Design and Evaluation of a Technological-enhanced Lab Environment for a Systems and Network Administration Course

Tareq M. Alkhaldi

BCompEd, MIT

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Information Technology

School of Electrical Engineering and Computing
The University of Newcastle
Australia

January 2019
Statement of Originality

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Tareq Alkhaldi
Statement of Authorship

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

Tareq M. Alkhaldi

By signing below, I confirm that Tareq Alkhaldi contributed to the following publications:

Supervisor: Dr Rukshan I. Athauda
Acknowledgments

I would like to thank the people who contributed to the completion of this thesis.
Firstly, I would like to thank Dammam University in Saudi Arabia for offering the scholarship and sponsoring me financially throughout my studies. I also would like to thank my supervisors Dr Rukshan Athauda and Dr Ilung Pranata for their continuous support of my PhD study and related research. Their guidance and knowledge helped me throughout the research process and the writing of this thesis.

I would like to express my sincere thanks to my family.

I also would like to extend my thanks to the research participants who made a major contribution toward achieving the goal of this study. Finally, I would like to thank every person who offered help and support at every stage of my study.
Table of Contents

Chapter	Page
Acknowledgments | iv
Table of Contents | v
List of Tables | viii
List of Figures | xi
List of Acronyms | xiii
Abstract | xiv
List of Publications | xv
Chapter I | 16
1. Introduction | 16
1.1 Background | 16
1.2 Motivations, Significance and Benefits | 18
1.3 Research Approach | 18
1.4 Thesis Structure | 20
1.5 Summary | 21
Chapter II | 22
2. Literature Review | 22
2.1 Virtual and Remote Lab Implementations in Different Disciplines | 22
2.1.1 Virtual and Remote Laboratories for Programming Robots | 23
2.1.2 Remote Lab in Biology | 24
2.1.3 The Virtual Chemistry Lab (ChemLab) | 25
2.1.4 Virtual Laboratory for Physics | 26
2.1.5 VISIR Remote Labs in Engineering | 27
2.1.6 Virtual Laboratory Project in Science and Engineering | 28
2.1.7 Online Labs for STEM Education | 29
2.1.8 VPLab: Virtual Programming Laboratory | 29
2.1.9 Virtual Computing Lab | 30
2.1.10 NVBLab: The Virtual Collaborative Networking Lab | 31
2.1.11 Virtual Networking Lab | 32
2.2 Observations and Findings | 32
2.2.1 Advantages of Technology-enhanced Labs | 35
2.2.2 Revisiting the Research Question | 37
2.3 Technology-enhanced Labs in System Level Courses in Computing | 40
2.3.1 Virtualization Technologies and Virtual Computing Labs | 40
2.3.2 Virtual Labs for System Level Courses in Computing | 43
2.4 Summary | 56
Chapter III | 58
3. Proposed Framework | 58
3.1 TPACK Framework | 58
3.2 Pedagogy and Learning Theories/Principles (PLTs) | 60
3.2.1 Constructive Alignment | 60
3.2.2 Kolb’s Experiential Learning Cycle | 61
3.2.3 Bloom and SOLO Taxonomies | 62
Chapter VIII

8.3. Future Work .. 190

References .. 193
Appendix A: Survey – 2016

Page: 205

Appendix B: Survey – 2017

Page: 207

Appendix C: Focus Group Discussion

Page: 213

Appendix D: Screenshots from the Feedback tool and Dashboard

Page: 214

Appendix E: The Redesigned Labs for INFT2031

Page: 215

Appendix F: Reliability Statistics

Page: 225

Appendix G: Descriptive Analysis of Quantitative Data

Page: 240
List of Tables

Table 2.1: Virtual and Remote Lab Implementations in Different Disciplines34
Table 2.2: Virtual Labs (based on virtualization technologies) for System Level Courses in Computing..44
Table 2.3: Classification of Related Work..55

Table 3.1: Revised Bloom’s Taxonomy Levels (Anderson & Krathwohl, 2001)62
Table 3.2: Cognitive Processes in SOLO levels (Biggs & Collis, 1982; Biggs, 2003, p. 34-53)...63
Table 3.3: Alignment of Learning Outcomes, Teaching and Learning Activities and Assessment Tasks..66
Table 3.4: Teaching and Learning Plan for Systems and Network Administration Course ...67

Table 4.1: Factor Loading of CFA to verify the construct validity of items in the instrument ..88
Table 4.2: Model Fit Summary for the TAM model (n= 147)..88
Table 4.3: Cronbach alpha Reliability Coefficient (Reliability Analysis)..................89
Table 4.4: Scale for Mean..89
Table 4.5: Results of Confirmatory Factor Analysis (CFA)......................................91
Table 4.6: Summary of Confirmatory Factor Analysis (CFA) in Iteration 292

Table 5.1: Course Plan for INFT2031 ..95
Table 5.2: Types of Virtual Labs and Feedback Tool used in INFT 2031 for the Experiment..99
Table 5.3: Quasi-experimental Design to Answer RQ3 ...101
Table 5.4: Descriptive Statistics of Student Responses about the Decentralised Virtual Lab Environment ..102
Table 5.5: Descriptive Analysis for Decentralised Labs (n=83)...............................103
Table 5.6: Descriptive Statistics of Student Responses to the Centralised Virtual Lab Environment ..104
Table 5.7: Descriptive Analysis on Centralised Lab Environment Responses (N=69).105
Table 5.8: The Relationships between the Factors that Affect Student Satisfaction106
Table 5.9: Paired t-test for the Two Virtual Labs in INFT2031107
Table 5.10: Qualitative Analysis of Q1 in the Survey...109
Table 5.11: Thematic Analysis for Q12 – Preference for Centralised Lab110
Table 5.12: Thematic Analysis for Q12 – Preference for Decentralised Lab..........112
Table 5.13: Thematic Analysis for Q13 – Disadvantages for Azure Cloud and External Drive ..114
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 The Overall Structure of the Thesis</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.1 (a) Type 1 hypervisor (b) Type 2 hypervisor</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.1 TPACK Framework (Mishra & Koehler, 2006)</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.2 Biggs’s Theory of Constructive Alignment (Biggs, 2003)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.3 Kolb’s Experiential Learning Cycle (Kolb, 1984)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.4 Revised Bloom’s Taxonomy (Anderson & Krathwohl, 2001)</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.5 Lab 1 Activities Design based on Kolb’s ELC and Bloom’s Levels (1-6)</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.6 Architectural Design of the TePF</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.7 Architecture of the Virtual Lab</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.8 Student Interface to the Virtual Lab</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.9 Architecture of the Feedback Tool</td>
<td>76</td>
</tr>
<tr>
<td>Figure 3.10 A Sample Report from the Feedback Tool</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.1 DBR – Iterations of Systematic Design Cycles (Plomp, 2013, p. 17)</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.2 DBR Approach (adapted from Reeves, 2006, p. 59)</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.3 Application of the DBR Methodology in the Research Project</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.4 Mixed Methods Triangulation Design</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.1 Screenshot of Feedback Scripts Providing Automatic Feedback for a Lab Tutorial</td>
<td>98</td>
</tr>
<tr>
<td>Figure 5.2 Students’ Responses about using the Decentralised Virtual Lab Environment</td>
<td>102</td>
</tr>
<tr>
<td>Figure 5.3 Students’ Responses to the Centralised Virtual Lab Environment</td>
<td>104</td>
</tr>
<tr>
<td>Figure 5.4 Students’ Perception of Centralised and Decentralised Lab Environments</td>
<td>106</td>
</tr>
<tr>
<td>Figure 5.5 Students’ Perception categorised by Virtual Lab Environments</td>
<td>107</td>
</tr>
<tr>
<td>Figure 5.6 Feedback Tool Mean Survey Question Results (based 10-point scale)</td>
<td>121</td>
</tr>
<tr>
<td>Figure 5.7 Overall Rating of Feedback Tool</td>
<td>121</td>
</tr>
<tr>
<td>Figure 5.8 Results of Independent t-test for Practical Test 1 Marks between Control and Experimental Groups</td>
<td>125</td>
</tr>
<tr>
<td>Figure 5.9 Results of Independent t-test for Practical Test 2 Marks between Control and Experimental Groups</td>
<td>126</td>
</tr>
<tr>
<td>Figure 6.1 Results of Independent t-test for Practical Test 1 Marks between Control and Experimental Groups</td>
<td>133</td>
</tr>
<tr>
<td>Figure 6.2 Results of Independent t-test for Practical Test 2 Marks between Control and Experimental Groups</td>
<td>134</td>
</tr>
<tr>
<td>Figure 6.3 Mean Practical Test 1 and Practical Test 2 Scores between the 2015 Cohort (Control) and the 2017 Cohort (Experimental)</td>
<td>134</td>
</tr>
</tbody>
</table>
Figure 6.4 Student responses to categories which contributed most to learning136
Figure 6.5 Student Rating for each Category..136
Figure 6.6 Evaluation of Lab Activities..141
Figure 6.7 Rating of the Feedback Tool between Iteration 1 and Iteration 2.................162
Figure 6.8 The Mean for Survey Questions between Iteration 1 and 2 based on 10-point Scale..164
Figure 6.9 The Overall Student Satisfaction with the Feedback Tool..............................165
Figure 6.10. Responses to Satisfaction with the Dashboard View......................................168

Figure 7.1 Components for the design of Technology-enhanced Learning Environments, Interventions and Innovations in Education ...180
Figure 7.2 Design Principle 3 – Process of design and evaluating the TePF182
List of Acronyms

CA Constructive Alignment
DBR Design-Based Research
ELC Experiential Learning Cycle (Kolb, 1984)
ICT Information, Communication and Technology
LMS Learning Management System
PLTs Pedagogy and Learning Theories and Principles
SAT Students Satisfaction
TAM Technology Acceptation Model
TePF Technology-enhanced Pedagogical Framework
VCL Virtual Computer Laboratory
VM Virtual Machine

Further details are presented where appropriate in the relevant chapters.
Abstract

Advances in technology are influencing all fields including education. Recently, we have observed a wide use of emerging technologies to support and facilitate the establishment of virtual laboratories with many benefits that overcome the constraints of traditional physical laboratories. These laboratories provide a number of advantages such as remote 24/7 access, flexibility, freedom to learn at one’s own pace, to reset/retrial experiments without wasting resources in a safe environment and providing new opportunities for learning. Although virtual and remote laboratories provide many new opportunities for learning, they have not necessarily been shown to assist students in achieving higher learning outcomes. How do we design technology-enhanced lab environments for effective learning?

To answer this research question, this thesis conducts a comprehensive literature review on technology-enhanced lab environments. In the literature review, we observe that pedagogical techniques integrated with virtual lab environments provide the best outcomes for student learning. Based on the findings, a hypothesis is proposed that considers a holistic view of designing technology-enhanced lab environments taking into consideration learning context, curriculum, learning activities, assessments, technology artefacts based on pedagogical and learning theories and principles (PLTs).

To validate the hypothesis, a technology-enhanced lab environment is developed and evaluated for a particular learning context: a systems-level course in computing. A literature review on technology-enhanced lab environments in systems level courses in computing reveal that only a few studies consider pedagogy in the design of such lab environments.

In this thesis, we propose, design and evaluate a comprehensive pedagogical framework that incorporates both technological and pedagogical considerations for teaching in a network and system administration course. The framework incorporates learning theories and principles, such as Biggs’s Constructive Alignment, Kolb’s Experiential Learning Cycle (ELC), in its design and innovative technology tools such as virtual labs and feedback tool.

The proposed framework is developed in two iterations and evaluated in real-world classroom environments following a Design-based Research (DBR) methodology. The evaluation consists of student perceptions of the proposed framework using mixed methods and the impact on student learning. In the first iteration, two architectures for virtual labs implementation and a feedback tool are developed and evaluated. A quasi-experiment is conducted to evaluate the impact of the technology intervention. The results provided useful insights that guided the design of the second iteration.

In the second iteration, the proposed framework is implemented and evaluated in its entirety. A quasi-experiment was conducted and students’ assessments scores were compared. The results showed that the students in the experimental group, who were subjected to the proposed framework, scored higher marks which was statistically significant than the students who did not use the proposed framework. Furthermore, the findings indicated that the learning process encouraged a deep approach to learning. These results not only provided evidence of higher learning outcomes by students but also that a deeper learning process was undertaken when using the proposed framework. The lab activities incorporated the PLTs in their design, and the benefit of this approach was validated, supporting the hypothesis. Furthermore, components of the framework were evaluated providing useful insights and suggestions for improvements in future.

Finally, we reflect on the overall process used in the design, implementation, and evaluation of the framework. From this activity, design principles are derived that provide guidelines/principles to designing technology-enhanced lab environments for effective learning in future.
List of Publications

Dissemination: Journal articles:

Conference Paper: