly served by population surveys despite bearing a considerably greater disease burden (Wellington School of Medicine and Health Sciences., 2002). There was no stratification of the samples by age and sex. All members of the study population had an institution assigned e-mail address which we used to issue the invitation to participate. The questionnaire was offered in Māori and English and users could switch between languages at any stage by clicking a button.

Procedure

Students were invited by personalized letter to complete a web survey of their alcohol use, using a procedure described in detail elsewhere (Kypri et al., 2004a; Kypri et al., 2009). Sample weighting was used to account for the proportions of Māori and non-Māori at each campus.

Alcohol use. Respondents indicated how often they engaged in binge drinking (women: >4 drinks, men: >6 drinks) during their last year of high school. Standard drink definitions (10 g ethanol) were provided with pictures (e.g., a glass of beer) and the number of drinks in typical containers.
Smoking. Respondents selected a descriptor for their cigarettes use: “Never smoked or never smoked regularly”, “Do not smoke now but used to smoke”, “Occasionally smoke (on average, <1/day)”, “Currently smoke cigarettes regularly (≥1/day)”.

Fruit and vegetable intake. Respondents indicated how many servings of fruit (fresh, frozen, canned or stewed) and how many servings of vegetables (fresh frozen, canned) they ate per day. Examples were given to illustrate serving sizes.

Physical activity. Respondents indicated separately for weekdays and weekends how much time they were physically active, including walking to campus or shops, housework, shopping, sport, and exercise.

Body mass index. Respondents indicated their height in metres or feet and inches and their weight in kilograms or pounds.

There were a total of 78 questions in the questionnaire though it should be noted that with branching and skip patterns most participants (e.g., non-drinkers) will not have been presented with all of the questions.

Results

Of 7130 students invited, 3283 (46%) participated. University response rates ranged from 53%-72% (63% overall) while polytechnic response rates ranged from 15%-36% (24% overall). Response did not vary by age and gender, but Māori were less likely to participate (42%) than non-Māori (48%; p<0.001).

Table 1 summarises risk behaviour and overweight/obesity prevalence, by gender, as a function of latency to response. Late respondents were significantly more likely to be binge drinkers in high school and to be physical inactive. The differences for being overweight/obese, smoking, and diet were in the expected direction but non-significant. We conducted the analyses
separately for the polytechnic colleges versus universities finding results that were consistent for all five parameters so we have reported only the combined results.

Table 2 shows prevalence estimates adjusted under the assumption that non-respondents have the same prevalence of these behaviours as late respondents, and the extent of non-response bias in absolute and relative terms.

Discussion

Late respondents had a higher prevalence of binge drinking and non-compliance with physical activity guidelines. Differences in the prevalence of non-compliance with dietary guidelines, smoking and overweight/obesity were non-significant but in the expected direction. The apparent non-response bias for binge drinking was mainly driven by differences among men. For physical activity, the effects were mainly driven by differences among women. Notably, smokers were significantly over-represented among female late respondents even though the overall result was non-significant. Assuming that non-respondents have similar behavioural characteristics and body mass to late respondents, the true prevalence of these characteristics will have been underestimated. The estimated bias in terms of absolute difference in prevalence was 1-4% and 0-21% in relative terms.

Limitations include the self-report of behaviour and height/weight. It is possible that misreporting is correlated with latency to respond. For such a pattern to bias the findings toward the study hypothesis, late respondents would have to have been less likely than early respondents to understate their drinking and compliance with physical activity guidelines, which seems unlikely. It is also possible that the findings from this young population group do not generalise to the wider population.

The response rates were markedly lower for the polytechnic colleges than the universities. While all students ostensibly had access to e-mail and the Internet, it is possible that
in 2005 students at polytechnic colleges, which offer vocational training (e.g., forest
management) as well as degree courses (e.g., nursing), used their e-mail and the Internet less
than university students and were therefore less used to interacting via this medium.

The results are consistent with previous research using the web-based method at a
single university examining alcohol use alone (Kypri et al., 2004b), and with the findings of a
pen-and-paper survey of a national household sample of alcohol use and intimate partner
violence (Meiklejohn, 2010). In both of those studies, late respondents drank more than early
respondents. In the latter study, the prevalence of binge drinkers in the New Zealand population
was underestimated by 4.0 percentage points (17.6 vs. 21.6%) or 19% in relative terms. Also
consistent with other studies are findings showing that late respondents tend to have a higher
prevalence of smoking (Korkeila et al., 2001; Tolonen et al., 2005; Van Loon et al., 2003;
Verlato et al., 2010) overweight/obesity (Tolonen et al., 2005; Van Loon et al., 2003) and
physical inactivity (Van Loon et al., 2003).

The findings suggest that non-response bias seen in telephone, postal, and face-to-
face surveys is also present in the web-based modality. Estimates of health compromising
behaviours from surveys should be generally considered under-estimates and the degree of
under-estimation probably worsens with lower response rates. Variability in the degree of bias
according to health behaviour, and by gender, seen in this study suggests that simple adjustment
of estimates to correct for non-response error e.g., post-weighting to the population, is likely to
introduce error, by magnifying existing non-response biases in the data. Urgent work is needed
to increase response rates in population health behaviour surveys.
Author contributions

KK designed and oversaw the implementation of the study. KK and JL obtained funding. AS conducted the analysis. All authors contributed to interpretation of the results. KK led the writing of the paper and all authors contributed to and approved the final version of the paper.

Conflict of Interest Statement: The authors declare they have no conflict of interest.
References

Table 1. Respondent risk behaviour and status by response latency, New Zealand tertiary education institutions, 2005

<table>
<thead>
<tr>
<th></th>
<th>All respondents</th>
<th>Early respondents+</th>
<th>Late respondents++</th>
<th>95% CI for difference (Early-Late) %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binge drinker* in high school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>39.3% (n=1993)</td>
<td>38.2% (n=1602)</td>
<td>44.5% (n=391)</td>
<td>(-13.6, 1.2)</td>
<td>0.100</td>
</tr>
<tr>
<td>Men</td>
<td>40.9% (n=1281)</td>
<td>38.7% (n=999)</td>
<td>51.0% (n=282)</td>
<td>(-21.2, -3.4)</td>
<td>0.007</td>
</tr>
<tr>
<td>All</td>
<td>39.9% (n=3276)</td>
<td>38.3% (n=2602)</td>
<td>47.1% (n=674)</td>
<td>(-14.3, -3.1)</td>
<td>0.002</td>
</tr>
<tr>
<td>Current smoker**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>19.1% (n=1952)</td>
<td>17.5% (n=1581)</td>
<td>26.7% (n=371)</td>
<td>(-15.6, -2.7)</td>
<td>0.005</td>
</tr>
<tr>
<td>Men</td>
<td>17.9% (n=1225)</td>
<td>18.7% (n=969)</td>
<td>14.2% (n=256)</td>
<td>(-1.4, 10.4)</td>
<td>0.133</td>
</tr>
<tr>
<td>All</td>
<td>18.6% (n=3179)</td>
<td>17.9% (n=2552)</td>
<td>21.9% (n=627)</td>
<td>(-8.5, 0.6)</td>
<td>0.091</td>
</tr>
<tr>
<td>Not following fruit & vegetable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>consumption guidelines*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>71.5% (n=1982)</td>
<td>71.1% (n=1597)</td>
<td>73.6% (n=385)</td>
<td>(-9.3, 4.4)</td>
<td>0.482</td>
</tr>
<tr>
<td>Men</td>
<td>83.6% (n=1268)</td>
<td>83.8% (n=990)</td>
<td>82.5% (n=278)</td>
<td>(-5.7, 8.3)</td>
<td>0.710</td>
</tr>
<tr>
<td>All</td>
<td>76.3% (n=3252)</td>
<td>76.0% (n=2588)</td>
<td>77.2% (n=664)</td>
<td>(-6.1, 3.8)</td>
<td>0.651</td>
</tr>
<tr>
<td>Not following physical activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guidelines##</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>12.9% (n=1937)</td>
<td>11.7% (n=1571)</td>
<td>18.7% (n=366)</td>
<td>(-12.2, -1.8)</td>
<td>0.009</td>
</tr>
<tr>
<td>Men</td>
<td>13.7% (n=1220)</td>
<td>13.0% (n=962)</td>
<td>17.2% (n=258)</td>
<td>(-10.8, -2.4)</td>
<td>0.211</td>
</tr>
<tr>
<td>All</td>
<td>13.2% (n=3159)</td>
<td>12.2% (n=2535)</td>
<td>18.1% (n=624)</td>
<td>(-9.9, -1.9)</td>
<td>0.004</td>
</tr>
<tr>
<td>Overweight or obese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Body Mass Index of 25 or more)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>23.7% (n=1862)</td>
<td>23.1% (n=1519)</td>
<td>27.1% (n=343)</td>
<td>(-10.9, 2.8)</td>
<td>0.248</td>
</tr>
<tr>
<td>Men</td>
<td>31.1% (n=1191)</td>
<td>29.9% (n=946)</td>
<td>36.6% (n=245)</td>
<td>(-15.3, 2.0)</td>
<td>0.134</td>
</tr>
<tr>
<td>All</td>
<td>26.6% (n=3055)</td>
<td>25.8% (n=2467)</td>
<td>30.9% (n=588)</td>
<td>(-10.4, 1.8)</td>
<td>0.058</td>
</tr>
</tbody>
</table>

* Men who drank more than 6 standard drinks (60g ethanol) / women who drank more than 4 standard drinks (40g ethanol) on a single occasion at least fortnightly in their last year of high school. ** Smokes occasionally or daily. Completed or partially completed the survey before the date of the second reminder email. ++ Completed or partially completed the survey on or after the date of second reminder email. # At least two servings of fruit and three servings of vegetables per day (Ministry of Health, 1998). ## At least 30 minutes per day (Ministry of Health 1998).
Table 2. Prevalence rates adjusted for estimated non-response bias, New Zealand tertiary education institutions, 2005

<table>
<thead>
<tr>
<th></th>
<th>Prevalence estimate assuming non-respondents report the same prevalence as late respondents</th>
<th>Absolute difference in prevalence*</th>
<th>Relative difference in prevalence**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binge drinker in high school</td>
<td>44.3% (n=7123)</td>
<td>4.4%</td>
<td>11%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>21.8% (n=7026)</td>
<td>3.2%</td>
<td>17%</td>
</tr>
<tr>
<td>Not following fruit & vegetable consumption guidelines</td>
<td>77.2% (n=7099)</td>
<td>0.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Not following physical activity guidelines</td>
<td>16.0% (n=7006)</td>
<td>2.8%</td>
<td>21%</td>
</tr>
<tr>
<td>Overweight or obese (Body Mass Index of 25 or more)</td>
<td>31.0% (n=6902)</td>
<td>4.4%</td>
<td>17%</td>
</tr>
</tbody>
</table>

* Formula: Absolute difference = adjusted prevalence estimate - raw prevalence estimate
** Formula: Relative difference = (adjusted prevalence estimate / raw prevalence estimate) - 1