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Abstract 

Aggregation and separation processes of ultrafine magnetic minerals in a microchannel 

in the presence of fluid flow and external magnetic field gradient (MFG) were studied in 

this PhD thesis. A computer code based on the Discrete Element Method (DEM) was 

developed to this aim. The model included the interaction between magnetic dipoles, 

cohesion as simulated by van der Waals force equation, electric double layer and 

Brownian forces. The Hertz’s non-linear contact model was used to obtain realistic 

particle deformations. The behaviour of the system was analysed for particle sizes ranged 

between 0.5 µm and 1.5 µm, in the presence of a magnetic field gradient in the range 0.3-

2.0 T/m. The study was carried out in four steps, which are given in the following 

paragraphs.  

In the first step, the aggregation process of different densities and sizes of magnetic 

particles were analysed in the presence of an external magnetic field induction, in the 

absence of a magnetic field gradient. Three different types of particles (iron, magnetite 

and magnetite-polystyrene) and four different particle size distributions (a monomodal, 

two Gaussians and a trimodal) were considered. It was observed that the total net 

interparticle force changed from attractive to repulsive when the particle size decreased. 

Furthermore, the analysis of bulk particle suspension showed that there is a critical value 

of surface potential above which the particles aggregated in their secondary minimum for 

all particle size distributions. In addition, the coordination number of the assemblies 

decreased by following the order monomodal>narrow Gaussian>broader 

Gaussian>trimodal. This sequence depended on the number of fine particles in the 

system. More importantly, particle density did not influence the aggregation behaviour, 

however, the lighter particles developed higher velocities than the heavier particles. 

In the second step, the size segregation of fine magnetite particles in the presence of an 

external magnetic field gradient was investigated. Two opposite phenomena, mutual 

magnetisation and hydrodynamic resistance due to the presence of an intervening liquid, 

were incorporated into the computer model. The behaviour of single particles, single 

chains made of monosized particles and bulk particle suspensions were analysed. For the 

bulk particle suspensions, two size distributions of particle were considered: a trimodal 
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and a Gaussian.  

For the case of single particles, a threshold value of MFG was observed below which the 

particles did not move along the direction of MFG. This threshold value of MFG was 

higher for the smaller (0.5 µm) than for the larger (1.5 µm) particle. The analysis of the 

motion of single chains made of monosized particles showed that chain velocity increased 

with increasing number of particles in the chain, due to the effects of mutual 

magnetisation. For bulk particle suspensions, the value of coordination number and 

number of particles per cluster decreased and the number of singlets increased with 

magnetic field gradient for both particle size distributions. This indicated that the level of 

aggregation decreased significantly with increasing magnetic field gradient. This effect 

was probably due to the magnetic field gradient force, which is proportional to particle 

size and make particles of different sizes to move along the direction of magnetic field 

gradient at different velocities. Therefore, size segregation occurred and less particles 

aggregated as compared to the case in the absence of MFG. This aggregation was 

corroborated by the visualisation of the simulations, which demonstrated that small 

particles did not move in response to the magnetic field gradient while the larger particles 

aggregated and responded to the external magnetic field gradient.  

In the third step, the aggregation and motion of magnetic particles in the presence of fluid 

flow and a magnetic field gradient were studied. The study was carried out for single 

particle chains and bulk particle suspensions for two different configurations of magnetic 

field gradient: co-current and counter-current. The behaviour of the system was analysed 

for plug and parabolic fluid flows. For the co-current case, it was clear that the velocity 

of the chains was the result of the addition of the fluid and MFG contributions. However, 

for a counter-current configuration of MFG, a threshold fluid velocity was observed 

below which the particles were able to move along the direction of MFG due to the 

opposite effect of fluid flow and MFG. For the case of parabolic flow, a higher number 

of particles in the chain was required to move along the direction of MFG in a counter-

current configuration of MFG than for the plug flow. In addition, the particle chains were 

observed to break at the centre of the chain for the case of parabolic flow due to shear 

effects. For the case of bulk particle suspensions, some of the particles aggregated, while 

others remained in the form of singlets or doublets. A threshold fluid velocity was 

observed below which the aggregated particles moved along the direction of MFG while 
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the singlets and doublets moved along the direction of fluid flows in a counter-current 

configuration. This observation was consistent with the single particle chain study. 

The fourth step was the analysis of the aggregation and segregation of magnetic and non-

magnetic particles. The aggregation behaviour was analysed by plotting the number of 

contacts and singlets of these particles. For the case of magnetic particles, the number of 

contacts per particle increased with particle size due to the dependency of the magnetic 

force on the particle diameter. However, a few non-magnetic particles aggregated with 

the magnetic particles. This level of aggregation was probably due to the net force (van 

der Waals and EDL) between silica and magnetite, which was attractive even at distances 

of 4 nm. The aggregated magnetic particles separated from the non-magnetic particles for 

a fluid velocity less than -10 µm/s with a magnetic field gradient of 2.0 T/m. This value 

of MFG (2.0 T/m) was not sufficient to overcome the fluid drag force when the fluid 

velocity was higher than -10 µm/s and therefore, all the particles moved in the direction 

of the fluid flow. 

Overall, this thesis has demonstrated that fine magnetic particles can be separated from 

non-magnetic materials in a microchannel by using a counter-current magnetic field 

gradient. In addition, the aggregation process was hindered due to the presence of MFG. 

Nevertheless, an experimental investigation is required, which could aid the simulation 

results for future applications. 

 


