Modulation of responses in allergic airways disease by

Haemophilus influenzae infection

Ama-Tawiah Essilfie

B. Biomedical Science (Hons)

Discipline of Immunology and Microbiology

School of Biomedical Science and Pharmacy

Faculty of Health

The University of Newcastle

Newcastle, NSW, Australia

Submitted in the fulfilment of the requirements for the award of a PhD degree
This dissertation contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my dissertation, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Ama-Tawiah Essilfie

February 2012
Acknowledgements

Firstly I would like to thank my primary supervisor, Prof. Philip Hansbro, whose encouragement, support and supervision made this work possible. Thank you also to my co-supervisors; Dr Jodie Simpson, A/Prof Margaret Dunkley, and Prof. Paul Foster. Your expertise, knowledge and advice has proven invaluable during my studies. Special thanks to The Rebecca Cooper Medical Research Foundation who provided a scholarship that supported a substantial part of my project.

Thank you also to all the staff and students in the Microbiology, Asthma and Airways Research Group who have provided their assistance and friendship throughout the last few years. Special thanks go to Dr Jay Horvat, Richard Kim, Malcolm Starkey, Caedyn Stinson, and Emma Beckett.

I would very much like to thank my family. My parents, especially my mum Violet, PapaEwusie, AbaNyanba, and NanaBaffo, who inspired, encouraged, and supported me throughout my study. Also my dearest and closest friends; Boitumelo and Kebitsaone Kelaeng, Moetapele ‘Coach’ Gasemotse and Kabo Matlho, you guys have been the best friends anyone could ever hope or pray for, thank you. Thank you also to Brian C. Kamota, uri moyo wangu.

And last, and most importantly, I want to give all praise, all glory and all honour to my Heavenly Father, without Whom none of this would have been possible.
Table of Contents

Synopsis
10

List of Figures
12

Abbreviations
14

Chapter 1: Introduction

1.1 **Asthma**
1.1.1 Asthma pathophysiology
17

1.2 **The inflammatory response in asthma**
1.2.1 Immunity
21

1.2.2 T helper cell response
1.2.2.1 Th1 cells
24

1.2.2.2 Th2 cells
24

1.2.2.3 Th17 cells
26

1.2.2.4 T regulatory cells
27

1.2.3 Antigen presenting cells in asthma
1.2.3.1 Dendritic cells
28

1.2.3.2 Macrophages
29

1.2.4 Eosinophils
30

1.2.5 Neutrophils
31

1.3 **Asthma Phenotypes**
1.3.1 Non-eosinophilic asthma
34

1.3.2 Neutrophilic asthma
34

1.3.2.1 Bacterial colonisation
35

1.3.2.2 Innate immunity
35

1.3.2.3 Proteolytic enzymes
36

1.4 **Asthma treatment**
1.4.1 Corticosteroids
37

1.4.2 Macrolides
39

1.5 **Haemophilus influenzae infection**
40
1.5.1 Pathology of non-typeable *Haemophilus influenzae* infection 41
1.5.2 NTHi immune responses 42
1.5.3 NTHi and chronic airway diseases 44
1.6 Study rationale 45

Chapter 2: *Haemophilus influenzae* infection drives IL-17-mediated neutrophilic allergic airways disease

2.1 Abstract 47
2.2 Introduction 48
2.3 Methods 49
 2.3.1 Ethics statement 49
 2.3.2 AAD 49
 2.3.3 NTHi infection 50
 2.3.4 Cellular inflammation 50
 2.3.5 Bacterial recovery 51
 2.3.6 Lung function 51
 2.3.7 T-cell cytokines 51
 2.3.8 Cytokine expression in lungs 51
 2.3.9 Flow cytometry 52
 2.3.10 Depletion of IL-17 during infection-induced neutrophilic AAD 53
 2.3.11 Statistics 53
2.4 Results 53
 2.4.1 Non-typeable *Haemophilus influenzae* infection 53
 2.4.2 NTHi infection suppresses key features of Th2-mediated eosinophilic AAD 56
 2.4.3 NTHi infection suppresses systemic responses in AAD 58
 2.4.4 NTHi infection does not alter T regulatory cells 59
 2.4.5 Infection reduces markers of antigen presentation and co-stimulation in the suppression of AAD 61
 2.4.6 Infection enhances neutrophilic inflammation in AAD 61
 2.4.7 Infection-induced neutrophilic inflammation is associated with
increases in IL-17 responses 63
2.4.8 Infection-induced early influx of neutrophils is associated with early increases in neutrophil chemokine responses 66
2.4.9 Infection induces Th17 cell differentiation and IL-17 production from Th17 cells, macrophages and neutrophils 68
2.4.10 NTHi-induced neutrophilic AAD is dependent on IL-17 70

2.5 Discussion 72

Chapter 3: Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma

3.1 Abstract 78
3.2 Introduction 79
3.3 Methods 80
 3.3.1 Ethics statement 80
 3.3.2 Experimental protocols 80
 3.3.3 Bacterial recovery 81
 3.3.4 Cellular inflammation 81
 3.3.5 T-cell cytokines 81
 3.3.6 Lung function 82
 3.3.7 Th17 cells 82
 3.3.8 Dexamethasone treatment 82
 3.3.9 Mucus secreting cells 82
 3.3.10 Ciliary beat frequency 83
 3.3.11 Phenotyping of immune cells 83
 3.3.12 Phagocytosis 84
 3.3.13 Oxidative burst 84
 3.3.14 Statistical analyses 84
3.4 Results 85
 3.4.1 AAD during infection leads to chronic infection 85
 3.4.2 Chronic H. influenzae in AAD suppresses eosinophilic
Chronic *H. influenzae* infection in AAD induces neutrophilic inflammation and Th17 cell and IL-17 responses

Chronic *H. influenzae* infection in AAD induces steroid resistance

Chronic *H. influenzae* infection in AAD does not affect mucus secreting cell numbers or ciliary beat frequency

Chronic *H. influenzae* infection in AAD inhibits innate immune cell activation and function

Chapter 4: Combination macrolide and steroid treatment: a potential therapy for neutrophilic asthma

4.1 Abstract

4.2 Introduction

4.3 Methods

4.3.1 Ethics statement

4.3.2 Experimental protocols

4.3.3 Cellular inflammation

4.3.4 T-cell cytokines

4.3.5 Lung function

4.3.6 Macrolide and dexamethasone administration

4.3.7 Bacterial recovery

4.3.8 Statistical analysis

4.4 Results

4.4.1 NTHi infection in established AAD suppresses Th2 mediated eosinophilic responses

4.4.2 NTHi infection in established AAD increases neutrophilic inflammation and IL-17 responses

4.4.3 Macrolide treatment of NTHi infection in established AAD reduces neutrophilic inflammation but restores Th2-mediated eosinophilic responses
4.4.4 Macrolide treatment of NTHi infection in established AAD does not affect lung function

4.4.5 Combined macrolide and steroid treatment of chronic infection and neutrophilic AAD suppresses inflammation and cytokine responses

4.4.6 Combined macrolide and steroid treatment of chronic infection and neutrophilic AAD suppresses AHR

4.5 Discussion

Chapter 5: Discussion and conclusions

5.1 Significance of Research

5.2 NTHi infection induces features of neutrophilic asthma

5.2.1 NTHi alters DC phenotype

5.2.2 NTHi infection induces IL-17 responses

5.2.2.1 Neutrophilic inflammation is mediated by IL-17

5.3 Induction of AAD during infection inhibits host responses

5.3.1 Induction of AAD during infection promotes chronic bacterial clearance

5.3.2 Induction of AAD during infection induces steroid resistance

5.3.3 Induction of AAD during infection inhibits innate immune cell activation and function

5.4 Potential of macrolide antibiotics as a treatment strategy in asthma

5.4.1 Clarithromycin suppresses neutrophilic but not eosinophilic inflammation in infection-induced neutrophilic AAD

5.4.2 Combined clarithromycin and dexamethasone treatment suppresses all features of neutrophilic and eosinophilic AAD

5.5 Future directions

5.5.1 Further investigation into infection-induced IL-17 responses

5.5.2 Further investigation into innate immune function in infection-induced neutrophilic AAD

5.5.3 Further investigation into the mechanisms of action of macrolides
5.5.4 NTHi vaccination as a treatment strategy

Publications
Synopsis

Asthma is a common chronic inflammatory disease of the airways that affects over 2.2 million people in Australia. Asthma is a heterogeneous inflammatory disease typically characterised by T helper lymphocyte type 2 (Th2)-mediated eosinophilic inflammation, exaggerated responses to innocuous stimuli, mucus hypersecretion leading to airways obstruction and airway remodelling. These physiological changes result in wheezing, chest tightness, and breathing difficulties. However, it has been established that eosinophilic inflammation is only present in 50% of asthmatic patients. Around 30% of non-eosinophilic asthmatics have neutrophilic rather than eosinophilic inflammation, which is a key feature of neutrophilic asthma.

Non-typeable *Haemophilus influenzae* (NTHi) is a Gram-negative bacterium that is commonly found in the upper respiratory tract of about 75% of healthy individuals. It is normally asymptptomatically carried in people, however it may cause otitis media and is a common cause of community-acquired pneumonia. NTHi has also been linked to a number of chronic airway diseases. It has been detected in patients with bronchiectasis, chronic bronchitis and is commonly associated with chronic obstructive pulmonary disease (COPD) exacerbations. It has also recently been associated with neutrophilic asthma, however, the role of NTHi in neutrophilic asthma has not been investigated.

Using murine models of NTHi infection and allergic airways disease (AAD), we investigated the relationship between infection and AAD. We showed that NTHi infection induced features of neutrophilic asthma; reduced Th2-mediated eosinophilic inflammation, reduced airways hyper-responsiveness (AHR) compared to eosinophilic AAD, and importantly, significantly increased Th17 responses and neutrophilic inflammation. In the first study it was demonstrated that the combination of infection and AAD reduced the
expression of MHC II and CD86 on dendritic cells (DCs), suggesting that infection induced changes in presentation of antigen to naïve T-cells and subsequent adaptive responses. Infection also induced Interleukin (IL)-17 production from innate cells and Th17 cells. Critically, we show that inhibiting IL-17 significantly reduced neutrophilic inflammation in the airways. This highlights the crucial role of IL-17 in infection-induced neutrophilic AAD.

The second study showed that the induction of AAD during infection delayed bacterial clearance from the lungs compared to infection alone controls. In contrast to Th2-mediated eosinophilic inflammation, this model of infection-induced neutrophilic AAD was resistant to dexamethasone treatment. All features of infection-induced neutrophilic AAD, including eosinophil and neutrophil influx, antigen-specific IL-5, IL-13 and Interferon (IFN)-γ, NTHi-specific IL-17, and AHR were unchanged with steroid treatment. This study also demonstrated that neutrophil and macrophage activation and function was inhibited in neutrophilic AAD. This lack of innate immune response may enable chronic bacterial infection.

The final study investigated clarithromycin, a macrolide, and combination therapy with dexamethasone, as possible treatment strategies for neutrophilic asthmatics. This study demonstrated that clarithromycin alone significantly reduced neutrophil influx and IL-17 responses, but increased Th2-mediated eosinophilic inflammation. However, the combination of clarithromycin and dexamethasone suppressed all key features of AAD, including eosinophilic and neutrophilic inflammation, ovalbumin (OVA)-specific IL-5, IL-13, and IFN-γ, NTHi-induced IL-17, and AHR.

These novel findings further the understanding of the potential role of NTHi in the development of neutrophilic asthma. We have identified some mechanisms of how infection
may lead to features observed in neutrophilic asthma, and importantly, possible treatment strategies for neutrophilic asthmatics, and perhaps, other neutrophilic airway diseases with evidence of infection.
List of Figures

Figure 1.1: Schematic of the inflammatory response in asthma……………… 20
Figure 1.2: T-cell differentiation... 23
Figure 1.3: Sputum samples of asthma phenotypes................................. 33
Figure 2.1: Characterisation of NTHi infection.. 55
Figure 2.2: NTHi infection suppressed key features of Th2-mediation eosinophilic AAD... 57
Figure 2.3: NTHi infection suppressed systemic IL-13 and IFN-γ responses in AAD... 58
Figure 2.4: NTHi infection does not affect T regulatory cells but reduces markers of antigen presentation and activation in the suppression of AAD….. 60
Figure 2.5: NTHi infection induces neutrophilic inflammation in AAD…….. 62
Figure 2.6: NTHi infection induces increased IL-17 responses that correlate with neutrophil influx in neutrophilic AAD................................. 65
Figure 2.7: Early neutrophil influx is associated with enhanced neutrophil chemokine expression... 67
Figure 2.8: NTHi infection induces Th17 cell differentiation and IL-17 production from Th17 cells, macrophages and neutrophils in neutrophilic AAD... 69
Figure 2.9: NTHi infection-induced IL-17 is required for the induction of neutrophilic AAD and is partially responsible for the effects of infection on T-cell responses... 71
Figure 3.1: AAD during *H. influenzae* infection promotes chronicity of infection... 86
Figure 3.2: Chronic infection suppresses hallmark features of eosinophilic AAD... 88
Figure 3.3: Chronic infection during AAD induces neutrophilic inflammation and Th17 responses... 90
Figure 3.4: Chronic infection during AAD induces steroid resistance......... 92
Figure 3.5: Chronic *H. influenzae* infection in AAD does not affect mucus secreting cell numbers or ciliary beat frequency................................. 94
Figure 3.6: Chronic *H. influenzae* infection in AAD inhibits innate immune cell activation and function

Figure 4.1: NTHi infection in established AAD decreases Th2-mediated eosinophilic responses

Figure 4.2: NTHi infection in established AAD increases neutrophilic inflammation and IL-17 response

Figure 4.3: Macrolide treatment of NTHi infection in established AAD restores Th2 mediated eosinophilic responses, but reduces neutrophilic inflammation

Figure 4.4: Macrolide treatment of NTHi infection in established AAD does not affect AHR

Figure 4.5: Combination macrolide and steroid treatment of chronic infection and neutrophilic AAD suppresses eosinophilic and neutrophilic AAD

Figure 4.6: Combination macrolide and steroid treatment of chronic infection and neutrophilic AAD suppresses AHR
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>Allergic airways disease</td>
</tr>
<tr>
<td>AHR</td>
<td>Airways hyper-responsiveness</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cell</td>
</tr>
<tr>
<td>BALF</td>
<td>Bronchoalveolar lavage fluid</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>ECP</td>
<td>Eosinophil cationic protein</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced expiratory volume</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte Macrophage Colony Stimulating Factor</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks buffered salt solution</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IN</td>
<td>Intranasal</td>
</tr>
<tr>
<td>IP</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>KC</td>
<td>Keratinocyte chemokine</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>mDC</td>
<td>Myeloid dendritic cell</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility</td>
</tr>
<tr>
<td>MLN</td>
<td>Mediastinal lymph node</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Matrix metalloproteinase-9</td>
</tr>
<tr>
<td>MSC</td>
<td>Mucus secreting cell</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid Differentiation factor</td>
</tr>
<tr>
<td>NE</td>
<td>Neutrophil elastase</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear Factor κB</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer</td>
</tr>
<tr>
<td>NTHi</td>
<td>Non-typeable Haemophilus influenzae</td>
</tr>
<tr>
<td>OVA</td>
<td>Ovalbumin</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>pDC</td>
<td>Plasmacytoid dendritic cell</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphonuclear cell</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>TCR</td>
<td>T-cell receptor</td>
</tr>
</tbody>
</table>
TGF Transforming growth factor
Th T helper lymphocyte
Th1 Type 1 helper T lymphocyte
Th2 Type 2 helper T lymphocyte
Th17 Type 17 helper T lymphocyte
TLR Toll-like receptor
TNF Tumour necrosis factor
Treg T regulatory cell