THE TRUE NATURE OF
ATYPICAL BREAST CYTOLOGY

Julie Weigner

Bachelor of Applied Science (Biomedical science) NSW Institute of Technology.
Cytotechnologist Australian Society of Cytology (CTASC)
Cytotechnologist International Academy of Cytology (CTIAC)

Candidate for Doctor of Philosophy (Public Health and Medicine)
University of Newcastle
Newcastle, January 2018
Declaration

Statement of Originality
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository subject to the provisions of the Copyright Act 1968.

Thesis by Publication
I hereby certify that this thesis is in the form of a series of papers. I have included as part of the thesis a written statement from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers.

Julie Weigner
January 2018
Dedication

To my cherished family; Rudi, Matthew, Kirra, Nick, Margaret and Joseph for lifelong love and support.
Acknowledgements

This project began as a means of self-education to improve my professional knowledge and a desire to assist in adding to the quality of an FNA service in the local community. In the very beginning, little did I realise the full impact of this undertaking. As the project grew and developed, many more people were needed to bring this project to fruition.

Fundamental to this research project were my supervisors, Stephen Braye and Ibrahim Zardawi. Stephen’s extensive and valuable knowledge was freely given and helped steer the project in a forward direction. His encouragement, patience and intuition was always present. This was complemented by Ibrahim whose boundless enthusiasm, moral support and academic input was immeasurable. His strength of conviction and persistence has been paramount to seeing this project to completion. Patrick McElduff came on board as a supervisor after the confirmation process for Master’s degree. Without Patrick’s contribution to the statistical analyses, the project would not be as robust as it currently is. Patrick’s endless patience and creative thinking has led to some interesting paths not perceived by our medically biased minds. I am truly grateful and privileged to have such quality supervisors and I sincerely thank them all.

This project was mostly conducted within the cytology laboratory at Pathology North Hunter. Without the support of Pathology North, I would not have been able to complete this project. In particular, I’d like to thank the cytology staff. The manager, Sharon Ling has provided ongoing moral support and access to laboratory resources. The scientific staff have contributed their value time, skills and expertise, and the technical staff have provided encouragement and logistic support. To work with these people every day is a pleasure.

To Jim Lai and his team at BreastScreen, Hunter who assisted with follow up information and radiological interpretation, I thank you for your input. To the team at The Breast and Endocrine Centre led by David Clark and Charles Douglas, I wish to thank for their ongoing support, keen interest in the project and inspiring me to begin such a huge task. Particular mention must be made of Dr David Clark and Dr Garvin Williamsz who were invited to address the National Cytology Conference in Darwin as a consequence of this project. I am very grateful to them for taking the time away from their busy schedules to present the relevance of our work at the conference. To be surrounded by well-respected professionals has put me in an enviable position whereby I can tap into a great depth of knowledge and a wealth of
experience in the field of breast cancer. I am very fortunate to be part of this medical community.

Throughout this project, I have been indebted to Dr Ricardo Vilain who has inadvertently become a surrogate mentor to me, having walked his own PhD journey recently. All the small things which challenge a mature student returning to study after a significant break were made so much easier with Ric’s help and academic wisdom.

Finally to my family whose faith in me never waned. For the duration of this project, my children Matthew, Kirra and Nick have grown and developed into capable young adults. They have shared this journey with me and now embark on their own study challenges as they forge their own careers. I recognise determination, resilience and hard work traits abound in their attitude and know they will be successful in their future paths. To my parents who value education and who have always supported me in whatever venture I embarked upon. They took on some of the burdens of family life in times when I could not fulfil my family responsibilities and I am so grateful. Although my father is not here to see me complete this project, I know he would have been very proud. Finally, to my husband, Rudi who has underpinned this project from the beginning. He has endured all the low points but still managed to put on a positive slant and keep me afloat in overwhelming times. Without his love and dedication I could not have completed this project.
Publications from Thesis

1. **The True Nature of Atypical Breast Cytology.**

2. **The Microscopic Complexities of C3 in Breast Cytology.**

3. **The Conundrum of Papillary Breast Lesions within the C3 Category.**

4. **Stratification of risk of malignancy in atypical breast FNA: A cytomorphological approach.**
 Journal of Diagnostic Pathology 2017, **12**:12-23

5. **Reproducibility of the atypical breast cytology on fine needle aspiration.**
 Cytopathology: early view doi.org/10.1111/cyt.12496

6. **The legitimacy of the atypical (C3) breast cytology category.**
 Invited lead article.

Copyright statements
I warrant that I have obtained, where necessary, permission from the copyright owners to use any third party copyright material reproduced in the thesis (e.g. questionnaires, artwork, unpublished letters), or to use any of my own published work (e.g. journal articles) in which the copyright is held by another party (e.g. publisher, co-author).

Julie Weigner
Conference Proceedings

1. Atypical Breast Cytology
 Oral Presentation
 The Breast and Endocrine Centre Education Meeting
 Gateshead, Newcastle, NSW 2010

2. The True Nature of Atypical Breast Cytology
 Poster
 18th International Congress of Cytology IAC, Paris, France, 2013

3. Atypical Breast Cytology
 Oral presentation
 44th Annual Scientific and Business Meeting, Darwin Oct 2014

4. The Validity of Atypical breast Cytology
 Award winning Poster
 44th Annual Scientific and Business Meeting, Darwin Oct 2014

5. Should Breast Papillary Lesions be Automatically Placed into the Atypical (C3)
 Reporting Category?
 Poster
 44th Annual Scientific and Business Meeting, Darwin Oct 2014

6. Can atypia in breast fine needle aspiration be tamed?
 Poster
 19th International Congress of Cytology, IAC Yokohama, Japan, 2016
Chapter 2: Literature Review ... 9
 2.1 Use of FNA .. 10
 2.2 Reporting systems, standards and guidelines 10
 2.2.1 Development of reporting systems 10
 2.2.2 Quality assurance and performance measures 11
 2.3 FNA or core biopsy ... 13
 2.4 Future of FNA ... 14
 2.5 Studies into atypical breast FNA .. 15
 2.5.1 Is C3 necessary? ... 15
 2.5.2 Causes of C3 ... 16
 2.5.3 The “gold” standard ... 16
 2.5.4 Cytomorphological studies of C3 17
 2.6 Common entities found in the atypical category 18
 2.6.1 Proliferative lesions ... 18
 2.6.2 Papillary lesions .. 18
 2.6.3 Radial scars, sclerosing lesions, sclerosing adenosis 20
 2.6.4 Fibroadenoma ... 20
 2.6.5 Ductal carcinoma in-situ and low grade ductal carcinoma 21
 2.6.6 Invasive lobular carcinoma 21
 2.6.7 Miscellaneous tumours .. 22
 2.6.7.1 Tubular adenoma .. 22
 2.6.7.2 Phyllodes ... 22
 2.7 Computer aided interpretation systems 23
 2.8 Summary ... 23

Chapter 3: Materials and Methods .. 25
 3.1 Administration documents ... 26
 3.1.1 Ethics .. 26
 3.1.2 Safety .. 26
3.1.3 Management of Data ... 26
3.1.4 Copyright ... 27
3.1.5 Progress reports .. 28
3.2 Literature search and review ... 28
3.3 Aim and objectives .. 28
3.4 Methodology .. 29
 3.4.1 Comprehensive systematic search of lab information system ... 29
 3.4.2 Microscopic blind rescreen of the training set ... 31
 3.4.3 Defining criteria rules ... 32
 3.4.3.1 Cellularity ... 33
 a. Adequacy ... 33
 (i) Ductal epithelial cells ... 33
 (ii) Apocrine metaplastic cells ... 34
 b. Cellularity ... 35
 c. Size of clusters .. 36
 3.4.3.2 Architecture ... 38
 (i) General features .. 38
 a. Complex sheets .. 38
 b. Depth of sheets/clusters .. 38
 c. Nuclear crowding/overlap within sheets .. 40
 d. Polarity within sheets ... 41
 e. Myoepithelial cells within sheets .. 42
 f. Cohesiveness ... 43
 (ii) Specific Architectural features .. 44
 a. Papillary fragments .. 44
 b. Tubules ... 44
 c. Branching sheets .. 44
 d. Round ended groups ... 44
 e. Cribriform pattern .. 46
 f. Palisading arrangement .. 46
 3.4.3.3 Cell morphology ... 48
 a. Cell shape .. 48
 b. Nuclear shape ... 49
 c. Nuclear location ... 49
 d. Nuclear enlargement .. 50
 e. Nucleoli ... 52
 f. Chromatin pattern ... 53
 g. Nucleus to cytoplasmic ratio (N:C) .. 54
 h. Cytoplasmic volume ... 55
 i. Cell borders ... 56
 3.4.3.4 Background .. 57
 a. Bare bipolar nuclei .. 57
 b. Cystic background .. 59
 c. Calcified particles .. 59
 d. Altered/old blood ... 60
 e. Necrosis ... 61
 f. Inflammation .. 62
 g. Stroma ... 63
 3.5 Follow up histological/clinical outcomes .. 64
 3.6 Statistical analysis of training set ... 65
 3.7 Development of cytomorphological approach to .. 67
 3.7.1 Statistical analysis of validation set ... 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8 Implementation of new approach</td>
<td>69</td>
</tr>
<tr>
<td>3.8.1 Statistical analysis of inter-observer and intra-observer variability</td>
<td>69</td>
</tr>
</tbody>
</table>

Chapter 4: The True Nature of Atypical Breast Cytology ... 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>72</td>
</tr>
<tr>
<td>Abstract</td>
<td>73</td>
</tr>
<tr>
<td>Introduction</td>
<td>74</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>74</td>
</tr>
<tr>
<td>Results</td>
<td>75</td>
</tr>
<tr>
<td>Benign outcome</td>
<td>76</td>
</tr>
<tr>
<td>Malignant outcome</td>
<td>77</td>
</tr>
<tr>
<td>Discussion</td>
<td>78</td>
</tr>
<tr>
<td>References</td>
<td>80</td>
</tr>
</tbody>
</table>

Chapter 5: The Microscopic Complexities of C3 in Breast Cytology 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>84</td>
</tr>
<tr>
<td>Abstract</td>
<td>85</td>
</tr>
<tr>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>86</td>
</tr>
<tr>
<td>Architectural qualities</td>
<td>87</td>
</tr>
<tr>
<td>Cytomorphology</td>
<td>87</td>
</tr>
<tr>
<td>Background features</td>
<td>88</td>
</tr>
<tr>
<td>Outcomes</td>
<td>88</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>89</td>
</tr>
<tr>
<td>Results</td>
<td>90</td>
</tr>
<tr>
<td>Individual criteria</td>
<td>90</td>
</tr>
<tr>
<td>Stepwise results</td>
<td>91</td>
</tr>
<tr>
<td>Discussion</td>
<td>92</td>
</tr>
<tr>
<td>Individual criteria</td>
<td>93</td>
</tr>
<tr>
<td>Stepwise models</td>
<td>95</td>
</tr>
<tr>
<td>Conclusion</td>
<td>95</td>
</tr>
<tr>
<td>References</td>
<td>96</td>
</tr>
</tbody>
</table>

Chapter 6: The Conundrum of Papillary Breast Lesions within the C3 Category 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>98</td>
</tr>
<tr>
<td>Abstract</td>
<td>99</td>
</tr>
<tr>
<td>Introduction</td>
<td>99</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>100</td>
</tr>
<tr>
<td>Cellularity</td>
<td>100</td>
</tr>
<tr>
<td>Architecture</td>
<td>100</td>
</tr>
<tr>
<td>Cytomorphology</td>
<td>100</td>
</tr>
<tr>
<td>Background</td>
<td>100</td>
</tr>
<tr>
<td>Outcome</td>
<td>100</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>100</td>
</tr>
<tr>
<td>Results</td>
<td>101</td>
</tr>
<tr>
<td>Univariate analysis</td>
<td>102</td>
</tr>
<tr>
<td>Atypical/ malignant papillary lesions versus benign papilloma</td>
<td>103</td>
</tr>
<tr>
<td>Macropapillary versus micropapillary lesions</td>
<td>103</td>
</tr>
<tr>
<td>Stepwise statistical analysis</td>
<td>103</td>
</tr>
<tr>
<td>Papillary versus non papillary analysis</td>
<td>103</td>
</tr>
<tr>
<td>Atypical/ malignant papillary lesions versus benign papilloma</td>
<td>103</td>
</tr>
<tr>
<td>Discussion</td>
<td>104</td>
</tr>
</tbody>
</table>
Univariate analysis ... 104
Atypical/ malignant papillary lesions versus benign papilloma 105
Stepwise statistical analysis ... 105
Atypical/ malignant papillary lesion versus benign papilloma 105
Conclusion ... 106
References .. 106

Chapter 7: Stratification of Risk of Malignancy in Atypical Breast FNA: A Cytomorphological Approach ... 109
Statement .. 110
Abstract ... 111
7.1 Background .. 112
7.2 Materials and methods .. 114
7.2.1 Statistical analysis... 115
7.2.2 Probability calculator .. 115
7.3 Results .. 116
7.4 Discussion ... 121
7.5 Conclusion ... 125
7.6 references ... 126

Chapter 8: How Reliable is the Reporting of Atypia in Breast FNA? ... 129
Statement .. 130
Abstract ... 131
8.1 Background .. 132
8.2 Materials and methods .. 133
8.2.1 Statistical analysis... 134
8.3 Results .. 135
8.4 Discussion ... 138
8.4.1 Inter-observer agreement .. 138
8.4.2 Intra-observer agreement .. 139
8.4.3 Criteria... 139
 i Myoepithelial cells and bare bipolar nuclei...................... 140
 ii Cohesiveness... 141
 iii Cystic background.. 142
 iv Architectural criteria .. 144
8.4.4 Concordance rates .. 146
8.4.5 Underlying causes .. 146
8.5 Conclusion ... 147
8.6 References ... 148

Chapter 9: The Legitimacy of Atypical (C3) Breast Cytology Category ... 152
Statement .. 153
Article ... 154
References ... 157

Chapter 10: General Discussion ... 162
10.1 Aims of the study .. 163
10.2 Causes of atypical breast cytology 163
10.2.1 Extrinsic factors .. 164
10.2.2 Intrinsic factors .. 164
10.3 Trends and influences within C3 164
10.4 Morphological attributes of the atypical 165
10.5 Papillary lesions in the atypical breast cytology group ..165
10.6 Strategies..166
 10.6.1 Strategies to minimize extrinsic factors ...166
 10.6.1.2 Probability calculator ..167
10.7 The future..167
10.8 Conclusion...168

Appendices ..170

Bibliography ...243
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>Atypical ductal hyperplasia</td>
</tr>
<tr>
<td>ALH</td>
<td>Atypical lobular hyperplasia</td>
</tr>
<tr>
<td>ASC</td>
<td>Australian Society of Cytology</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under Curve</td>
</tr>
<tr>
<td>BI-RAD</td>
<td>Breast Imaging Reporting & Data System</td>
</tr>
<tr>
<td>BS</td>
<td>BreastScreen</td>
</tr>
<tr>
<td>C1</td>
<td>Category 1</td>
</tr>
<tr>
<td>C2</td>
<td>Category 2</td>
</tr>
<tr>
<td>C3</td>
<td>Category 3</td>
</tr>
<tr>
<td>C4</td>
<td>Category 4</td>
</tr>
<tr>
<td>C5</td>
<td>Category 5</td>
</tr>
<tr>
<td>CB</td>
<td>Cell Block</td>
</tr>
<tr>
<td>CNB</td>
<td>Core needle biopsy</td>
</tr>
<tr>
<td>CSL</td>
<td>Complex sclerosing lesion</td>
</tr>
<tr>
<td>DCIS</td>
<td>Ductal carcinoma in situ</td>
</tr>
<tr>
<td>FA</td>
<td>Fibroadenoma</td>
</tr>
<tr>
<td>FCC</td>
<td>Fibrocystic change</td>
</tr>
<tr>
<td>FN</td>
<td>False negative</td>
</tr>
<tr>
<td>FNA</td>
<td>Fine needle aspiration</td>
</tr>
<tr>
<td>FP</td>
<td>False positive</td>
</tr>
<tr>
<td>FVC</td>
<td>Fibrovascular core</td>
</tr>
<tr>
<td>HNEHREC</td>
<td>Hunter New England Health Research Ethics Committee</td>
</tr>
<tr>
<td>HPF</td>
<td>High power field</td>
</tr>
<tr>
<td>IAC</td>
<td>International Academy of Cytology</td>
</tr>
<tr>
<td>IDC</td>
<td>Invasive ductal carcinoma</td>
</tr>
<tr>
<td>ILC</td>
<td>Invasive lobular carcinoma</td>
</tr>
<tr>
<td>LCIS</td>
<td>Lobular carcinoma in situ</td>
</tr>
<tr>
<td>LIS</td>
<td>Laboratory information system</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>N:C</td>
<td>Nuclear to cytoplasmic ratio</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NHSBSP</td>
<td>National Health System Breast Screen Program</td>
</tr>
<tr>
<td>PBD</td>
<td>Proliferative benign disease</td>
</tr>
<tr>
<td>PN</td>
<td>Pathology North</td>
</tr>
<tr>
<td>PT</td>
<td>Phyllodes tumour</td>
</tr>
<tr>
<td>QD</td>
<td>Quik Diff</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>RCPA</td>
<td>The Royal College of Pathologists of Australasia</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating curve</td>
</tr>
<tr>
<td>RS</td>
<td>Radial Scar</td>
</tr>
<tr>
<td>SA</td>
<td>Sclerosing adenosis</td>
</tr>
<tr>
<td>TDLU</td>
<td>Terminal ductal lobular unit</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasound</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1. Anatomy of breast.................................. Error! Bookmark not defined.
Figure 1.2. Schematic diagram of breast...4
Figure 1.3. Histology of a lobular unit...4
Figure 3.1. Percentage of reporting categories of breast episodes..........................31
Figure 3.2. Normal ductal epithelial cells...33
Figure 3.3. Apocrine cells..34
Figure 3.4. Cellularity examples..35
Figure 3.5. Size of clusters..37
Figure 3.6. Complex sheet...38
Figure 3.7. Three dimensionality examples...39
Figure 3.8. Nuclear overlap..40
Figure 3.9. Polarity..41
Figure 3.10. Myoepithelial cells..42
Figure 3.11. Cohesiveness...43
Figure 3.12. Architectural features..45
Figure 3.13. Architectural features..46
Figure 3.14. Cell shape..47
Figure 3.15. Nuclear shape...48
Figure 3.16. Nuclear location...49
Figure 3.17. Nuclear enlargement..51
Figure 3.18. Nucleoli..52
Figure 3.19. Chromatin pattern..53
Figure 3.20. Nuclear to cytoplasmic ratio..54
Figure 3.21. Cytoplasmic volume..55
Figure 3.22. Cytoplasmic border..56
Figure 3.23. Bare bipolar nuclear...58
Figure 3.24. Cystic background..59
Figure 3.25. Calcified material..60
Figure 3.26 Old blood..61
Figure 3.27 Necrotic material..62
Figure 3.28 Inflammatory cells..63
Figure 3.29. Stroma...64
Figure 3.30. Follow-up graph...65
Figure 3.31. Example of ROC curves...66
Figure A6. C3 flow chart
List of Tables

Table 3.1. Reporting categories..30
Table 3.2. Cell clusters categories...36
Table 5.1. Individual significant criteria..91
Table 5.2. Stepwise model criteria..91
Table 6.1. Papillary lesions within C3..102
Table 6.2. Individual criteria for Papillary vs Non-papillary lesions...102
Table 6.3. Individual criteria for Atypical/malignant papillary lesions vs papilloma.................................102
Table 6.4. Stepwise papillary model..104
Table 7.1. List of pathological outcomes..117
Table 7.2. Area under Curve for models..119
Table 8.1. Histological outcome for selected 60 cases for observer variability study.............................135
Table 8.2. Kappa interobserver analysis..136
Table 8.3. Overcall, undercall, concordant rates..137
Table A1. Logistic regression summary for individual criteria for cancer vs non cancer......................171
Table A2. Logistic regression summary for individual criteria for cancer vs proliferative.....................176
Table A3. Logistic regression summary for individual criteria for benign versus proliferative.............181
Table A4. Papillary versus non-papillary significant individual criteria...186
Table A5. Final Stepwise Cancer Model Graph Details...192
Table A6. Benign proliferative stepwise model graph and details..198
Table A7. Benign non-proliferative stepwise model graph details...204
Table A8. Final Stepwise Papillary Model Graph Details...210
Table A9. Coefficient values calculated from the training set...211
Table A10. Inter-observer calculator probabilities..213
Table A11. Intra-observer calculator probabilities..215
Abstract

Breast cancer is the most prevalent cancer in women in the western world including Australia. Early detection and accurate diagnosis of new breast lesions is essential for appropriate medical management. Fine needle aspiration (FNA) is a cytological investigative tool commonly used to provide the initial pathological diagnosis of breast lesions. An atypical cytology report (C3) is an ambiguous or equivocal result. This uncertainty creates a dilemma and a more invasive investigative procedure such as core biopsy or incisional biopsy may be required, which comes at greater cost and anxiety to the patient.

The aims of this project were to understand the true nature of C3, to determine the underlying causes of C3 and to devise a strategic approach to minimise its use without compromising the other cytological categories. The practical aims were to create a greater understanding of the issue and to produce a collective uniform approach to reporting atypical breast cytology cases thereby refining its use.

The results of a blind rescreen of 256 consecutive C3 cases were statistically analysed. From these results, a cytomorphological approach to assess the risk of malignancy was developed and tested against a validation set of 230 subsequent C3 cases. Various strategies have been developed to reduce the incidence of the C3 category. Extrinsic factors can be easily reduced by greater involvement by cytology staff in the FNA procedure. Intrinsic factors can be understood and considered when allocating cases into C3. Specific diagnoses, such as papillary neoplasm can direct more appropriate definitive management. The cytologists in our institution have gained greater awareness of the atypical category by actively participating in the project and by having access to teaching resources and examples. The benefits manifest as financial, medical and social enhancements. It is hoped that some of these approaches will be taken up by other institutions in Australia and internationally.