Aggregation and separation of ultrafine magnetic minerals in microchannels in the presence of a high gradient magnetic field

A thesis

Submitted for the degree of

Doctor of Philosophy in Chemical Engineering

By

Ariful Islam B.Sc. (Hons.) in Mathematics M.Sc. in Applied Mathematics

Discipline of Chemical Engineering School of Engineering Faculty of Engineering and Built Environment The University of Newcastle Australia

July 2020

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision.

The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Ariful Islam

Dedicated to my parents, wife and children

Acknowledgements

It has always been a great pleasure for me to learn and be involved in new things. This PhD study introduced me to a new area of learning about the well-known discrete element method (DEM). Honestly, I had no idea about this interesting and renowned computer simulation technique before beginning this PhD study.

I am very much grateful to my supervisor Dr. Roberto Moreno-Atanasio, who introduced me to this world of discrete element method simulation. Basically, I would not have been able to know research related to real world systems without his direct supervision. I can still remember that day when I first sent him an email and expressed my interest to carry out my higher study under his supervision at the University of Newcastle. He suggested me to begin with my CV.

My thanks and special gratitude goes out to my co-supervisor Dr. Frances Neville for helping to get proficient on Discrete Element Method. Her endless support helped me to organise the texts, write down the thesis and do the literature review properly.

I am thankful to all my friends, colleagues and all people in NIER building, block-A for being kind and cooperative at all time.

I wish to extend my thanks to the Khulna University for giving me study leave to peruse my higher study at the University of Newcastle, Australia.

I am giving my special thanks to the University of Newcastle for the UNIPRS and UNRSC 50:50 scholarships. This study could not have been possible without this financial assistance.

I greatly acknowledge Aaron Scott for helping me to run my simulations in the University Grid System.

I would also like to express my gratitude to my wife, Sajia for her patience and giving me support in every single moments during the last four years of study, as well as my little smart boy, Tunan. Special thanks to my new born son Syan, for his innocent cute smiling attitude. More importantly, I am grateful to my parents for their constant support, encourage and love.

Table of Contents

EDGEMENTS	III
CONTENTS	IV
S	VII
BLES	IX
GURES	X
	XVI
1: INTRODUCTION	1
ntroduction	1
Dbjective of the thesis	4
Thesis organisation	5
2: LITERATURE REVIEW	7
ntroduction	7
Magnetism Background	7
Magnetic materials	7
Magnetic moment, permeability and susceptibility	10
Colloidal suspensions	14
Magnetic colloids	14
Magnetic chains	15
Study of magnetic systems in terms of van der Waals and electroforces	ric double 17
Breakage of magnetic particle chains	19
Magnetism Applications	20
Magnetic flocculation	20
Magnetic separation	22
Simulation of Magnetic Systems	
Chain aggregation	
Magnetorheological fluids	29
Biomedical science	
Other simulated systems	31
Discrete Element Methods	31
Applications of DEM	32
Colloidal suspensions	
Contacts and interactions of particles	
Agglomeration	
	EDGEMENTS

2.6.4	Magnetic systems
2.7	Conclusions
2.8	Knowledge Gap37
CHAPTER MAGNETI	3: EFFECT OF PARTICLE SIZE ON CHAIN AGGREGATION OF COLLOIDAL C PARTICLES IN A WEAK MAGNETIC FIELD
3.1	Introduction
3.2	Discrete element method simulations41
3.2.1	Fundamental equations41
3.2.2	Simulation conditions46
3.3	Results and discussion50
3.3.1	Particle behaviour in the absence of the electric double layer force50
3.3.2	Particle behaviour in the presence of electric double layer forces
3.4	Conclusion75
CHAPTER GRADIENT	4: SIZE SEGREGATION OF FINE MAGNETIC PARTICLES IN A HIGH MAGNETIC SEPARATION SYSTEM
4.1	Introduction
4.2	Discrete Element Method Simulations79
4.2.1	Fundamental equations
4.2.2 gradi	Geometry of the external magnetic field induction and magnetic field ent
4.2.3	Simulation conditions
4.3	Results and discussion86
4.3.1	Single particle chain study
4.3.2	Particle bulk behaviour94
4.4	Conclusion110
CHAPTER FLUID FLO	5: BEHAVIOUR OF FINE MAGNETIC PARTICLES IN THE PRESENCE OF OW AND A HIGH-GRADIENT MAGNETIC FIELD
5.1	Introduction113
5.2	Discrete Element Method Simulations114
5.2.1	Fundamental equations114
5.2.2	Plug and parabolic flows115
5.2.3	Configurations for the plug and parabolic flows115
5.2.4	Simulation conditions116
5.3	Results and discussion118
5.3.1	Single particle chain study
5.3.2	Particle bulk behaviour

5.4	1	Conclusion1	146
CHAI MICR	PTER ROCH	R 6: SEGREGATION OF MAGNETIC AND NON-MAGNETIC MATERIALS IN IANNEL WITH A COUNTER-CURRENT MAGNETIC FIELD GRADIENT	n a 149
6.1	l	Introduction 1	149
6.2	2	Simulation conditions1	150
	6.2.1	I Simulation parameters 1	150
	6.2.2	2 Simulated systems1	150
6.3	3	Results and discussion1	152
	6.3.1 and s	Analysis of aggregation of magnetic and non-magnetic particles: contacts singlets histograms	s 152
	6.3.2 parti	2 Influence of fluid velocity on the separation of magnetic and non-magnet cles1	tic 154
	6.3.3 parti	3 Influence of particle size on the velocity of magnetic and non-magnetic cles	159
	6.3.4	Segregation of magnetic and non-magnetic particles 1	161
6.4	1	Conclusion1	64
Сна	PTER	R 7: CONCLUSIONS AND FUTURE WORKS 1	167
7.1	l	Conclusions 1	67
7.2	2	Future work 1	170
Refe	EREN	ICES1	173
APPE	ENDL	X A 1	186
APPE	ENDE	x B1	193
APPE	ENDL	X C 2	208

Notations

Latin Characters

A	Hamaker constant	J
B	Magnetic field induction	Т
D	Particle diameter	m
m	Magnetic dipole moment	A.m ²
m _i	Magnetic moment of <i>i</i> -th particle	A.m ²
m _j	Magnetic moment of <i>j</i> -th particle	A.m ²
r	Centre-to-centre distance between particles	m
d_0	Cut-off distance	m
Μ	Magnetization	A/m
Н	Magnetic intensity	A/m
\mathbf{J}_M	Magnetization Current Density	
M_{s}	Saturation Magnetization	A/m
Hs	Saturation Magnetic Field	A/m
Hc	Coercivity	A/m
H _{ci}	Intrinsic Coercivity	A/m
Br	Remnant Induction	Т
Mr	Remnant Magnetization	A/m
n	Unit normal vector acting along the centres of two particles	
R	Particle radius	m
R_1	Radius of particle one	m
R_2	Radius of particle two	m
<i>R</i> *	Reduced particle radius	m
Ŕ	Unit vector along relative positions of two particles	-
E_1	Elastic modulus of particle one	N.m ⁻²
<i>E</i> ₂	Elastic modulus of particle two	N.m ⁻²
<i>E</i> *	Reduced elastic modulus	N.m ⁻²
V	Particle volume	m ³

\vec{V}	Relative velocity vector between two particles	m/s
$\overrightarrow{V_1}$	Velocity vector of particle one	m/s
$\overrightarrow{V_2}$	Velocity vector of particle two	m/s
$\overrightarrow{V_n}$	Velocity of particles along normal direction	m/s
m_1	Mass of particle one	kg
m_2	Mass of particle two	kg
<i>m</i> *	Reduced particle mass	kg
<i>k</i> _B	Boltzmann constant	J/K
Um	Magnetophoretic mobility	m/s
Т	Temperature	K
t	Time	S
Greek	Characters	
δ	Surface-to-surface distance between particles	m
ν_1	Poisson's ratio of particle one	-
ν_1	Poisson's ratio of particle two	-
β	Damping ratio	-
Δt	Time step	S
Е	dielectric constant	-
\mathcal{E}_0	permittivity of free space	F/m
К	Debye constant	m ⁻¹
$\psi_{ m s}$	Electric potential at the surface	mV
ζ	drag coefficient	N.s.m ⁻¹
μ	coefficient of the fluid viscosity	N.s.m ⁻²
χ_m	Magnetic Susceptibility	m ³ /kg
μ_m	Permeability of material	N.A ⁻²
μ_0	Permeability of the free space	N.A ⁻²
α	Magnetic field gradient	T/m

List of tables

Cable 1.1 Magnetic particle sizes considered in different case studies for magnetic systems
Cable 2.1 Magnetic susceptibility for different magnetism categories of materials8
Table 2.2 CGS to SI units for different magnetic quantities 11
Cable 2.3 Magnetic susceptibility of materials (adapted from Svoboda, 2004)12
Cable 2.4 Properties of ferromagnetic materials at room temperature. The symbols, <i>Ms</i> , <i>Hs</i> , <i>Hc</i> and <i>Br</i> used in the table are the saturation magnetization, magnetic intensity required for saturation, coercivity and remanence, respectively (adapted from Reitz et al., 2008).
Sable 3.1 Case studies 40
able 3.2 Properties of the simulated system
able 3.3 Particle size distributions and colour coding system
Sable 4.1 Properties of the simulated system 83
able 4.2 Particle size distributions with colour coding
Table 5.1 Particles size distribution with colour coding
able 6.1 Structure of Chapter 6 150
Table 6.2 Properties of the simulated system
Cable 6.3 Particle size distribution and colour coding was used in visualisations of the simulations 151
Cable 6.4 Strengths of the van der Waals, electric double layer and total forces betweendifferent types of 1.0-μm particles. The total force is the sum of both components,as the van der Waals and electrical double layer forces depend linearly on particleradius.152

List of figures

Figure 2.1 Schematic of the alignment of magnetic dipole moments in materials that are a) paramagnetic, b) ferromagnetic, c) antiferromagnetic and d) ferrimagnetic (adapted from Svoboda, 2004)
Figure 3.1 Visualisations of the initial state of particles with different size distributions. Monomodal size distribution of: (a) 100 and (b) 500 particles. (c) Trimodal size distribution of 500 particles and (d) Gaussian size distribution of 500 particles. The particles in (a) and (b) are both 1.0 μm in diameter. In addition, the side lengths of each cubic space are (a) 24.0 μm and (b)-(d) 44.0 μm
Figure 3.2 Competing forces as a function of surface-to-surface distance at different values of magnetic field induction (B) and Hamaker constant (H)
Figure 3.3 Evolution of coordination number as a function of time with Brownian forces and without van der Waals forces at different magnetic field induction values .52
Figure 3.4 Evolution of coordination number with time in the presence of van der Waals forces but without Brownian forces at different magnetic field induction values. The Hamaker constant was 2.20×10^{-20} J
Figure 3.5 Evolution of coordination number as a function of time in the presence of the Brownian (no van der Waals) forces, van der Waals (no Brownian) forces, and both forces. The magnetic field induction and Hamaker constant were 0.0228 T and 2.20×10^{-20} J, respectively
Figure 3.6 Evolution of coordination number as a function of magnetic induction in the presence of Brownian or van der Waals forces or both. Hamaker constant = 2.20×10^{-20} J with a packing fraction of 0.0038 at 298 K
Figure 3.7 Visualisations of simulation data for chain formation process of magnetic particles in the presence of Brownian in the absence of van der Waals force at time (a) t=0.04s (b) t=0.4s (c) t=4.0s and in the presence of van der Waals in the absence of Brownian force at time (d) t=0.04s (e) t=0.4s and (f) t=4.0s. The value of magnetic field induction and Hamaker constant was equal to 0.0228 T and 2.20×10^{-20} J, respectively
Figure 3.8 Evolution in coordination number as a function of time at different Hamaker constants. The magnetic field induction was 0.0228 T
Figure 3.9 Evolutions in coordination number and (b) maximum velocity with time for different particle densities. Magnetic field induction and Hamaker constant = 0.0228 T and $2.20 \times 10^{-20} \text{ J}$, respectively, packing fraction = 0.0038, temperature = 298 K
Figure 3.10 Evolution in coordination number as a function of time at different solid volume fractions (ϕ). Magnetic field induction and Hamaker constant = 0.0228 T and 2.20 × 10 ⁻²⁰ J, respectively

- **Figure 3.11** Visualisations of simulations of the chain formation process of magnetic particles at solid volume fractions (ϕ) of (a) 0.05 and (b) 0.1. Magnetic field induction and Hamaker constant = 0.0228 T and 2.20 × 10⁻²⁰ J, respectively....60

- **Figure 3.19** (a) Coordination number and (b) number of particles per cluster as a function of magnetic field induction for different particle size distributions. Surface potential and Hamaker constant = -35.0 mV and 5.20×10^{-20} J, respectively. ..73
- Figure 3.20 Visualisations of the simulations for the (a) narrow Gaussian (b) broad Gaussian and (c) Trimodal size distributions. Magnetic induction, surface potential and Hamaker constant = 0.1 T, -35.0 mV and $5.20 \times 10^{-20} \text{ J}$, respectively.
- Figure 4.1 Diagrams of (a) magnetisation of spherical particles in an attractive/repulsive zone according to an external magnetic field. (b) Development of a magnetic field

- **Figure 4.7** Effect of number of particles in the chain. Visualisations of simulations of single chains of (a) 10, (b) 15, (c) 20 and (d) 30 1.5-µm particles. Magnetic field induction and gradient = 0.0228 T and 0.7 T/m, respectively.......92
- Figure 4.9 Coordination number as a function of time for the trimodal and Gaussian size distribution with the values of magnetic field gradient (a) 0.3 T/m (b) 0.7 T/m. The values of magnetic field induction were equal to 0.0228 T and 0.1 T......95
- **Figure 4.11** Average particle velocity as a function of time for the Gaussian (GSD) and trimodal (TSD) size distributions under magnetic field inductions of (a) 0.0228 T and (b) 0.1 T. Magnetic field gradient = 0.7 T/m......100
- Figure 4.13 Visualisations of simulation data at 1.07 s at a magnetic field induction and gradient of 0.0228 T and 0.3 T/m, respectively, with (a) segregated and non-aggregated particles (GSD), (b) separated and aggregated particles (GSD), (c)

- Figure 5.2 Average chain velocity according to chain particle number under (a) plug and (b) parabolic flows in co-current (+) and counter-current (-) MFG configurations. Magnetic field induction and gradient = 0.0228 T and 0.7 T/m, respectively. 120

- **Figure 5.6** Visualisations of simulation data for a 25-particle chain with W/L ratios of of (a) 1.17 and (b) 4.53 in a parabolic flow with a fluid velocity of -100μ m/s. Magnetic field induction and gradient = 0.0228 T and 0.7 T/m, respectively. 126

- **Figure 6.3** Visualisations of the simulations (a) in the absence of fluid flow, (b) at plug flow of velocity = $-10.0 \ \mu m/s$ and (c) for a parabolic flow of velocity = $-10.0 \ \mu m/s$. Magnetic field induction and gradient = $0.0228 \ T$ and $2.0 \ T/m$, respectively.

- Figure 6.6 Normalised numbers of particles as a function of particle size at fluid velocities of (a) 0.0 μ m/s, b) -10 μ m/s and (c) -50.0 μ m/s. Magnetic field induction and gradient = 0.0228 T and 2.0 T/m, respectively......162

Abstract

Aggregation and separation processes of ultrafine magnetic minerals in a microchannel in the presence of fluid flow and external magnetic field gradient (MFG) were studied in this PhD thesis. A computer code based on the Discrete Element Method (DEM) was developed to this aim. The model included the interaction between magnetic dipoles, cohesion as simulated by van der Waals force equation, electric double layer and Brownian forces. The Hertz's non-linear contact model was used to obtain realistic particle deformations. The behaviour of the system was analysed for particle sizes ranged between 0.5 μ m and 1.5 μ m, in the presence of a magnetic field gradient in the range 0.3-2.0 T/m. The study was carried out in four steps, which are given in the following paragraphs.

In the first step, the aggregation process of different densities and sizes of magnetic particles were analysed in the presence of an external magnetic field induction, in the absence of a magnetic field gradient. Three different types of particles (iron, magnetite and magnetite-polystyrene) and four different particle size distributions (a monomodal, two Gaussians and a trimodal) were considered. It was observed that the total net interparticle force changed from attractive to repulsive when the particle size decreased. Furthermore, the analysis of bulk particle suspension showed that there is a critical value of surface potential above which the particles aggregated in their secondary minimum for all particle size distributions. In addition, the coordination number of the assemblies monomodal>narrow Gaussian>broader decreased by following the order Gaussian>trimodal. This sequence depended on the number of fine particles in the system. More importantly, particle density did not influence the aggregation behaviour, however, the lighter particles developed higher velocities than the heavier particles.

In the second step, the size segregation of fine magnetite particles in the presence of an external magnetic field gradient was investigated. Two opposite phenomena, mutual magnetisation and hydrodynamic resistance due to the presence of an intervening liquid, were incorporated into the computer model. The behaviour of single particles, single chains made of monosized particles and bulk particle suspensions were analysed. For the bulk particle suspensions, two size distributions of particle were considered: a trimodal

and a Gaussian.

For the case of single particles, a threshold value of MFG was observed below which the particles did not move along the direction of MFG. This threshold value of MFG was higher for the smaller (0.5 μ m) than for the larger (1.5 μ m) particle. The analysis of the motion of single chains made of monosized particles showed that chain velocity increased with increasing number of particles in the chain, due to the effects of mutual magnetisation. For bulk particle suspensions, the value of coordination number and number of particles per cluster decreased and the number of singlets increased with magnetic field gradient for both particle size distributions. This indicated that the level of aggregation decreased significantly with increasing magnetic field gradient. This effect was probably due to the magnetic field gradient force, which is proportional to particle size and make particles of different sizes to move along the direction of magnetic field gradient at different velocities. Therefore, size segregation occurred and less particles aggregated as compared to the case in the absence of MFG. This aggregation was corroborated by the visualisation of the simulations, which demonstrated that small particles did not move in response to the magnetic field gradient while the larger particles aggregated and responded to the external magnetic field gradient.

In the third step, the aggregation and motion of magnetic particles in the presence of fluid flow and a magnetic field gradient were studied. The study was carried out for single particle chains and bulk particle suspensions for two different configurations of magnetic field gradient: co-current and counter-current. The behaviour of the system was analysed for plug and parabolic fluid flows. For the co-current case, it was clear that the velocity of the chains was the result of the addition of the fluid and MFG contributions. However, for a counter-current configuration of MFG, a threshold fluid velocity was observed below which the particles were able to move along the direction of MFG due to the opposite effect of fluid flow and MFG. For the case of parabolic flow, a higher number of particles in the chain was required to move along the direction of MFG in a countercurrent configuration of MFG than for the plug flow. In addition, the particle chains were observed to break at the centre of the chain for the case of parabolic flow due to shear effects. For the case of bulk particle suspensions, some of the particles aggregated, while others remained in the form of singlets or doublets. A threshold fluid velocity was observed below which the aggregated particles moved along the direction of MFG while the singlets and doublets moved along the direction of fluid flows in a counter-current configuration. This observation was consistent with the single particle chain study.

The fourth step was the analysis of the aggregation and segregation of magnetic and nonmagnetic particles. The aggregation behaviour was analysed by plotting the number of contacts and singlets of these particles. For the case of magnetic particles, the number of contacts per particle increased with particle size due to the dependency of the magnetic force on the particle diameter. However, a few non-magnetic particles aggregated with the magnetic particles. This level of aggregation was probably due to the net force (van der Waals and EDL) between silica and magnetite, which was attractive even at distances of 4 nm. The aggregated magnetic particles separated from the non-magnetic particles for a fluid velocity less than -10 μ m/s with a magnetic field gradient of 2.0 T/m. This value of MFG (2.0 T/m) was not sufficient to overcome the fluid drag force when the fluid velocity was higher than -10 μ m/s and therefore, all the particles moved in the direction of the fluid flow.

Overall, this thesis has demonstrated that fine magnetic particles can be separated from non-magnetic materials in a microchannel by using a counter-current magnetic field gradient. In addition, the aggregation process was hindered due to the presence of MFG. Nevertheless, an experimental investigation is required, which could aid the simulation results for future applications.