The role of early life infection on the programming of CD4+ T-cells

Angela Ferguson
BSc (Biotechnology) BBmedSc (Honours)
PhD
April 2012
STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.
ACKNOWLEDGEMENTS

I would like to express my appreciation to my supervisors Prof. Paul Foster and Prof. Phil Hansbro. To Paul, thank you for all your help and encouragement, it’s been a long haul. To my long-suffering family and friends for their ongoing support and kindness, i am extremely grateful. To Andrew, who has put up with the most throughout this process, I hope i can make it up to you in our life together post-PhD.
Table of Contents

List of Figures 12
List of Abbreviations 19
Conference proceedings arising from this work 21
Competitive grants arising from this work 21
Abstract 22

CHAPTER 1 24

General Introduction: Asthma

1.1 Synopsis 25
1.2 Allergic airways disease (AAD) 25
1.3 Histopathology of the airways 27
 1.3.1 Angiogenesis 27
 1.3.2 Airway remodelling 27
 1.3.3 Epithelial structure 28
 1.3.4 Basement membrane 28
 1.3.5 Mucous secreting cells 29
 1.3.6 Smooth muscle 29
1.4 Inflammatory cells and mediators 30
 1.4.1 T Lymphocytes 30
 1.4.2 CD4+ T lymphocytes 30
 1.4.3 CD8+ T lymphocytes 33
 1.4.4 Regulatory T lymphocytes (Tregs) 35
 1.4.5 B-cells 35
 1.4.6 Macrophages 36
 1.4.7 Eosinophils 36
 1.4.8 Mast cells 37
 1.4.9 PMNs (Polymorpho-nuclear cells) 38
 1.4.10 Dendritic cells 38
1.5 T helper 2 (Th2) cytokines 39
 1.5.1 Interleukin-4 (IL-4) 39
 1.5.2 Interleukin-5 (IL-5) 40
 1.5.3 Interleukin-13 (IL-13) 41
1.6 T helper 1 (Th1) cytokines 41
 1.6.1 Interferon-gamma (IFN-γ) 41
 1.6.2 Interleukin-12 (IL-12) 42
1.7 T helper 17 (Th17) cytokines 42
 1.7.1 Interleukin-17 (IL-17) 42
1.8 Animal models of AAD 43
1.9 Neonatal versus adult immune system 43
1.10 Bacterial strains and models 44
 1.10.1 Salmonella pathogenesis 44
 1.10.2 *Salmonella* enterica serovar *typhimurium* AroA AroD mutant 46
 1.10.3 The affects of *S.typhimurium* infection on AAD development in mice 47
 1.10.4 The effects of *S.typhimurium* infection on clinical AAD development 47
1.10.5 BCG pathogenesis, *Mycobacterium bovis* Bacille Calmette Guerin (BCG) 48
1.10.6 The effects of BCG infection on clinical asthma development 49
1.10.7 The effects of BCG infection on AAD development in mice 50

1.11 Hygiene hypothesis 51
1.12 Outcomes 54
1.13 Hypothesis 56
1.14 Experimental aims 56

CHAPTER 2 57

Characterisation of a murine model of allergic airways disease in OVA-TCR Transgenic mice

2.1 Introduction 58
2.2 Materials and Methods 59
 2.2.1 Animals 59
 2.2.2 Induction of AAD 59
 2.2.3 Collection and analysis of samples 59
 2.2.4 Lung histology 60
 2.2.5 Collection of spleen and PBLNs 61
 2.2.6 Isolation of splenocytes and PBLN cells for tissue culture 61
 2.2.7 Determination of Antibody titres by Enzyme linked immuno-sorbant assay (ELISA) 62
 2.2.8 Determination of culture supernatant cytokine levels by ELISA 63
 2.2.9 Statistical analysis 64
2.3 Results 65
 2.3.1 OVAp induces leukocyte infiltration into the airways of OVA sensitised mice. 65
 2.3.2 OVA induces mucous hypersecretion and eosinophil infiltrates in lung tissue 68
 2.3.3 OVA-specific antibody levels in serum are increased in mice sensitised and challenged with OVA 70
 2.3.4 Cytokine responses in OVA treated mice are different to PBS treated controls. 72
2.4 Discussion 75

CHAPTER 3 78

Optimisation and characterisation of infection levels in OVA-TCR Tg and BALB/c mice at different ages

3.1 Introduction 79
3.2 Materials and Methods 81
 3.2.1 Animals 81
 3.2.2 Bacteria 81
 3.2.3 Homogenising tissue 82
3.2.4 Determination of infection levels 82
3.2.5 Induction of infection 82
3.2.6 Delivery of infection 83
3.2.7 Weight change timeline of infection 84
3.2.8 Collection and analysis of samples (blood, BALF, Lung) 84
3.2.9 Collection and processing of tissue for bacterial recovery 84
3.2.10 Determination of total CFU by bacterial recovery 84
3.2.11 Determination of bacterial OVA production in Lung tissue and BALF 84
3.2.12 Statistical analysis 85
3.3 Results 86
(A) BCG infection 86
3.3.1 Leukocyte infiltration into the airways of infected mice (WT compared to OVA-TCR Tg mice) 86
3.3.2 Changes of weight due to infection (WT compared to OVA-TCR Tg mice) 89
3.3.3 Bacterial OVA production compared to changes in weight over time (WT compared to OVA-TCR Tg mice) 91
3.3.4 Bacterial recovery from lungs (WT compared to OVA-TCR Tg mice) 93
(B) S.typhimurium infection 95
3.3.5 Leukocyte infiltration into the airways of infected mice (WT compared to OVA-TCR Tg mice) 95
3.3.6 Changes of weight due to infection (WT compared to OVA-TCR Tg mice) 98
3.3.7 Bacterial recovery from key organs (WT compared to OVA-TCR Tg mice) 100
3.4 Discussion 102

CHAPTER 4 104
The effect of BCG infection at different stages of life on the development of AAD 105
4.1 Introduction 105
4.2 Materials and Methods 107
4.2.1 Animals 107
4.2.2 Bacteria 107
4.2.3 Determination of infection levels 107
4.2.4 Induction of infection 107
4.2.5 Induction of AAD 108
4.2.6 Collection and analysis of samples (blood, BALF) 108
4.2.7 Lung histology 108
4.2.8 Collection of spleen and PBLNs 108
4.2.9 Collection and processing of tissue for bacterial recovery 108
4.2.10 Homogenisation of lung tissue and homogenate processing 108
4.2.11 Determination of total CFU by bacterial recovery 108
4.2.12 Isolation of splenocytes and PBLN cells for tissue culture 108
4.2.13 Isolation and staining of splenocytes and PBLN cells for flow cytometry

4.2.14 Processing and staining of splenocytes and PBLN cells for flow cytometry

4.2.15 Determination of antibody titres by ELISA

4.2.16 Determination of culture supernatant cytokine levels by ELISA

4.2.17 Statistical analysis

4.2.18 Experiment schematic

4.3 Results

(A) 0-day old mice

4.3.1 Leukocyte infiltration into the airways in sham-infected and infected mice challenged with PBS or OVAp

4.3.2 Histopathology of lung tissue in sham-infected and infected mice challenged with PBS or OVAp.

4.3.3 0-day old bacterial recovery from lung.

4.3.4 Neonatal antibody responses in sham-infected and infected mice challenged with PBS or OVAp.

4.3.5 Cytokine responses in neonatal control (PBS/PBS, OVA/OVAp) and infected mice challenged with PBS or OVAp (BCG: PBS/PBS, BCG: PBS/OVAp, BCG: OVA/OVAp).

4.3.6 Percentage of CD4+ and OVAp-specific T-cells in sham-infected and infected mice challenged with PBS or OVAp.

(B) 2-week old mice

4.3.1 Leukocyte infiltration into the airways in controls and infected AAD induced mice.

4.3.2 Histopathology of Lung tissue in controls and infected AAD induced mice.

4.3.3 2-week old bacterial recovery from lung.

4.3.4 Antibody responses in 2-week old sham-infected and infected mice challenged with PBS or OVAp.

(C) 4-week old mice

4.3.1 Leukocyte infiltration into the airways in controls and infected AAD induced mice.

4.3.2 Histopathology of Lung tissue in controls and infected AAD induced mice.

4.3.3 4-week old bacterial recovery from lung.

4.3.4 Antibody responses in 4-week old sham-infected and infected mice sensitised and challenged with PBS or OVAp.

4.3.5 Cytokine responses in 4-week old control (PBS/PBS, OVA/OVAp) and infected mice challenged with PBS or OVAp (BCG: PBS/PBS, BCG: PBS/OVAp, BCG: OVA/OVAp).

4.3.6 Comparison of OVA +/- CD4+ T-cells in 4-week old sham-infected and infected mice challenged with PBS or OVAp.

(D) 6-week old mice

4.3.1 Leukocyte infiltration into the airways in controls and infected AAD induced mice.

4.3.2 Histopathology of Lung tissue in controls and infected AAD induced mice.

4.3.3 6-week old bacterial recovery from lung.
4.3.4 Antibody responses in 6-week old sham-infected and infected mice challenged with PBS or OVAp.

4.4 Discussion

CHAPTER 5

The effects of *S.typhimurium* infection at different stages of life on the development of AAD

5.1 Introduction

5.2 Materials and Methods

5.2.1 Animals

5.2.2 Bacteria

5.2.3 Determination of infection level in spleen homogenate, liver homogenate and gut wash

5.2.4 Induction of infection

5.2.5 Induction of AAD

5.2.6 Collection and analysis of samples (blood, BALF)

5.2.7 Lung histology

5.2.8 Collection of spleen and PBLNs

5.2.9 Collection and processing of spleen and liver tissue plus gut wash for bacterial recovery

5.2.10 Homogenisation of spleen and liver tissue and homogenate processing

5.2.11 Determination of total CFU by bacterial recovery

5.2.12 Isolation of splenocytes and PBLN cells for tissue culture

5.2.13 Isolation and staining of splenocytes and PBLN cells for flow cytometry

5.2.14 Processing and staining of splenocytes and PBLN cells for flow cytometry

5.2.15 Determination of antibody titres by ELISA

5.2.16 Determination of culture supernatant cytokine levels by ELISA

5.2.17 Statistical analysis

5.2.18 Experiment schematic

5.3 Results

(A) 0-day old mice

5.3.1 Leukocyte infiltration into the airways in sham-infected and infected mice challenged with PBS or OVAp.

5.3.2 Histopathology of lung tissue in sham-infected and infected mice challenged with PBS or OVAp.

5.3.3 0-day old bacterial recovery from lung.

5.3.4 Neonatal antibody responses in sham-infected and infected mice challenged with PBS or OVAp.

5.3.5 Cytokine responses in neonatal control (PBS/PBS, OVA/OVAp) and infected mice challenged with PBS or OVAp (BCG: PBS/PBS, BCG: PBS/OVAp, BCG: OVA/OVAp).

5.3.6 Percentage of CD4+ and OVAp-specific T-cells in sham-infected and infected mice challenged with PBS or OVAp.

(B) 2-week old mice
5.3.1 Leukocyte infiltration into the airways in controls and infected AAD induced mice 166
5.3.2 Histopathology of lung tissue in sham-infected and infected mice challenged with PBS or OVAp. 166
5.3.3 2-week old bacterial recovery from lung. 166
5.3.4 2-week old antibody responses in sham-infected and infected mice challenged with PBS or OVAp. 168
5.3.5 Cytokine responses in neonatal control (PBS/PBS, OVA/OVAp) and infected mice challenged with PBS or OVAp (BCG: PBS/PBS, BCG: PBS/OVAp, BCG: OVA/OVAp). 178
5.3.6 Percentage of CD4+ and OVAp-specific T-cells in sham-infected and infected mice challenged with PBS or OVAp. 181

5.4 Discussion 183

CHAPTER 6 187

Changes in immune parameters induced by neonatal BCG infection

6.1 Introduction 188
6.2 Materials and Methods 190
 6.2.1 Animals 190
 6.2.2 Bacteria 190
 6.2.3 Determination of infection levels 190
 6.2.4 Induction of infection 190
 6.2.5 Collection and analysis of samples (blood, BALF) 191
 6.2.6 Lung histology 191
 6.2.7 Collection of spleen and PBLNs 191
 6.2.8 Isolation of splenocytes and PBLN cells for flow cytometry and tissue culture 191
 6.2.9 Processing and staining of splenocytes and PBLN cells for flow cytometry 191
 6.2.10 Determination of antibody titres by ELISA 191
 6.2.11 Determination of culture supernatant cytokine levels by ELISA 191
6.2.12 Determination of OVA- specific and non-specific CD4+ T-cell levels by flow cytometry 191
6.2.13 Statistical analysis 191
6.2.14 Experiment schematic 192

6.3 Results 193
6.3.1 Leukocyte infiltration into the airways in sham-infected and infected mice. 193
6.3.2 Histopathology of lung tissue in sham-infected and infected mice 196
6.3.3 Antibody responses in sham-infected and infected mice. 198
6.3.4 Cytokine responses in sham-infected (PBS) and infected mice. 202
6.3.5 Percentage of CD4+, CD8+ and OVAp-specific T-cells in sham-infected and infected mice. 209

6.4 Discussion 212

CHAPTER 7 216

Changes in immune parameters induced by neonatal S.typhimurium infection

7.1 Introduction 217
7.2 Materials and Methods 219
7.2.1 Animals 219
7.2.2 Bacteria 219
7.2.3 Determination of infection levels 219
7.2.4 Induction of infection 219
7.2.5 Collection and analysis of samples (blood, BALF) 220
7.2.6 Lung Histology 220
7.2.7 Collection of spleen and PBLNs 220
7.2.8 Isolation of splenocytes and PBLN cells for flow cytometry and tissue culture 220
7.2.9 Processing and staining of splenocytes and PBLN cells for flow cytometry 220
7.2.10 Determination of antibody titres by ELISA 220
7.2.11 Determination of culture supernatant cytokine levels by ELISA 220
7.2.12 Determination of OVA- specific and non-specific CD4+ T-cell levels by flow cytometry 220
7.2.13 Statistical analysis 220
7.2.14 Experiment schematic 221

7.3 Results 222
7.3.1 Leukocyte infiltration into the airways in sham-infected and infected mice. 222
7.3.2 Histopathology of lung tissue in sham-infected and infected mice 225
7.3.3 Antibody responses in sham-infected and infected mice. 227
7.3.4 Cytokine responses in sham-infected (PBS) and infected mice. 231
7.3.5 Percentage of CD4+, CD8+ and OVAp-specific T-cells in sham-infected and infected mice. 238

7.4 Discussion 241

CHAPTER 8 General Discussion 244

8.1 Synopsis 245
 8.1.1 Hypothesis 245
 8.1.2 Aims 245
8.2 Conclusions 247
 8.2.1 BCG 247
 8.2.2 S. typhimurium 248
 8.2.3 The developing immune system 250
 8.2.4 Summary 251
8.3 Scope further investigation 252

LITERATURE CITED 253

Supplementary data 269
 Table of antibodies 270
List of Figures

Figure 1.1 Immune cells in asthma. 32
Figure 1.2 Possible mechanisms of action on the immune system after exposure to microbial antigens. 53
Figure 2.3.1a Increased total leukocyte levels in BALF from mice sensitised and challenged with OVA. 66
Figure 2.3.1b Leukocyte numbers in BALF from mice sensitised and challenged with OVA. 67
Figure 2.3.2 Increase in the number of eosinophils (A) and mucous secreting cells (B), in lung tissue of mice sensitised and challenged with OVA. 69
Figure 2.3.3 Increased OVA-specific Immunoglobulin IgG1(A), IgG2a (B) but not total IgE (C) levels in serum of mice sensitised and challenged with OVA. 71
Figure 2.3.4a No changes in the levels of (A) IFN-gamma, (B) IL-5, (C) IL-4 or (D) IL-13 in OVA-peptide stimulated splenocytes of mice sensitised with OVA and challenged with OVAp. 73
Figure 2.3.4b Decrease in the levels Th1 cytokine and increase in the levels of Th2 cytokine in OVA-peptide stimulated PBLN cultures of mice sensitised with OVA and challenged with OVAp. (A) IFN-gamma, (B) IL-5, (C) IL-4 or (D) IL-13. 74
Figure 3.3.1a Total leukocyte levels in BALF from the airways of BCG infected mice. 87
Figure 3.3.1b Differential leukocyte (A) Neutrophil, (B) Lymphocyte, (C) Macrophage, (D) Eosinophil levels of BALF from airways of BCG infected mice. 88
Figure 3.3.2 Correlation of weight loss with infectious load in mice exposed to BCG. 90
Figure 3.3.3 In vivo production of OVA by transgenic BCG recovered from the lungs of infected (A). WT and (B). OVA-TCR Tg mice. 92
Figure 3.3.4 Levels of BCG present in the lungs of OVA-TCRTg mice compared to wild-type mice at the peak of infection. 94
Figure 3.3.5a Total leukocyte levels in BALF from mice infected with S.typhimurium. 96
Figure 3.3.5b Leukocyte numbers in BALF from mice infected with *S. typhimurium*.

Figure 3.3.6 Weight loss caused by OVA-producing *S. typhimurium* infection in BALB/c mice compared to OVA-TCR Tg mice.

Figure 3.3.7 Levels of *S. typhimurium* present in the gastrointestinal tract of OVA-TCR Tg mice at the peak of infection.

Figure 4.2.18 Chapter 4 Experiment outline.

Figure 4.3.1a Total leukocyte levels in BALF of mice infected with BCG and sensitised and challenged with OVA.

Figure 4.3.1b Differential leukocyte counts (A) Macrophage, (B) Neutrophil, (C) Lymphocyte and (D) Eosinophil levels in BALF taken from airways of sham-infected and BCG infected mice sensitised and challenged with saline or OVA.

Figure 4.3.2 Decrease in (A) Eosinophils and (B) Mucous secreting cells in lung tissue from airways of sham-infected and BCG infected mice sensitised and challenged with saline or OVA.

Figure 4.3.3a Levels of BCG present in the lungs of mice at the time of sacrifice after infection/treatment as a neonate.

Figure 4.3.4a Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected as a neonate with BCG and challenged later in life with OVA.

Figure 4.3.5.1a Levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13, (E) GM-CSF in unstimulated, OVAp stimulated and CD3/CD28 stimulated splenocytes of neonatal sham-infected or BCG-infected and OVA or saline sensitised and challenged mice.

Figure 4.3.5.1b Levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13, (E) GM-CSF in unstimulated, OVAp stimulated and CD3/CD28 stimulated PBLN cell culture supernatants. PBLN cultures were from neonatal mice that were sham or BCG infected prior to OVA or saline sensitisation and challenge.

Figure 4.3.6.1 Percentage of (A) CD4+ cells as a percentage of total cells and (B) KJ1-26+ cells as a % of CD4+ cells in PBLN from mice that were sham or BCG infected as a neonate prior to OVA or saline sensitisation and challenge.
Figure 4.3.3b Levels of BCG present in the lungs of mice at the time of sacrifice after infection/treatment at 2-weeks of age. 126

Figure 4.3.4b Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected as a 2-week old's with BCG and challenged later in life with OVA. 128

Figure 4.3.3c Levels of BCG present in the lungs of mice at the time of sacrifice after infection/treatment at 4-weeks of age. 130

Figure 4.3.4c Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected as 4-week olds with BCG and challenged later in life with OVA. 132

Figure 4.3.5.2a Adult (4-week old) levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13 in unstimulated, OVAp stimulated and CD3/CD28 stimulated splenocytes of sham-infected or BCG-infected and OVA or saline sensitised and challenged mice. 134

Figure 4.3.5.2b Adult (4-week old) levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13 in unstimulated, OVAp stimulated and CD3/CD28 stimulated Peribronchial Lymph Node (PBLN) cell culture supernatants. PBLN cultures were from mice that were sham or BCG infected prior to OVA or saline sensitisation and challenge. 135

Figure 4.3.6.2 Percentage of (A) CD4+ cells as a percentage of total cells and (B) KJ1-26+ cells as a % of CD4+ cells in PBLN from mice that were sham or BCG infected as a neonate prior to OVA or saline sensitisation and challenge. 137

Figure 4.3.3d Levels of BCG present in the lungs of mice at the time of sacrifice after infection/treatment at 6-weeks of age. 139

Figure 4.3.4d Levels of Immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected as 6-week old's with BCG and challenged later in life with OVA. 141

Figure 5.2.18 Chapter 5 Experiment outline. 150

Figure 5.3.1a Total leukocyte levels in BALF of mice infected with S.typhimurium and sensitised and challenged with OVA. 153
Figure 5.3.1b Differential leukocyte (A) Macrophage, (B) Neutrophil, (C) Lymphocyte, (D) Eosinophil levels of BALF from airways of sham-infected and *S.typhimurium* infected mice sensitised and challenged with saline or OVA. 154

Figure 5.3.2 Decrease in (A) Eosinophils and (B) Mucous secreting cells in lung tissue from airways of sham-infected and *S.typhimurium* infected mice sensitised and challenged with saline or OVA. 156

Figure 5.3.3a Levels of *S.typhimurium* present in the organs of mice at the time of sacrifice after infection/treatment as a neonate. 158

Figure 5.3.4a Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected as a neonate with *S.typhimurium* and challenged later in life with OVA. 160

Figure 5.3.5.1a Levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13, (E) GM-CSF in unstimulated, OVAp stimulated and CD3/CD28 stimulated splenocytes of neonatal mice sham-infected or *S.typhimurium*-infected OVA or saline sensitised and challenged as adults. 162

Figure 5.3.5.1b Levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13, (E) GM-CSF in unstimulated, OVAp stimulated and CD3/CD28 stimulated PBLN cell culture supernatants. PBLN cultures were from neonatal mice sham-infected or *S.typhimurium*-infected OVA or saline sensitised and challenged as adults. 163

Figure 5.3.6.1 Percentage of (A) CD4+ cells as a percentage of total cells and (B) KJ1-26+ cells as a % of CD4+ cells in PBLN from mice that were sham or *S.typhimurium* infected as a neonate prior to OVA or saline sensitisation and challenge. 165

Figure 5.3.3b Levels of *S.typhimurium* present in the organs of mice at the time of sacrifice after infection/treatment at 2-weeks of age. 167

Figure 5.3.4b Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected at 2-weeks of age with *S.typhimurium* and challenged later in life with OVA. 169

Figure 5.3.3c Levels of *S.typhimurium* present in the organs of mice at the time of sacrifice after infection/treatment at 4-weeks of age. 171
Figure 5.3.4c Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected at 4-weeks of age with *S. typhimurium* and challenged later in life with OVA. 173

Figure 5.3.3d Levels of *S. typhimurium* present in the gastrointestinal organs of mice at the time of sacrifice after infection/treatment at 6-weeks of age. 175

Figure 5.3.4d Levels of immunoglobulin (A) OVA-specific IgG1 and IgG2a and (B) total IgE levels in serum of mice infected at 4-weeks of age with *S. typhimurium* and challenged later in life with OVA. 177

Figure 5.3.5.2a Adult levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13, (E) GM-CSF in unstimulated, OVAp stimulated and CD3/CD28 stimulated splenocytes of sham-infected or *S. typhimurium*-infected and OVA or saline sensitised and challenged mice. 179

Figure 5.3.5.2b Adult levels of (A) IL-5, (B) IFN-gamma, (C) IL-4, (D) IL-13, (E) GM-CSF in unstimulated, OVAp stimulated and CD3/CD28 stimulated PBLN cell culture supernatants. PBLN cultures were from mice that were sham or *S. typhimurium* infected prior to OVA or saline sensitisation and challenge. 180

Figure 5.3.6.2 Percentage of (A) CD4+ cells and (B) KJ1-26+ cells as a % of total CD4+ cells in PBLN from mice that were sham or *S. typhimurium* infected at 6-weeks of age prior to OVA or saline sensitisation and challenge. 182

Figure 6.2.14 Chapter 6 Experiment outline. 192

Figure 6.3.1a Total leukocyte levels in BALF of mice infected with BCG or sham-infected as a neonate. 194

Figure 6.3.1b Differential leukocyte (A) Macrophage, (B) Neutrophil, (C) Lymphocyte, (D) Eosinophil levels of BALF from airways of sham-infected and BCG infected neonatal mice. 195

Figure 6.3.2 (A) Eosinophils and (B) Mucous secreting cells in lung tissue from airways of sham-infected and BCG infected neonatal mice. 197

Figure 6.3.3a Levels of immunoglobulin OVA-specific (A) IgG2a and (B) IgG1 in serum of mice infected as a neonate with BCG or sham-infected. 199
Figure 6.3.3b Dynamics of serum IgG1/IgG2a ratio in mice infected as a neonate with BCG compared to sham-infected mice. 200

Figure 6.3.3c Levels of immunoglobulin, total IgE in serum of mice infected as a neonate with BCG or sham-infected. 201

Figure 6.3.4a Levels of IL-5 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or BCG infected mice. 204

Figure 6.3.4b Levels of IL-10 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or BCG infected mice. 205

Figure 6.3.4c Levels of IL-4 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or BCG infected mice. 206

Figure 6.3.4d Levels of IL-13 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or BCG infected mice. 207

Figure 6.3.4e Levels of IFN-γ (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or BCG infected mice. 208

Figure 6.3.5a Percentage of (A) CD4+ cells (B) CD8+ cells and KJ1-26+ cells as a % of total (C) CD4+ cells and (D) CD8+ cells in splenocytes from mice that were sham or BCG infected as neonates. 210

Figure 6.3.5b Percentage of (A) CD4+ cells (B) CD8+ cells and KJ1-26+ cells as a % of total (C) CD4+ cells and (D) CD8+ cells in PBLN from mice that were sham or BCG infected as neonates. 211

Figure 7.2.14 Chapter 7 Experiment outline. 221

Figure 7.3.1a Total leukocyte levels in BALF of mice sham-infected or infected with S.typhimurium as a neonate. 223

Figure 7.3.1b Differential leukocyte (A) Macrophage, (B) Neutrophil, (C) Lymphocyte, (D) Eosinophil levels of BALF from airways of sham-infected and S.typhimurium infected neonatal mice. 224

Figure 7.3.2 Decrease in (A) Eosinophils and (B) Mucous secreting cells in lung tissue from airways of sham-infected and S.typhimurium infected neonatal mice. 226
Figure 7.3.3a Levels of immunoglobulin OVA-specific (A) IgG2a and (B) IgG1 in serum of mice infected as a neonate with *S. typhimurium* or sham-infected.

Figure 7.3.3b Dynamics of serum IgG1/IgG2a ratio in mice infected as a neonate with *S. typhimurium* compared to sham-infected mice.

Figure 7.3.3c Levels of immunoglobulin, total IgE in serum of mice infected as a neonate with *S. typhimurium* or sham-infected.

Figure 7.3.4a Levels of IL-5 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or *S. typhimurium* infected mice.

Figure 7.3.4b Levels of IL-10 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or *S. typhimurium* infected mice.

Figure 7.3.4c Levels of IL-4 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or *S. typhimurium* infected mice.

Figure 7.3.4d Levels of IL-13 (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or *S. typhimurium* infected mice.

Figure 7.3.4e Levels of IFN-γ (A, D) unstimulated, (B, E) OVAp stimulated, (C, F) CD3/CD28 stimulated, (A,B,C) splenocytes and (D,E,F) PBLN of neonatally sham-infected or *S. typhimurium* infected mice.

Figure 7.3.5a Percentage of (A) CD4+ cells (B) CD8+ cells and KJ1-26+ cells as a % of total (C) CD4+ cells and (D) CD8+ cells in splenocytes from mice that were sham or *S. typhimurium* infected as neonates.

Figure 7.3.5b Percentage of (A) CD4+ cells (B) CD8+ cells and KJ1-26+ cells as a % of total (C) CD4+ cells and (D) CD8+ cells in PBLN from mice that were sham or BCG infected as neonates.
List of Abbreviations

2-ME 2-mercaptoethanol
AAI allergic airways inflammation
AAD allergic airways disease
Ab antibody
ACCM animal cell culture medium
AHR airways hyper-responsiveness
ANOVA analysis of variance
APC antigen-presenting cell
Aro aromatic prechorismate pathway
BALF broncho-alveolar lavage fluid
BCA bicinchoninic acid
BCG Mycobacterium bovis (Bacille Calmette Guerin)
BSA bovine serum albumin
CD cluster of differentiation
CFU colony forming units
COPD chronic obstructive pulmonary disease
d day
DC dendritic cell
ELISA enzyme linked immunosorbant assay
FACS fluorescence-activated cell sorting
FCS foetal calf serum
G gravity
GI gastro-intestinal
GINA global initiative for asthma
GM-CSF granulocyte-macrophage colony stimulating factor
HBSS Hank’s buffered salt solution
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IFN interferon
Ig immunoglobulin
IL interleukin
i.n. intranasal
i.p. intraperitoneal
iTreg inducible T-regulatory cell
i.v. intravenous
IVC individually ventilated cage
LB Luria-Burtani
LH lung homogenate
LN lymph node
LPS lipopolysaccharide
m monoclonal
M-cells microfold cells
mDC myeloid dendritic cell
MSC mucous secreting cell
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEA</td>
<td>non-eosinophilic asthma</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>NKT</td>
<td>natural killer T-cell</td>
</tr>
<tr>
<td>nTreg</td>
<td>natural T-regulatory cell</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OVA</td>
<td>ovalbumin</td>
</tr>
<tr>
<td>OVAp</td>
<td>ovalbumin peptide</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen associated molecular pattern</td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid Schiff</td>
</tr>
<tr>
<td>PBLN</td>
<td>peri-bronchial lymph node</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>pDC</td>
<td>plasmacytoid dendritic cell</td>
</tr>
<tr>
<td>PMN</td>
<td>polymorphonuclear</td>
</tr>
<tr>
<td>PP</td>
<td>Peyer’s patch</td>
</tr>
<tr>
<td>PRR</td>
<td>pathogen recognition receptor</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SPBS</td>
<td>sterile phosphate buffered saline</td>
</tr>
<tr>
<td>SPF</td>
<td>specific pathogen free</td>
</tr>
<tr>
<td>STAT-6</td>
<td>Signal transducer and activator of transcription-6</td>
</tr>
<tr>
<td>Tg</td>
<td>transgenic</td>
</tr>
<tr>
<td>TCR</td>
<td>T-cell receptor</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TMB</td>
<td>Tetra-methyl benzidine</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>Tregs</td>
<td>regulatory T-cell</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>WCC</td>
<td>white cell count</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
</tbody>
</table>
Conference proceedings arising from this work

Conference presentations

Conference poster presentations

Competitive grants arising from this work

Professor Paul Foster, **Ms Angela Ferguson**. (2006)- ‘CD4+T-cell programming in early life and neonatal infection’. GSKA Post Graduate Support Grant, GlaxoSmithKline Australia, Boronia, Vic. ($A25, 000 over two years).
ABSTRACT

Asthma is a chronic inflammatory disease of the airways that is characterised by activation of CD4+ T-helper 2 type (Th) cells and eosinophils. The cause of this aberrant Th2 response is unknown but lack of early life infection is thought to play a significant role. The timing of infection and the type of pathogen may be critical to programming the immune response to a protective Th1, or destructive Th2, phenotype.

The immune responses to infection with Salmonella typhimurium and Mycobacterium bovis Bacille Calmette Guerin (BCG) have been identified as targets for reprogramming or preventing the development of asthma. However, the role of these infections in contributing to a Th2-Th1 switch or suppression of this response remains limited. In this investigation ovalbumin (OVA) T-cell receptor (TCR) transgenic (Tg) mice in combination with these bacterial strains expressing OVA have been used to specifically track the affects of each infection as well as OVA exposure on the T-cell response and the development of allergic airways disease (AAD) in the mouse model.

BCG infection as an adult and a neonate prior to OVA challenge induced significant reductions in eosinophils in broncho-alveolar lavage fluid (BALF) and lung tissue compared to sham-infected mice that received OVA challenge. However, high levels of both Th1 (interferon gamma (IFN-γ)) and Th2 (interleukin (IL)-4, IL-5, IL-13) cytokines from supernatants of cultured peri-bronchial lymph node (PBLN) cells and splenocytes were found in all groups examined. Further studies tracking the development of the immune system after BCG infection at birth without OVA exposure revealed significant decreases in lung tissue eosinophils and decreased immunoglobulin (Ig) G1, IgG2a and IgE levels from serum compared to sham-infected controls. This coincided with decreased numbers of CD4+ and CD8+ T-cells in the spleens and PBLN cells. Levels of cytokines in splenocytes and PBLN cell cultures failed to show significant trends toward either a polarised Th1 or Th2, leaving a mixed Th1/Th2 phenotype.

Infection with S.typhimurium lowered eosinophil levels in BALF, and mucous secreting cell (MSC) and eosinophil number in lung tissue after challenge with