AN ECOHYDROLOGICAL MODELLING STUDY OF AN AUSTRALIAN EUCALYPTUS FOREST

Hanieh Kosari

Associate Professor Patricia Saco
Professor Garry Willgoose
Associate Professor Jose Rodriguez

Submitted in partial fulfilment of the requirements for the degree of Master’s by Research

Faculty of Engineering and built environment
School of Engineering
University of Newcastle
March 2018

This research was supported by an Australian Government Research Training Program (RTP) Scholarship
Statement of Original Authorship

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision.

The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo

Signature: Hanieh Kosari
Date: March 2018
Acknowledgements

I would like to thank all my supervisors for their knowledge and guidance. I would like to thank the University of Newcastle and the Australian Government Research Training Program for giving me the scholarships for completing this study.

I would like to thank all my fellow friends for their kind support during my studies. They always brought fun to my life.

Finally, I would specially thank my parents that their love were always with me. And to my husband for his patience and his support. His love gave meaning to my life.
Table of Contents

Statement of Original Authorship .. i
Acknowledgements .. ii
Table of Contents .. iii
List of Figures .. v
List of Tables .. viii
Abstract ... ix

CHAPTER 1: GENERAL OVERVIEW ... 1
1.1 Background ... 1
1.2 Ecohydrological models .. 4
 1.2.1 Modelling above-ground processes ... 5
 1.2.2 Modelling below-ground processes .. 7
1.3 Previous Studies on Australian eucalyptus forests ... 9
1.4 Motivation for choosing the MLCan model .. 13
1.5 sensitivity analysis and model calibration .. 15
1.6 Model initialisation .. 16
1.7 Objectives of this research .. 18
1.8 Thesis Outline ... 19

CHAPTER 2: RESEARCH METHODOLOGY ... 20
2.1 Multilayer canopy-root-soil model (MLCan) .. 20
2.2 study area .. 24
2.3 Input data ... 26
 2.3.1 Canopy and root structure .. 27
 2.3.2 Climate data ... 28
 2.3.3 Initial conditions ... 29
2.4 Model Parameters .. 30
 2.4.1 Sensitivity analysis of the parameters .. 32
 2.4.2 Selected parameters .. 33
 Stomatal conductance parameters ... 33
 Soil respiration parameters .. 34
 Plant resistance to flow ... 34
 Root water uptake and Root conductivities .. 34
 2.4.3 Parameter range and sampling ... 36
 2.4.4 Model performance indicator ... 37
2.5 Model calibration .. 38
2.6 Model validation .. 38

CHAPTER 3: EFFECTS OF THE MULTILAYER CANOPY AND HYDRAULIC REDISTRIBUTION ON THE MODEL’S RESULTS ... 39
3.1 Effects of different numbers of canopy layers .. 41
3.2 Root conductivity Parameters initial sensitivity analysis .. 47
 3.2.1 Effects of root conductivities on monthly latent heat fluxes ... 48
 3.2.2 Effects of root conductivities on soil moisture and water uptake ... 50
 3.2.3 Effects of the root conductivities and hydraulic redistribution on the latent heat fluxes and soil moisture 51

An ecohydrological modelling study of an Australian eucalyptus forest
List of Figures

Figure 1. Australia's forest extent and forest type distribution in 2013 (from www.agriculture.gov.au/abares/forestsaustralia/publications) ... 3

Figure 2. Components of land surface energy exchanges and the water cycle in ecohydrological models (adapted from Fatichi et al., 2015) ... 4

Figure 3. Latent heat flux estimations with recent version of the CABLE model (red) and latent heat flux observations (black) in Tumbarumba (from Ukkola et al., 2016) 13

Figure 4. Schematic of the MLCan model (from Le et al., 2012) .. 22

Figure 5. Daily total precipitation a), daily average values of shortwave radiation b), and air temperature c) at Tumbarumba for 2005 ... 25

Figure 6. Canopy structure at the Tumbarumba forest a) Seasonal variation of LAI in 2005 adapted from Wang et al. (2011) and b) vertical profile of LAD adapted from Ryder et al. (2016). ... 27

Figure 7. Root fraction profile for eucalyptus in Tumbarumba generated in MLCan based on the model of Schenk and Jackson (2002) ... 28

Figure 8. Monthly average latent heat flux (LE) in Tumbarumba a) Comparison of different processing levels (L3, L4, L6) and two reported published data (Li et al., 2012; Ukkola et al., 2016) b) Percentage of missing data in each month in L3 and L4 data ... 29

Figure 9. Effects of different numbers of canopy layers on the sunlit fraction .. 42

Figure 10. Effects of different numbers of canopy layers on leaf temperature a) sunlit fraction b) shaded fraction c) whole canopy ... 44

Figure 11. Effects of different numbers of canopy layers on stomatal conductance (gs) of a) sunlit fraction, b) shaded fraction, c) whole canopy .. 45

Figure 12. Effects of different numbers of canopy layers on a) total PAR absorbed b) total canopy fluxes of: net canopy photosynthesis (An), Sensible heat flux (H) and Latent heat flux (LE) ... 46

Figure 13. Monthly average latent heat flux estimations for different sets of root conductivities in year 2005 a) Effects of variable radial root conductivities with Scenarios 2, 6, 10, 14 b) Effects of variable axial root conductivities in Scenarios 5, 6, 7, 8 ... 49

Figure 14. Soil moisture profiles and root water uptake profiles for Scenario 16 (low root conductivity) and Scenario 9 (high root conductivity) ... 50

Figure 15. Effects of root conductivity and hydraulic redistribution on a) monthly average and b) diurnal average latent heat fluxes. Note that the two blue lines are on top of each other. .. 52

Figure 16. Soil moisture estimations in Scenario 16, with low root conductivity (top plots), and in Scenario 9, with high root conductivity (bottom plots), at a) 10 cm depth and b) 228 cm depth ... 53

Figure 17. Water uptake for Scenario 9 (high root conductivity) in Table 7 with HR at 10 cm depth (blue line) and 228 cm depth (red line) ... 54

Figure 18. GLUE dotty plots of the behavioural latent heat flux (LE) simulations versus the parameters a) m, b) h, c) Krad, d) kaxs, e) ψf, f) Sc, g) Ro, h) Rp and i) Q10 .. 62

Figure 19. GLUE dotty plots of the behavioural sensible heat flux (H) simulations versus the parameters a) m, b) h, c) Krad, d) kaxs, e) ψf, f) Sc, g) Ro, h) Rp and i) Q10 .. 63

Figure 20. GLUE dotty plots of the behavioural CO2 flux (Fc) simulations versus the parameters a) m, b) h, c) Krad, d) kaxs, e) ψf, f) Sc, g) Ro, h) Rp and i) Q10 ... 64

An ecohydrological modelling study of an Australian eucalyptus forest
Figure 21. GLUE dotty plots of the 15 cm behavioural soil moisture simulations versus the parameters a) m, b) b, c) K_{std}, d) k_{ssr}, e) ψ_f, f) S_f, g) R_s, h) R_p and i) Q_{10} 65

Figure 22. Average daily latent heat flux estimations for the five best LE fits versus the observed data for year 2005 ... 70

Figure 23. Average daily sensible heat flux estimations for the five best H fits versus the observed data for year 2005 ... 71

Figure 24. Average daily CO$_2$ flux estimations for the five best F_c fits versus the observed data for year 2005 ... 70

Figure 25. Average daily soil moisture estimations at the first layer for the five best SWS fits versus the observed data for year 2005 ... 72

Figure 26. Daily soil moisture profile for the best SWS parameter set at year 2005 ... 72

Figure 27. Average daily stomatal conductance estimations for the five best SWS fits for year 2005 ... 74

Figure 28. Average daily latent heat flux estimations for the best SWS fits for year 2005 74

Figure 29. Average daily latent heat flux estimations for the five best NS-all parameter sets versus the observed data for year 2005 ... 78

Figure 30. Average daily sensible heat flux estimations for the five best NS-all parameter sets versus the observed data for year 2005 ... 78

Figure 31. Average daily CO$_2$ flux estimations for the five best NS-all parameter sets versus the observed data for year 2005 ... 79

Figure 32. Average daily soil moisture estimations at first layer for the five best NS-all parameter sets versus the observed data for year 2005 ... 79

Figure 33. Average daily stomatal conductance estimations for the five best NS-all parameter sets ... 80

Figure 34. Monthly precipitation between 2001 and 2008 in Tumbarumba ... 82

Figure 35. Observed-estimated X-Y plots for (a-d) hourly latent heat fluxes (LE) for individual years between 2001 and 2008 and (e) monthly LE during the eight years ... 85

Figure 36. Observed-estimated X-Y plots for (a-d) hourly sensible heat fluxes (H) for individual years between 2001 and 2008 and (e) monthly H during the eight years ... 86

Figure 37. Observed-estimated X-Y plots for (a-d) hourly CO$_2$ fluxes (F_c) for individual years between 2001 and 2008 and (e) monthly CO$_2$ during the eight years ... 87

Figure 38. Observed-estimated X-Y plots for (a-d) hourly soil moisture (SWS) at first layer for individual years between 2001 and 2008 and (e) monthly SWS during the eight years ... 88

Figure 39. Average monthly latent heat flux estimations versus observations for validation years (2001-2008). Dashed line shows January to December 2005 which was the calibration year ... 89

Figure 40. Average monthly sensible heat flux estimations versus observations for validation years (2001-2008). Dashed line shows January to December 2005 which was the calibration year ... 90

Figure 41. Average monthly CO$_2$ flux estimations versus observations for validation years (2001-2008). Dashed line shows January to December 2005 which was the calibration year ... 90

Figure 42. Average monthly soil moisture estimations at different depths versus the corresponding observed data ... 92

Figure 43. Comparison of monthly average latent heat fluxes; observed by (OzFlux, reported by Li et al. (2012) and estimated by the MLCan model and CABLE model) ... 93

Figure 44. Comparison of monthly observed and estimated soil moisture data at different depths a) 15 cm, b) 30 cm, c) 60 cm, d) 120 cm ... 95
Figure 45. Average daily estimated latent heat fluxes for the five best NS-all parameter sets versus the observed data for year 2005 ... 107

Figure 46. Average daily estimated sensible heat fluxes for the five best NS-all parameter sets versus the observed data for year 2005 ... 107

Figure 47. Average daily estimated CO₂ fluxes for the five best NS-all parameter sets versus the observed data for year 2005 ... 108

Figure 48. Average daily soil moisture estimations at first layer for the five best NS-all parameter sets versus the observed data for year 2005.. 108

Figure 49. Average daily soil moisture profiles (left) and estimated versus observed soil moisture plots at first layer (right) for Scenarios 1 to 4 in Table 19................................. 113

Figure 50. Soil moisture estimations at different depths for different scenarios a) 10 cm, b) 27 cm, c) 58 cm... 116

Figure 51. Soil temperature estimations at different depths for different scenarios a) 10 cm, b) 27 cm, c) 58 cm... 119
List of Tables

Table 1. Features of MLCan, CABLE and SPA models ... 14
Table 2. MLCan outputs .. 23
Table 3. Required input data for MLCan model ... 26
Table 4. Depth-varying soil initial conditions used in Chapter 4 ... 30
Table 5. List of parameters used to run the MLCan model ... 31
Table 6. Sampling ranges for the nine parameters and the reported values in the 37
Table 7. Scenarios of root conductivities .. 48
Table 8. Single-response model calibration result .. 67
Table 9. Best parameters set in single-response model calibration ... 68
Table 10. Multi-response model calibration results ... 76
Table 11. Best parameters set in multi-response model calibrations 77
Table 12. Initial conditions at the beginning of 2001 for model validation 82
Table 13. NS values for independent model validations for years between 2001 and 2008 using the best parameter sets (a1) from multi-response calibration for 2005 83
Table 14. Depth-constant soil initial conditions for 2005 considered for this analysis 100
Table 15. Single-response model calibration results with depth-constant initial conditions 101
Table 16. Best parameter sets in single-response model calibration 102
Table 17. Multi-response model calibration results with depth-constant initial soil moisture 104
Table 18. Best parameter sets in multi-response model calibration with depth-constant initial soil moisture ... 105
Table 19. Different scenarios for evaluating the effects of the parameters and Initial Conditions (ICs) ... 110
Table 20. Different soil initial conditions and parameters for Scenarios 1 to 5 115
Abstract

In this study, a multilayer canopy-root-soil model (MLCan) was implemented to simulate the ecohydrological fluxes of a eucalyptus forest located in Tumbarumba, Australia. This model has not been previously tested in this type of ecosystem. This study particularly focused on estimating the forest land-atmosphere exchange fluxes of latent heat (LE), sensible heat (H) and CO$_2$ (F_c), as well as the soil moisture at the first layer (SWS), comparing model results to observations and examining the sensitivity of the estimates to selected model parameters. The parameter sensitivity analysis and model calibrations were performed using the Monte-Carlo based GLUE method.

The effects of multiple canopy layers on the model’s estimations were first examined, and the optimum number of canopy layers were determined. Sensitivity analysis on the values of root conductivities indicated the importance of axial root conductivity on the estimations of the latent heat flux, root water uptake, soil moisture and hydraulic redistribution.

As a result of the parameter sensitivity analysis using GLUE, it was found that the slope (m) and intercept (b) of the Ball-Berry stomatal conductance model were the most sensitive parameters for estimating the LE, H and SWS. The R_o parameter, soil respiration rate at 10 C°, was found to be the only sensitive parameter for estimating F_c. Model calibrations to observations were carried out using GLUE, both on individual variables (single-response) and on all variables (multi-response). The results of the single-response calibrations produced slightly better results but were biased towards the calibrated variable. The results of the model validations on the independent data during 2001-2008 showed that the model performed reasonably well in estimating the LE, H and SWS. However, the model could not estimate the F_c very well. The estimations of the LE and SWS using the MLCan model had a similar level of agreement with observations than previous results at the site using the CABLE model.

Comparing the effects of depth-constant and depth-varying initial soil moisture on model calibrations showed that the depth-constant initial soil moisture degraded the model’s performance in multi-response calibration, mainly due to the degradation in
the soil moisture estimation. However, it did not significantly affect the results in the single-response calibration. An analysis on the effects of parameters and initial soil moisture conditions on the soil moisture estimation showed that the deep layer soil moisture influenced the surface layer soil moisture estimations. This result suggested that vegetation has an effect on the soil moisture estimation through hydraulic redistribution. Results from the MLCan simulations at Tumbarumba also suggested that the soil moisture memory is in the order of 12 months. The results presented in this thesis demonstrate that the MLCan model can be used to adequately capture ecohydrologic fluxes in eucalyptus ecosystems in Australia.