Investigation of the transcription complex in *Acinetobacter baylyi* ADP1 and the identification of a novel small acidic transcription factor AtfA

Ryan Withers
BBiotech (Hons)

Doctor of Philosophy (PhD) Thesis
August 2012

Department of Biological Sciences
University of Newcastle, Australia
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or any other institution and, to the best of my knowledge and belief, contains no material previously published or written to any other person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Ryan Withers
Acknowledgements

There are many people I would like to acknowledge and thank for providing me with the support, encouragement and motivation to complete my PhD.

I would firstly like to thank my supervisor Peter Lewis who has supported me throughout my PhD with his patience and knowledge. I am very grateful for the opportunity you provided me. Without it I would not be where I am today.

To all the members of the Lewis Lab past and present, thank you for making the past 4 years very memorable. Thank you to all those who have shared their expertise and knowledge with me but also to those who have provided me a light hearted escape from my research and kept things in perspective.

Finally I would like to thank my family and friends who have supported me throughout this journey. A special thank you to my Mum and Dad for the support they have provided me during my PhD. Whether it is cooking dinner, doing the dishes or simply showing an interest, I am truly grateful for everything you have done for me. Luke and Kirsten, you may not completely understand what I did but thank you for being there through the ups and downs. And yes Kirsten this means I will have finished, I guess this means I could one day be your boss. Finally to Kate, thank you for your continued support and encouragement, especially over the past 6 months. Completing this thesis would have been impossible without you.
Contents

ABSTRACT ... 1

CHAPTER 1: GENERAL INTRODUCTION .. 3
1.1 BACKGROUND INTRODUCTION ... 4
1.2 ACINETOBACTER SPP .. 5
1.3 PROKARYOTIC RNA POLYMERASE ... 7
 1.3.1 STRUCTURE AND FUNCTION OF RNA POLYMERASE ... 7
 1.3.2 STRUCTURE AND FUNCTION OF σ FACTORS ... 12
 1.3.3 ANTI-σ FACTORS .. 15
1.4 PROKARYOTIC TRANSCRIPTION .. 16
 1.4.1 INITIATION OF TRANSCRIPTION ... 17
 1.4.2 ELONGATION OF TRANSCRIPTION ... 21
 1.4.3 TERMINATION OF TRANSCRIPTION ... 22
 1.4.3.1 Rho-independent termination ... 23
 1.4.3.2 Rho-dependent termination ... 24
1.5 TRANSCRIPTION FACTORS .. 26
 1.5.1 NUS .. 27
 1.5.2 NUSB AND NUSE ... 30
 1.5.3 NUSG .. 30
 1.5.4 GREA AND GREB .. 32
 1.5.5 MFD ... 34
1.6 TRANSCRIPTION ANTITERMINATION .. 36
1.7 TRANSCRIPTION AS A POTENTIAL TARGET FOR THE DEVELOPMENT OF ANTIMICROBIAL COMPOUNDS .. 38
1.8 PROJECT AIMS .. 41
CHAPTER 2: MATERIALS AND METHODS ... 43
2.1 SOLUTIONS .. 44
2.2 GROWTH MEDIA ... 44
 2.2.1 SOLID MEDIA ... 44
 2.2.2 LIQUID MEDIA ... 44
 2.2.3 BACTERIAL STOCKS ... 45
2.3 PLASMIDS AND STRAINS ... 45
 TABLE 2.1: BACTERIAL STRAINS AND PLASMIDS USED AND CREATED IN THIS WORK 45
2.4 TRANSFORMATION PROTOCOLS ... 50
 2.4.1 TRANSFORMATION OF COMPETENT E. COLI ... 50
 2.4.2 TRANSFORMATION OF NATURALLY COMPETENT A. BAYLI ADP1 50
 2.4.3 TRANSFORMATION OF A. BAUMANNII .. 51
2.5 DNA MANIPULATIONS .. 51
 2.5.1 PCR AMPLIFICATIONS .. 51
 2.5.2 DNA AGAROSE GEL ELECTROPHORESIS ... 54
 2.5.3 GEL PURIFICATION OF DNA .. 54
 2.5.4 RESTRICTION DIGEST ... 54
 2.5.5 LIGATION .. 56
 2.5.6 Oligonucleotide Linker Preparation ... 56
 2.5.7 ISOLATION OF PLASMID DNA FROM E. COLI ... 57
2.20 C. ELEGANS KILLING ASSAYS .. 77
2.19 TWITCHING MOTILITY ASSAYS .. 76
2.18 BIOFILM ASSAYS .. 76
2.17 CO-GROWTH COMPETITION ASSAYS 75
2.16 NEXT GENERATION SEQUENCING ... 74
2.15 ABSOLUTE QUANTIFICATION OF GFP FUSION PROTEINS 73
2.14 DNA BAND SHIFT ASSAYS .. 72
2.13 IN VITRO TRANSCRIPTION ASSAYS .. 71
2.12 AFFINITY GEL CHROMATOGRAPHY ... 70
2.11 MICROSCOPY .. 67
2.10 MASS SPECTROMETRY ... 66
2.9 PROTEIN COMPLEX ISOLATIONS USING AFFINITY PURIFICATIONS .. 65
2.8 PROTEIN OVERPRODUCTION AND PURIFICATION 61
2.7 CONSTRUCTION OF A. BAYLYI ADP1 STRAINS BY DOUBLE CROSSOVER .. 60
2.6 CONSTRUCTION OF A SIMPLIFIED FERMENTER 59
2.5.10 DNA Sequencing .. 58
2.5.9 CHLOROFORM EXTRACTION OF CHROMOSOMAL DNA FROM A. BAYLYI AND A. B. BAUMANNI .. 58
2.5.8 ETHANOL PRECIPITATION OF DNA ... 57
2.5.7.2 Promega kit prep ... 57
2.5.7.1 Alkaline lysis method .. 57
2.5.7 DNA BAND SHIFT ... 56
2.5.6 AFFINITY GEL CH .. 55
2.5.5 MASS SPECTROMETRY ... 54
2.5.4 PROTEIN OVERPRODUCTION ... 53
2.5.3 CONSTRUCTION ... 52
2.5.2 FERMENTER CULTURE CONDITIONS 51
2.5.1 FERMENTER SET-UP ... 50
2.5.1 ALKALINE LYSIS METHOD .. 49
2.5.1 Mass Spectrometry .. 48
2.5.1 CONSTRUCTION ... 47
2.5.1 Fermenter Culture Conditions .. 46
2.5.1 Fermenter Set-Up .. 45
2.4.4 PROTEIN PURIFICATION ... 44
2.4.3 PROTEIN SOLUBILITY .. 43
2.4.2 PROTEIN STABILITY .. 42
2.4.1 PROTEIN ISOLATION ... 41
2.3.6 REVERSE TRANSCRIPTION ... 40
2.3.5 DNA BAND SHIFT ... 39
2.3.4 DNA SEQUENCING .. 38
2.3.3 DNA CONSTRUCTION .. 37
2.3.2 DNA EXTRACTION .. 36
2.3.1 DNA ISOLATION .. 35
2.2.9 Mass Spectrometry ... 34
2.2.8 PROTEIN PURIFICATION ... 33
2.2.7 PROTEIN SOLUBILITY .. 32
2.2.6 PROTEIN STABILITY ... 31
2.2.5 PROTEIN ISOLATION ... 30
2.2.4 CONSTRUCTION ... 29
2.2.3 Fermenter Culture Conditions .. 28
2.2.2 Fermenter Set-Up .. 27
2.2.1 ALKALINE LYSIS METHOD .. 26
2.1.1 Mass Spectrometry ... 25
2.1.1 CONSTRUCTION ... 24
2.1.1 Fermenter Culture Conditions .. 23
2.1.1 Fermenter Set-Up .. 22
2.20.1 GROWTH CONDITIONS ... 77
2.20.2 SYNCHRONIZING THE WORMS .. 77
2.20.3 KILLING ASSAY .. 78

2.21 CIRCULAR DICHROISM ... 78

CHAPTER 3: ESTABLISHING IN VITRO TRANSCRIPTION ASSAYS FOR ACINETOBACTER SPP ... 79
3.1 INTRODUCTION .. 80
3.2 RESULTS .. 84
 3.2.1 CONSTRUCTING HIS-TAGGED RNAP .. 84
 3.2.2 DEVELOPMENT OF A SIMPLIFIED FERMENTER FOR PURIFICATION OF RNAP ... 86
 3.2.3 DNA TEMPLATE DESIGN .. 93
 3.2.4 PROMOTER SELECTION .. 94
 3.2.5 TERMINATOR SELECTION ... 98
 3.2.6 TEMPLATE OVERVIEW ... 99
 3.2.7 OVERPRODUCTION AND PURIFICATION OF TRANSCRIPTION FACTORS FROM A. BAYLYI ADP1 100
 3.2.8 IN VITRO TRANSCRIPTION ASSAYS .. 102
3.3 DISCUSSION ... 107
 3.3.1 EFFECTIVENESS OF THE SIMPLIFIED FERMENTER 108
 3.3.2 PURIFICATION OF RNAP ... 109
3.4 CONCLUSIONS .. 109

CHAPTER 4: INVESTIGATION OF THE PROTEIN-PROTEIN NETWORK ASSOCIATED WITH TRANSCRIPTION COMPLEXES IN ACINETOBACTER BAYLYI ADP1 110
4.1 INTRODUCTION .. 111
4.2 RESULTS .. 113
 4.2.1 CONSTRUCTION OF RpOC-GST AND NUSA-GST LABELLED STRAINS ... 113
 4.2.2 RESULTS OF THE GST ISOLATIONS .. 115
 4.2.3 INVESTIGATION OF THE INTERACTION BETWEEN RNAP AND RHO ... 122
 4.2.4 GENERATION OF A SHORTLIST OF POTENTIAL TRANSCRIPTION FACTORS ... 128
 4.2.5 CONSTRUCTION OF GFP-LABELLED STRAINS 134
 4.2.6 SUBCELLULAR LOCALISATION OF GFP LABELLED STRAINS 139
 4.2.7 CHLORAMPHENICOL TREATMENT OF A. BAYLYI ADP1 CELLS 141
 4.2.8 CEPHALEXIN TREATMENT OF A. BAYLYI ADP1 CELLS 143
 4.2.9 NALIDIXIC ACID TREATMENT OF A. BAYLYI ADP1 CELLS 145
 4.2.10 AFFINITY ISOLATION OF ACIAD2924 PROTEIN COMPLEXES 151
 4.2.11 AFFINITY CHROMATOGRAPHY ... 154
4.3 DISCUSSION ... 160
 4.3.1 INVESTIGATION OF TRANSCRIPTION COMPLEXES USING AFFINITY CHROMATOGRAPHY ... 160
 4.3.2 COVERAGE OF AFFINITY PURIFICATIONS ... 163
 4.3.3 INTERACTION BETWEEN RNAP AND RHO 165
 4.3.4 INTERACTION BETWEEN RNAP AND ACIAD2924 166
4.4 CONCLUSIONS .. 166

CHAPTER 5: CHARACTERISATION OF THE NOVEL RNAP INTERACTING PROTEIN ATFA FROM A. BAYLYI ADP1 ... 168
5.1 INTRODUCTION .. 169
5.2 RESULTS .. 169
 5.2.1 GENOMIC ANALYSIS OF ATFA ... 169
 5.2.2 STUDIES ON THE DELETION OF ATFA IN ACINETOBACTER SPP ... 174
 5.2.3 CO-CULTURE COMPETITION ASSAYS .. 182
 5.2.4 TRANSCRIPTOMIC ANALYSIS OF THE DELETION OF ATFA 184
5.2.5 GLOBAL CHANGES IN GENE EXPRESSION CAUSED BY THE DELETION OF ATFA .. 190
 5.2.5.1 Stress related genes .. 195
 5.2.5.2 Iron uptake and scavenging genes ... 199
 5.2.5.3 Chromosome partitioning genes ... 200
 5.2.5.4 Twitching and biofilm formation ... 201
 5.2.6 INTERACTION BETWEEN ATFA AND E. COLI RNAP .. 206
 5.2.7 DISPLACEMENT OF DNA FROM RNAP BY ATFA ... 208
 5.2.8 ABSOLUTE QUANTIFICATION OF RNAP AND ATFA .. 211
 5.2.9 CIRCULAR DICHOISM OF ATFA .. 212
5.3 DISCUSSION .. 215
 5.3.1 CHARACTERISATION OF ATFA ... 215
5.4 CONCLUSIONS ... 217

CHAPTER 6: GENERAL DISCUSSION ... 218
6.1 INTRODUCTION ... 219
6.2 INVESTIGATION OF THE TRANSCRIPTION COMPLEX OF A. BAYLI ADP1 219
6.3 INVESTIGATION OF THE INTERACTION BETWEEN RNAP AND RHO 222
6.4 CHARACTERISATION OF ATFA .. 223
6.5 CONCLUSIONS .. 227

REFERENCES .. 229

APPENDICES ... 255
APPENDIX I: AMINO ACID ALIGNMENTS OF THE TRANSCRIPTION MACHINERY FROM A. BAYLI ADP1 AND E. COLI .. 256
APPENDIX II: MEDIA AND BUFFERS .. 265
APPENDIX III: MASS SPECTROMETRY RESULTS (PROCESSED) ... 274
APPENDIX IV: MASS SPECTROMETRY METADATA .. 283
APPENDIX V: TRANSCRIPTOMIC DATA (PROCESSED) ... 285
APPENDIX VI: TRANSCRIPTOMIC METADATA ... 301
Abstract

Transcription is an essential process by which DNA is transcribed into RNA by the multi-subunit enzyme RNA polymerase (RNAP). In prokaryotes, a single species of RNAP is responsible for the transcription of all forms of RNA (mRNA, rRNA and tRNA). Previous studies have shown that RNAP forms an extensive network of protein-protein interactions that help regulate the efficiency of transcription. Little is known about transcription and its regulation in the *Acinetobacter* spp. This group of bacteria have become notorious in recent years for their ability to rapidly acquire antibiotic resistance and hence form recalcitrant infections. This project aimed to investigate the protein-protein interactions which occur with RNAP during transcription in *Acinetobacter baylyi* ADP1 to determine if the basic components of transcription complexes are conserved in this highly diverged group of the γ proteobacteria.

The characterisation of the *A. baylyi* ADP1 transcription complexes using affinity purifications demonstrated that the protein interaction network was extensive and similar to that of well-studied model organisms such as *Escherichia coli* (Gram negative) and *Bacillus subtilis* (Gram positive). In total 233 proteins were identified, of which 13 were known, by similarity, to be transcription-related. The transcription terminator protein Rho was shown to interact directly with RNAP, confirming it forms a genuine component of the transcription complex during exponential growth. Surprisingly, and contrary to findings from previous studies, the data from this project provided evidence that Rho is essential for viability in *Acinetobacter* spp.
Eight potential transcription factors identified during affinity purifications were screened using GFP localisation studies. Of these, the hypothetical protein ACIAD2924 was shown to localise along with RNAP to the nucleoid of the cell. Affinity chromatography confirmed a direct but weak interaction between ACIAD2924 and RNAP. Subsequently ACIAD2924 was renamed to AtfA (Acidic Transcription Factor A), due to its acidic nature.

Initial characterisation of the novel transcription factor, has provided information to hypothesise the potential functions of AtfA. DNA bandshift assays illustrated that AtfA was able to displace DNA from core RNAP but not the holoenzyme, suggesting a role in the elongation phase of transcription. The AtfA deletion strain displayed a morphological phenotype whereby a significant increase in cell size was observed. RNAseq showed that 522 genes were differentially expressed in the absence of AtfA. Interestingly, genes involved in motility (type IV pili) as well as the type VI secretion system were shown to be down-regulated. The deletion strain showed a significant reduction in twitching motility and ability to form a biofilm. AtfA’s involvement in biofilm formation has great clinical significance as a potential target for the development of compounds which could prevent γ proteobacteria pathogens from forming biofilms and providing protection against conventional antibiotics.