ADVANCES IN OESTROUS SYNCHRONISATION TECHNOLOGY FOR ASSISTED BREEDING IN MARSUPIALS

Ryan Robert Witt
B SocSc (RecTour), B EnvScMgt, B EnvScMgt (Hons)

A thesis submitted to the Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Australia, in fulfilment of the requirements for the degree of Doctor of Philosophy in Environmental Science

Wednesday 2nd May 2018

This research was supported by an Australian Government Research Training Program (RTP) Scholarship and by the Holsworth Wildlife Research Endowment & the Ecological Society of Australia

Supervised by:
Prof. John C. Rodger, FAUNA Research Alliance, University of Newcastle
Dr. Lyn A. Hinds, CSIRO Health and Biosecurity, Canberra
Declaration

I hereby certify that the work embodied in this thesis is my own work, conducted under normal supervision and is presented in the form of a series of papers.

The thesis contains published scholarly work of which I am the lead author. For such work a written statement, endorsed by the other authors and the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint work has been included.

The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Ryan Robert Witt
B SocSc (RecTour), B EnvScMgt, B EnvScMgt (Hons)
02.05.2018
Acknowledgements

To Prof. John Rodger and Dr. Lyn Hinds, for being the best mentors I could have hoped for, you are both incredible leaders, and I will always value your insight. Thank you for all your guidance throughout my PhD journey. John, I could write an essay on all the lessons you have taught me from honours in 2013 to now. Thank you for teaching me everything from how to be a researcher to how to teach undergrad, and for always having confidence in me. Lyn, thank you for jumping on to this project as a supervisor and collaborator at a point at which I was in dire need of resources. Thank you for pushing me to become a better writer, researcher, and scientist. I would also like to express my deepest appreciation to both you and Dave Hinds for giving me a home away from home on all of my trips to Canberra.

Thank you to all my co-authors and all those that assisted with my project. To Ian Forbes and Prof. John McBain thank you for your assistance with my first research article. A special thanks to Jude Rodger and Steve Henry for assistance with animal care, maintenance and data collection. I thank Lachlan Campbell for enduring histological section training with me in Canberra, and Rose Upton for knowing basically everything about the Conservation Bio Lab (and the Repro Lab) and for assistance with taking photos of histological sections.

A very special thank you to Odette Lawler and my Dad (Mark Witt) for their hard work in developing and producing the video for my crowd funding campaign... even though it was not as successful as we had hoped, it was a great learning experience!

Thanks to my good friend Dominic De Carvalho for having just as much interest in art and science now, as we both did when we were 5 years old... and for dedicating time to produce a wallaby image for my conference poster and this thesis.

Thank you to Prof. Kevin Markwell and Dr. Colin McHenry for all the PhD and general advice. Your kindness, encouragement, support and interest in my project really motivated me at a time when my project had limited resources.

Thank you to Assoc. Prof. John Clulow and Dr. Tim Roberts for all the feedback on my project at confirmation and thank you to all of the anonymous reviewers who provided positive criticism which ultimately led to even better outcomes for my journal article publications.

A big thank you to all of my friends that put up with all the PhD chatter over any one of the 3000 coffees I must have consumed over the last four years. Particularly to Ian F., Greg Sheehan, Lachlan C., Dan Kelly, Julian Fowler and Mitch Andrews who copped the brunt of the science talk.
To everyone involved with UoN Tennis Club, you and the club are a big part of how I made it this long at uni without becoming a part of the furniture. Thank you!

Thank you to my mum and dad, my sister Kimberley and brother-in-law Dan for offering unconditional support, love and encouragement over the years. Also, a big thank you to all my family and extended family who were genuinely interested with all the PhD updates, and for keeping me much less hungry than most students. A special thank you to my mother-in-law Maryanne Yen, and my Dad for putting a roof over my head at separate times over the last few years. I’d also like to thank Tony Yen for all the dad jokes, they always kept me laughing, and now this thesis is published, you can tell everyone you’re funny and it’s based on years of research! Thanks also to Trude Yen, and Del and Brian Anstess for the family Sunday lunches that made sure I escaped the computer.

Lastly, and most importantly, thank you to my wonderful wife Erin who endured lots of days and nights of me being preoccupied with research. I cannot thank you enough for all your love and support, you have pushed me to choose the right battles, and we have won them together, getting through this project is just the latest example of that. Thank you for always having my back, for believing in me, and for being there for my nana when work took me away. I could not have achieved so much without you.
Dedications

It is with great love and affection that I dedicate this thesis to my wife Erin and my family. Your constant encouragement, support and love got me over the line. Thank you!

It is with great sadness that I also dedicate this thesis to my nana, Kevaleen June McQuillan, who passed to eternal life on January 13th, 2018. You gave me the strength to be the person I needed to be that day. I will never forget that.
‘The fact is that no species has ever had such wholesale control over everything on earth, living or dead, as we now have. That lays upon us, whether we like it or not, an awesome responsibility. In our hands now lies not only our future, but that of all other living creatures with whom we share the earth’.

– Sir David Attenborough, Life on Earth –
Preliminary pages

I. Publications included as part of the thesis

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

I warrant that I have obtained, where necessary, permission from the copyright owners to use my own published work in which the copyright is held by the publisher.
II. Statement of contribution

By signing below, I confirm that Ryan Robert Witt contributed upward of 60% to the research, experimental design, data collection, analysis of data, development of figures and tables, and manuscript preparation for all publications in this thesis for which I am a co-author.

Prof. John C. Rodger, Principal Supervisor
18.04.2018

Prof. Frances Martin, Assistant Dean (Research Training)
27.04.2018

Dr. Lyn A. Hinds, Co-supervisor
19.04.2018

Assoc. Prof. John McBain
01.03.2018

Ian Ross Forbes
09.03.2018

John Jude Rodger
08.03.2018
III. Conference proceedings

Presentation

Poster

Table of Contents

Declaration .. ii
Acknowledgements .. iii
Dedications .. v
Preliminary pages:
 I. Publications included as part of the thesis ... vii
 II. Statement of contribution .. viii
 III. Conference proceedings ... ix
Abstract ... xi
Overview .. xiii

Introduction and Literature Review:
 Chapter 1: GnRH agonist downregulation of the hypothalamic-pituitary-gonadal axis may offer a strategy to control and synchronise oestrous in marsupials .. 1
 Chapter 2: Recent advances in tools and technologies for monitoring and controlling ovarian activity in marsupials ... 25

Research Chapters:
 Chapter 3: Ovarian suppression in a marsupial following single treatment with a gonadotrophin-releasing hormone agonist in microspheres .. 38
 Chapter 4: Breeding in the fat-tailed dunnart following ovarian suppression with the gonadotrophin-releasing hormone agonist Lucrin® Depot ... 49
 Chapter 5: Delayed return to oestrus following treatment with the gonadotrophin-releasing hormone agonist, Lucrin® Depot, in the tammar wallaby .. 62
 Chapter 6: Induction of synchronous oestrous after pre-treatment with the GnRH agonist, Lucrin® Depot, in the tammar wallaby ... 72

Conclusion:
 Chapter 7: Final Discussion .. 89
Abstract

Oestrous synchronisation technology has the capacity to advance genetic conservation outcomes for threatened marsupials by making use of selected spermatozoa in artificial insemination (AI). A technique capable of precise control of oestrus and ovulation in marsupials, of which most are spontaneous ovulators, remains the key limiting factor in developing practical AI programs. The major impediment is the corpus luteum (CL) which in marsupials becomes independent of hypothalamic-pituitary support after formation and persists in both pregnant and non-pregnant cycles. For this reason, eutherian synchronisation techniques that rely on targeting CL life have failed to induce luteolysis in marsupials.

The aim of this thesis was to investigate the potential to circumvent the marsupial CL and synchronise oestrous by targeting the hypothalamic-pituitary gonadal (HPG) axis with a gonadotrophin-releasing hormone (GnRH) agonist. GnRH agonists are small molecules rapidly removed from the body and thus are traditionally delivered as multiple injections or in slow release implants not suitable for assisted breeding applications. In contrast, Lucrin® Depot (AbbVie), a GnRH agonist in microspheres effects a one-month suppression of pituitary function after a single injection.

In this thesis, I detail the potential for Lucrin Depot to synchronise oestrous in two taxonomically distinct marsupials with alternative reproductive strategies, a dasyurid, the fat-tailed dunnart (*Sminthopsis crassicaudata*) and a macropod, the tammar wallaby (*Notamacropus eugenii*). In the fat-tailed dunnart, a dose of 5 mg kg\(^{-1}\) or 10 mg kg\(^{-1}\) of Lucrin Depot, resulted in reproductive suppression for 4 to 8 weeks, a return to reproductive activity at 8 to 12 weeks, and a complete return to cycling at 16 weeks. Following Lucrin-induced suppression, female dunnarts were fertile and conceived as early as 8 weeks after receiving 5 mg kg\(^{-1}\) but did not conceive until 14 or 15 weeks after receiving 10 mg kg\(^{-1}\). In tammar wallabies that underwent removal of pouch young (Day 0 RPY), Lucrin Depot inhibited the growth of pre-ovulatory follicles (all follicles <2mm, Day 31 RPY). An effective dose, 1.25 mg kg\(^{-1}\), delays oestrus until between Day 39-66 RPY if Lucrin-treated at the time of RPY, and between Day 43-71 RPY if Lucrin-treated on Day 10 RPY. The outcome of work in both the fat-tailed dunnart and tammar wallaby resolved that Lucrin Depot has the capacity to inhibit ovarian follicular activity, but alone does not synchronise oestrous to a degree needed for assisted breeding.

In the final research chapter, I show Lucrin Depot can be combined with exogenous gonadotrophins for ovarian stimulation and synchronisation. Pre-treatment of tammar wallabies with 1.25 mg kg\(^{-1}\) of Lucrin Depot on Day 0 RPY prior to single
doses of 20IU of PMSG on Day 20 RPY and 500IU of hCG on Day 23 RPY, synchronised oestrus and copulation to within 1 day (Day 26±0.1 RPY, n= 5 of 6). At autopsy and follow-up ovarian histology, it was determined that 20IU of PMSG adequately stimulates the healthy growth of pre-ovulatory follicles (around 10+ follicles >3mm per ovary Day 31 RPY). However, both the control superovulation group, and the Lucrin Depot-superovulation group did not ovulate in response to a single 500IU injection of hCG. Together the data presented in this thesis confirm that Lucrin Depot can form the basis of an oestrous synchronisation strategy in marsupials, and with further work to resolve the optimum ovulation treatment, it can be expected to become a practical assisted breeding tool for the recovery of threatened marsupials.
Overview

This thesis is presented as a collection of published articles (Chapter 2-5), and a prepared manuscript (Chapter 6). The papers presented in this thesis all relate to the development of oestrous synchronisation technology and assisted reproductive technology for marsupials to support the conservation of threatened species.

Chapter 1, the introduction, is the unpublished section of the literature review component, and details the essential background information required to appreciate the thesis objectives and research chapters. This includes a review of folliculogenesis in marsupials; reproductive patterns in the fat-tailed dunnart and tammar wallaby as model species; GnRH and the regulation of oestrous in marsupials; and introduces Lucrin Depot as the potential GnRH agonist for oestrous synchronisation as a standalone treatment, and in combination with exogenous gonadotrophins.

Chapter 2, is a published review that relates to the current status and limitations of applying assisted reproductive technology to female marsupials, and comprehensively evaluates the tools and technologies available to control female cycling for assisted breeding. Chapter 2 briefly highlights research completed in Chapter 3, 4 and 5 of the current thesis.

The following Chapters (3-6) directly relate to the development of a Lucrin Depot based oestrous synchronisation technology for marsupials. Chapters 3 and 4, cover developments of this technology in the small dasyurid, the fat-tailed dunnart, and Chapters 5 and 6, cover developments of this technology in a macropod, the tammar wallaby. Chapters 3-5, show promise for a hypothalamic-pituitary, GnRH agonist down-regulation approach for female synchronisation technology in marsupials. The research indicative that Lucrin Depot has the capacity to offer a level of oestrous control, and breeding, conception and birth of healthy young is possible in both species. Chapter 6 takes the technology further and combines the Lucrin Depot approach with a superovulation protocol (PMSG followed by hCG), with the aim of instigating a highly synchronous response.

Finally, Chapter 7 presents the holistic conclusions of the thesis and research findings, and provides final assessment on the viability of a Lucrin Depot-based synchronisation strategy for marsupials.