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Abstract

Tests for Hardy-Weinberg equilibrium (HWE) have been used to detect genotyping error, but
those tests have low power unle the sample size is very large. We aeed the performance of measures
of departure from HWE as an alternative way of screening for genotyping error. Three measures
of the degree of disequilibrium (α, ,D, and F) were tested for their ability to detect genotyping
error of 5% or more using simulations and a real dataset of 184 children with leukemia genotyped
at 28 single nucleotide polymorphisms. The simulations indicate that all three disequilibrium
coefficients can usefully detect genotyping error as judged by the area under the Receiver Operator
Characteristic (ROC) curve. Their discriminative ability increases as the error rate increases, and
is greater if the genotyping error is in the direction of the minor allele. Optimal thresholds for
detecting genotyping error vary for different allele frequencies and patterns of genotyping error
but allele frequency-specific thresholds can be nominated. Applying these thresholds would have
picked up about 90% of genotyping errors in our actual dataset. Measures of departure from HWE
may be useful for detecting genotyping error, but this needs to be confirmed in other real datasets.

KEYWORDS: association study, Hardy-Weinberg equilibrium, genotyping error, disequilibrium
coefficient
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Introduction 
 
An increasing number of epidemiological studies are incorporating large-scale 
genotyping of polymorphisms, including genome-wide association studies 
(GWAs), to explore gene-disease associations and gene and environment 
interactions.  Given that no genotyping method is 100% accurate and that 
genotype mistakes can lead to increased random error and bias in gene-disease 
associations (Gordon, et al. 2001; Gordon, et al. 1999b; Govindarajulu, et al. 
2006), methods have been developed to detect and, where possible, deal with 
genotyping error.  These methods have followed five main avenues: 

• Genotyping in duplicate to confirm results (Gordon, et al. 2004; Rice and 
Holmans 2003; Tintle et al. 2007), although at substantial added expense;  

• Dropping ambiguous or difficult to call genotypes, which leads to reduced 
power (Kang, et al. 2004); 

• Developing analytic methods that correct for some degree of genotyping 
error (Hao and Wang 2004); 

• In family-based designs, checking for Mendelian inconsistencies, although 
this appears to have low sensitivity, detecting only 25-30% of errors 
(Gordon, et al. 1999a); and 

• Using tests of Hardy-Weinberg equilibrium (HWE) to prompt re-checking 
of genotype information (Tiret and Cambien 1995; Xu, et al. 2002). This 
latter method is based on the assumption that in a large, randomly mating 
population, genotype frequencies should comply with HWE proportions. 
Deviation from these proportions can be caused by many factors, one of 
which is genotyping error.  
The last approach has received much attention, but both actual data 

(Hosking, et al. 2004) and simulations(Cox and Kraft 2006; Leal 2005; Zou and 
Donner 2006)  have indicated that tests of HWE have poor power to detect 
genotyping error at common allele frequencies.  Compounding the problem of 
low power at small sample sizes is the separate problem of excessive power at 
very large sample sizes. The consequence of viewing the detection of genotyping 
errors as a problem of statistical testing is that, like all statistical tests, there will 
be too many false negatives at low sample sizes and the detection of negligible 
and practically unimportant deviations at very large sample sizes (Wigginton et al. 
2005; Rohlfs and Weir 2008).  For example, if genotyping of 102 people at a 
diallelic locus leads to genotype frequencies of 48, 41 and 13 (minor allele 
frequency of 33%), a test of HWE indicates no evidence of deviation (Chi-square 
P = 0.370, Exact test P = 0.373).  However, increasing the sample size 10-fold 
while keeping the genotype proportions the same, i.e. 480, 410, and 130, produces 
a different conclusion based on HWE testing (Chi-square P = 0.005, Exact test P 
= 0.006). This dependence of tests for HWE on sample size is a major drawback 
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when using HWE to detect genotyping error, and highlights the well described 
pitfall of relying on a p-value of testing to judge “significance” (Rothman 2002).  
Some authors have sought to get around this problem by routinely adjusting the 
Chi-square test for genetic association to account for deviations from HWE rather 
than attempting to detect whether or not such deviations are present (Weir 1996; 
Zou and Donner 2006).   

Instead of focusing simply on whether proportions are or are not consistent 
with HWE, we propose to look at measures that quantify the degree of deviation 
from HWE for detecting genotyping error and to view the problem as one of 
screening rather than testing for genotyping error.  Three commonly used 
measures have already been defined in the literature - the “inbreeding coefficient” 
(F) (Weir 1996), the “disequilibrium parameter” (D) (Hernandez and Weir 1989), 
and the “alpha parameter” (α) (Lindley 1998) - but to date their use to detect 
genotyping error has not been explored. They all have the favorable property that 
they vary according to genotype proportions and not sample size.  For instance, in 
the example above, the values of α, F, and D remain at 0.198, 0.089, and 0.020 
despite the 10-fold increase in sample size.  

Most previous simulation studies of genotyping error have assumed non-
differential error (Gordon, et al. 2004; Zou and Donner 2006) or error that is 
differential between cases and controls (Moskvina et al. 2006; Ahn et al. 2009). In 
reality however, genotyping error may also be differential in hybridization or 
amplification, in that heterozygotes are more likely to be miscalled as 
homozygotes than vice versa (Milne, et al. 2006) and this pattern is incorporated 
in our simulations.  We compared the disequilibrium measures (α, F, and D) to 
see which would best be able to detect differential hybridization or amplification 
genotyping error and what the optimal threshold for detection might be.  These 
thresholds were then used for data from our study of childhood leukemia (Milne, 
et al. 2006), under the assumption that whole–genome amplified samples from 
buccal swabs have more genotyping errors than samples taken from whole blood 
in the same person. 
  
Methods 
 
AUS-ALL study and laboratory methods 
 
The Australian Study of Causes of Acute Lymphoblastic Leukaemia in Children 
(AUS-ALL) is a population-based case-control study that began in 2003.  Case 
families were identified through the ten pediatric oncology centers in Australia, 
and control families through national random-digit dialing.  Case children and 
their parents provided blood samples during routine hospital visits, and buccal 
samples were also collected from case children. The latter were collected to 
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provide a comparison of genotyping results from blood and buccal DNA.  The 
study was approved by the Human Research Ethics Committees of the ten 
participating hospitals and parents also completed DNA consent forms. 

For this study we included genotype data from 184 case children who 
provided usable blood and buccal samples. Blood samples were collected in 
EDTA blood collection tubes and buccal samples were collected using FTA® 
Micro cards in accordance with the manufacturer’s instructions (Whatman 
International Ltd., Maidstone, United Kingdom). All samples were sent to the 
laboratory within 24 hours of collection. Genomic DNA was isolated from blood 
samples using the Wizard Genomic DNA Purification Kit (Promega, Sydney 
Australia) and DNA was extracted from FTA® cards as recommended by the 
manufacturer (Whatman International Ltd.). Samples extracted from FTA® cards 
were whole genome amplified using GenomiPhi DNA amplification Kit 
(Amersham, GE Healthcare) to increase the quantity of DNA for, and for ease of, 
genotyping.  

Because of their specific expertise, three separate laboratories genotyped 
the bloods for a number of polymorphisms in genes coding for folate 
metabolizing enzymes, DNA repair enzymes, and xenobiotic metabolizing 
enzymes.  We conducted between- and within-laboratory quality control checks.  
In relation to the former, the MTHFR C667T polymorphism was analyzed at each 
laboratory; this SNP was selected because the primary hypothesis for AUS-ALL 
relates to folate intake and metabolism.  Genotyping was performed using 
TaqMan® SNP Genotyping Assays (Applied Biosystems) and polymorphism 
specific probes and primers were used according to standard laboratory protocols. 
All laboratory personnel were blinded to the DNA source and case or control 
status of each sample.  We report here only the results of 28 diallelic SNPs 
(including MTHFR C677T at the three laboratories) where the blood genotyping 
proportions show no evidence of deviation from HWE (Chi square P > 0.05). 
 
Simulations and analysis 
 
Simulations were run assuming a diallelic locus. Letting A and a represent the 
major (common) and minor alleles respectively, the allele frequencies are pA and 
pa respectively, where pA+pa=1.  The genotyping error rate was represented byε  
and three types of genotyping error were simulated: 

• Scenario 1: Some of the heterozygotes are miscalled as being homozygous 
for the common allele, i.e. there is loss of heterozygosity in the direction 
of the major allele. The resulting genotype frequencies, P,  are:  
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• Scenario 2: Some of the heterozygotes are miscalled as being homozygous 
for the minor allele, i.e. there is loss of heterozygosity in the direction of 
the minor allele.  The genotype frequencies here are represented by: 
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• Scenario 3: Some of the heterozygotes are miscalled in such a way that 
they are equally likely to be homogygous for the major or minor alleles.  
The genotype frequencies here are represented by: 
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Because of the balanced errors in this scenario, the allele frequencies do 
not change, unlike scenarios 1 and 2. 

In each scenario the proportions reduce to those predicted under HWE (pA
2, 

2pApa, pa
2) when the error rate, ε, is zero. 

In each simulation, a set of SNPs was randomly created; half were given a 
very low genotyping error rate (below 5%) and the other half were given a higher 
error rate (5% or more). The measures of departure from HWE were calculated 
and used as the basis of a screen to try to differentiate between the SNPs with 
high and low rates of genotyping error. 
 In the simulations the following parameters were varied: 

• The higher genotyping error rate: the percentage of heterozygotes that are 
miscalled was varied (5%, 10%, 20%, 30% and 50%).  Although the 
highest genotyping error rates are unlikely, these values were chosen to 
indicate trends. 

• Minor allele frequency was varied from 5, 10, 20, 30 and 50%. 
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Calculation of disequilibrium measures 
 
The three measures of disequilibrium were calculated as follows; assuming that 
AA, Aa, and aa are the three genotype groups, and Pxx and px refer to the observed 
genotype proportions and allele frequencies respectively, as above: 
 
a) Inbreeding coefficient (F)(Weir 1996) 
   F = Paa/pa+ PAA/pA -1       
where the bounds on F are functions of the allele frequencies: 
  max[-pa/pA, - pA/pa] ≤ F ≤ 1 
 
b) Disequilibrium parameter (D)(Hernandez and Weir 1989) 
   D = PAA – pA

2 

where the bounds on D are functions of the allele frequencies:  
max[-pa

2, -pA
2] ≤ D ≤ papA 

  
c) Alpha (α) (Lindley 1998) 

α = ½log (4PaaPAA/PAa
2) 

where the bounds on alpha are: 
-∞ < α < ∞ 

 
Estimates were obtained by plugging the sample proportions into these formulae. 
However, to avoid problems with zero cells we added 0.5 to the numbers in each 
category before calculating the alpha statistic. 

These measures are related to each other.  For example, the relationship 
between F and D is: 
 

F=D/pA(1-pA) 
 
and they are also related to the test statistic of the Chi-square test of HWE: 
                
  X2= nˆD2/pA

2 (1-pA)2 
                

X2=nˆF2 
 

All scenarios and combinations of values for these measures were 
simulated with study sample sizes of 500 and were repeated 100 times before their 
results were averaged. We assessed these measures as one might a diagnostic or 
screening test, measuring their ability to detect the SNPs with the higher rates of 
genotyping error using a receiver-operator characteristic (ROC) curve. An ROC 
curve plots the sensitivity on the y-axis vs (1-specificity) on the x axis as 
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functions of a varying threshold.  The area under the ROC curve (AUC) is an 
estimate of the diagnostic accuracy across the spectrum of possible thresholds.   
An AUC that is much greater than 0.5 (chance agreement) indicates a potentially 
useful measure for identifying SNPs with error; a perfect diagnostic test would 
have an AUC of 1 (Soreide 2009; Zou et al 2007).  A threshold was then chosen 
as the value of alpha, D or F that maximized Youden’s index (sensitivity + 
specificity – 1), and this was also expressed as a likelihood ratio (Sackett, et al. 
1991).  Simulations were run using STATA version 10 (StataCorp 2007, Texas, 
USA).   

The derived thresholds were then applied to data from our case-control 
study of childhood leukemia (Milne, et al. 2006) in which we had the opportunity 
to genotype a series of children diagnosed with leukemia for a number of SNPs; 
genotyping was performed in two ways: 

• directly from blood samples (used as the reference standard) and  
• whole-genome amplified (WGA) DNA derived from buccal cells. 

Samples where genotyping failed were excluded.  Most of the discordant results 
involved a heterozygous blood result and a homozygous buccal result.  In this 
report, we describe the error rate for the SNPs assuming that where the results 
were discordant, the genotype from the blood sample is correct and the genotype 
from buccal WGA DNA is incorrect.  Support for this interpretation comes from 
the fact that such problems with WGA fidelity have been reported before (Pinard, 
et al. 2006).  The α, F, and D measures for each SNP were estimated. The results 
of applying the threshold derived from simulations to our real data is summarized 
as a 2x2 table, treating the threshold as a “diagnostic” test for detecting 
genotyping error in the buccal swabs compared with the reference standard of the 
blood DNA result. 
 
Results 
 
Simulations 
 
The results of simulations for the first two scenarios, i.e. genotyping error for 
heterozygotes in the direction of the major allele and then minor allele, are shown 
in Table 1.  From this table, a number of trends may be seen: 

• Genotyping error in the direction of the minor allele (Scenario 2) is more 
easily detected than in the direction of the major allele (Scenario 1).  Even 
at low allele frequencies and low error rates, there is reasonable detection 
ability with AUCs in the range of 0.65 to 0.8 (for allele frequencies up to 
20% and error rates up to 10%) 

• The three disequilibrium measures perform very similarly with results for 
alpha and F being almost identical; D appears to perform slightly worse 
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for detecting error in the direction of the major allele but slightly better for 
detecting error in the direction of the minor allele. 

• As the allele frequencies get higher, the AUCs get better at detecting error 
in the direction of the major allele but get worse for detecting error in the 
direction of the minor allele; as expected, the AUC values converge for the 
two scenarios as the allele frequency reaches 50%. 

Results for scenario 3, i.e. heterozygote error in the direction of both homozygotes 
equally, were partway between scenarios 1 and 2 (data not shown).  Of note is that 
the balanced error in this scenario leads to an F value equal to the genotype error 
rate.   
 
Table 1. Area Under the ROC Curve (AUC) for detecting genotyping error in 
heterozygotes, in the direction of the major allele (Scenario 1, Aa to AA) , and in 
the direction of the minor allele (Scenario 2, Aa to aa). 
 
SNP Area under the ROC Curve (AUC) 

                                                 Allele frequency of a (%) 
5 10 20 30 50 

                                                          Scenario 

 Error 
rate 
(%) 
 1 2 1 2 1 2 1 2 1 2 
5 0.53  0.64 0.52  0.64  0.53 0.62  0.54 0.61  0.56 0.56 
10 0.57  0.75 0.54  0.76  0.57 0.76  0.59 0.74  0.69 0.68 
20 0.65  0.88 0.58  0.92  0.66 0.93  0.74 0.93  0.88 0.88 
30 0.73  0.94 0.63  0.98  0.77 0.98  0.87 0.99  0.97 0.97 

 
α 

50 0.87  0.99 0.82  0.99  0.93 1.00  0.99 1.00  1.00 1.00 
5 0.52 0.65 0.51 0.67  0.51 0.65  0.53 0.63  0.56 0.56 
10 0.55 0.76 0.52 0.80  0.54 0.80  0.57 0.76  0.68 0.68 
20 0.61 0.89 0.53 0.94  0.60 0.96  0.69 0.95  0.87 0.88 
30 0.67 0.95 0.54 0.98  0.69 1.00  0.82 0.99  0.97 0.97 

D 

50 0.76 0.99 0.62  0.99  0.82 1.00  0.94 1.00  1.00 1.00 
5 0.53 0.65 0.51 0.66  0.52 0.64  0.53 0.62  0.56 0.56 
10 0.57 0.76 0.54   0.79  0.56 0.79  0.58 0.75  0.69  0.68 
20 0.63 0.89 0.57 0.94  0.65 0.95  0.72 0.94  0.88 0.88 
30 0.70 0.95 0.61 0.98  0.75 0.99  0.85 0.99  0.97 0.97 

F 

50 0.82 0.99 0.76 0.99  0.91 1.00  0.98   1.00  1.00 1.00 
 

Given that the estimates of the 3 disequilibrium measures may be 
indicators of genotyping error (as judged by the AUC), the next question is what 
threshold to use. A hypothesis test at the 5% level sets the specificity of the screen 
to 95% and in doing so penalizes the sensitivity. A better overall performance 
may be possible and so Table 2 shows the optimal cutoffs of α, F, and D as 
judged by maximizing Youden’s index. That table also shows the value of the 
positive likelihood ratio by allele frequency and size of the higher rate of 
genotyping error. At lower allele frequencies and lower error rates, the thresholds 
for all three measures of disequilibrium are variable, and depend on the direction 
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of the error; as the allele frequency increases beyond 20%, the estimate of the 
threshold is more stable.  
 
Table 2.  Optimal threshold values (and likelihood ratios) for the three measures 
of Hardy-Weinberg disequilibrium under different scenarios; scenario 1 is 
genotyping error in heterozygotes, in the direction of the major  allele (Aa to AA), 
and scenario 2 in the direction of the minor allele (Aa to aa). 

 
SNP Optimal Threshold values for HWD measures 

Allele frequency of a (%) 
5 10 20 30 50 

Scenario 

 Error 
rate 
(%) 
 1 2 1 2 1 2 1 2 1 2 
5 0.45 

(1.1) 
0.75 
(1.6) 

0.59 
(1.2) 

0.59 
1.9 

0.27 
(1.2 

0.29 
(1.5) 

0.26 
(1.2) 

0.28 
(1.7) 

0.19 
(1.2) 

0.19 
(1.3) 

α 

10 0.55 
(1.3) 

0.79 
(2.3) 

0.68 
(1.6 

0.63 
(3.2) 

0.29 
(1.3) 

0.34 
(2.4) 

0.21 
(1.4) 

0.28 
(2.4) 

0.24 
(2.1) 

0.24 
(2.2) 

5 0.003 
(1.1) 

0.006 
(1.6) 

0.014 
(1.3) 

0.009 
1.7 

0.02 
(1.1 

0.02 
(1.9) 

0.03 
(1.2) 

0.03 
(1.7) 

0.03 
(1.3) 

0.02 
(1.3) 

D 

10 0.003 
(1.2) 

0.01 
(2.6) 

0.01 
(1.2) 

0.01 
(3.2) 

0.02 
(1.4) 

0.02 
(3.3) 

0.02 
(1.3) 

0.03 
(2.8) 

0.03 
(2.1) 

0.03 
(2.2) 

F 5 0.06 
(1.0) 

0.13 
(1.6) 

0.14 
(1.3) 

0.11 
(1.7) 

0.08 
(1.1) 

0.12 
(1.8) 

0.11 
(1.2) 

0.13 
(1.8) 

0.12 
(1.3) 

0.10 
(1.3) 

 10 0.08 
(1.1) 

0.17 
(2.6) 

0.11 
(1.4) 

0.13 
(2.7) 

0.11 
(1.4) 

0.14 
(3.2) 

0.09 
(1.4) 

0.13 
(2.7) 

0.12 
(2.1) 

0.12 
(2.2) 

 
Leukemia data 
 
Table 3 gives the blood and FTA/WGA results for each of the 28 SNPs for all 184 
children. As seen in the last column, 10 of the 28 SNPs had an error rate of 5% or 
more, with the highest error rate reaching almost 13%.  There were 207 individual 
genotyping reactions that were incorrect; in almost 90% of these, the buccal 
sample was incorrectly identified as a homozygote. 

Using D as an example, Table 4 gives the 2x2 table obtained using the 
lowest and highest threshold values according to allele frequency as taken from 
table 2; the reference standard is the blood genotyping.  Using the lowest D 
threshold (0.003) would have identified 19 out of 28 SNPs as potentially 
problematic, of which 9 would have been truly erroneous; one erroneous SNP 
would not have been detected. Using the highest threshold D (0.006) yielded 
similar results.  
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Table 3.  Details of SNPs and genotype frequencies in the entire dataset.  Wt= 
homozygous wildtype; het=heterozygous; mut=homozygous mutant 
 

Blood  Buccal mucosa SNP 

wt het mut 

% 
minor 
allele wt het mut 

% 
minor 
allele  

Type of error        
n(blood/ buccal) 
 

ATM 
D1835N 131 52 1 

 
15 131 52 1 15 - 

ATM 
V2424G 184 0 0 

 
0 184 0 0 0 - 

CBS 844 
ins 68 151 33 0 

 
 
9 

156 25 1 7 

8 
(WT/Ins/WT/WT) 
1  
(WT/Ins/Ins/Ins) 
2  
(WT/WT/WT/Ins) 

CBS 
T2199C 
 63 81 35 

 
 
 
 
42  66 72 39 42  

8 (TC/TT) 
4 (TC/CC) 
2 (TT/CC) 
1 (CC/TC) 
1 (CC/TT) 

CYP1A1 
Ile-Val 166 14 1 

 
 
4 166 15 1 5 - 

CYP3A4*
1B 167 16 0 

 
4 159 15 4 6 - 

CYPE1D
ra1 147 34 3 

 
 
11 145 30 5 11 

3 (TA/TT) 
1 (TT/TA) 
2 (TA/AA) 

ERCC1 
N118N 77 82 25 

 
36 81 74 28 36 

4 (GA/AA) 
3 (GA/GG) 

ERCC2 
D312N 73 82 29 

 
38 87 57 39 37 

14 (GA /GG) 
10 (GA/AA) 

ERCC2 
K751Q 77 87 20 

 
 
35 88 71 25 33 

11 (AC/AA) 
6 (AC/CC) 
1 (CC/AC) 

GST pi 
EX5 87 79 18 

 
 
31 92 71 19 30 

6 (AG/AA) 
2 (AG/GG) 
1 (AA/AG) 

GST pi 
EX6 155 28 0 

 
8 154 22 7 10 

6 (CT/TT) 
1 (CC/TT) 

MS 
A2756G 121 62 1 

 
17 122 52 8 19 

1 (AG / AA) 
9 (AG/GG) 

MS 
C5049A 60 97 27 

 
41 62 92 28 41 

2 (CA /CC) 
1 (CA/AA) 

MSR 
A66G 42 101 41 

 
 44 81 56 53 

5 (AG/AA) 
15 (AG/GG) 
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50 2 (AA/AG) 
MTHFR 
A1298C 80 86 17 

 
33 84 68 30 35 

13 (AC / CC) 
4 (AC/AA) 

MTHFR 
C677T 
(lab 1) 89 79 16 

 
 
30 90 75 16 30 

3 (CT/CC) 
2 (CC/CT) 

MTHFR 
C677T 
(lab 2) 86 81 17 

 
 
31 90 74 18 30 

6 (CT/CC) 
1 (TT/CC) 

MTHFR 
C677T 
(lab 3) 88 80 16 

 
 
30 89 76 18 31 

3 (CT/TT) 
1 (CT/CC) 

NAT2 M1 63 75 46 
 
45 62 76 46 46 

1 (CC/CT) 
2 (CT/CC) 

NAT2 M2 98 72 14 
 
27 99 70 15 27 

1 (GA / AA) 
1 (GA/GG) 

NAT2 M3 172 10 1 
 
3 173 9 2 4 

1 (GA/GG) 
1 (GA/AA) 

NAT2*5B 
C481T 63 75 46 

 
 
45 61 78 45 46 

3 (CT/TT) 
4 (TT/CT) 
2 (CC/CT) 

NAT2*5B 
T341C 59 76 48 

 
 
47 58 73 51 48 

3 (TC/CC) 
1 (CC/TC) 
1 (TT/TC) 

NQ01 
C609T 126 48 10 

 
18 126 47 10 18 3 (CT/CC) 

XRCC3 
T241M 68 86 26 

 
 
38 73 76 27 37 

5 (GA/GG) 
3 (GA/AA) 
1 (AA/GA) 

XRCC5 150 33 1 10 151 31 1 9 1 (AG / AA) 
hMSH3 
A1036T 

99 
 

75 
 

10 
 

26 102 
 

65 
 

14 
 

26 
 

4 (AG / GG) 
3 (AG / AA) 

 
It is also possible that other users may wish to choose other thresholds that 

optimize specificity or sensitivity for detecting genotyping error >5%.  For 
example, if we apply a general cutoff of 0.025 for D to the actual dataset, rather 
than a more specific cutoff according to allele frequency, the resulting AUC is 
0.69 with a sensitivity of 60% and specificity of 77.8%, and +LR of 2.7.  
Alternatively, some may choose to detect even lower levels of genotyping error, 
e.g. 3% or less.  For example, applying a cutoff for D of 0.025 to detect a more 
conservative error rate of  ≥ 3%, the AUC, sensitivity, specificity, and +LR were 
0.72, 52.9%, 90.9%, and 5.8 respectively.  
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Table 4.  Predicted error for 28 SNPs using buccal swab DNA and WGA.    
 

Actual genotyping 
error 

Actual genotyping 
error 

D  
Low 
threshold Yes No 

D 
High 
threshold Yes No 

≥ 0.003 
< 0.003 

9 
1 

10 
8 

≥ 0.006 
< 0.006 

9 
1 

11 
7 

Sensitivity  90.0 
 

Sensitivity 90.0 

Specificity  44.4 Specificity 38.9 
LR+ 1.6 LR+ 1.5 
AUC 0.67 AUC 0.64 

  
It is also interesting to note that these disequilibrium measures appear to 

complement other approaches to detecting genotyping error.  Table 3 lists 
differences in minor allele frequency between blood (reference) and buccal swabs, 
and percentage of missing data in buccal swabs compared with blood.  In our 
dataset, neither of the latter 2 measures appears to correlate with SNPs that have 
high discordance. 
 
Discussion 
 
In this study, we explored the ability of three existing measures of the degree of 
deviation from HWE (D, F and α) to detect differential genotyping error.  
Estimates of these measures of disequilibrium have the desirable property that, 
unlike the p-value, they are dependent on genotype proportions only and 
independent of sample size.  Our simulations indicate that all three measures have 
similar ability to detect differential genotyping error, as evidenced by AUCs that 
are above 0.5, and perform better if the direction of the error is from the 
heterozygous to the homozygous minor allele.  The AUCs also increase in 
magnitude as the genotyping error increases, but do not necessarily increase as the 
allele frequency increases; this depends on the direction of the error.  Even for 
allele frequencies under 20% and error rates under 10%, AUCs range from 0.65 to 
0.8 for detecting error in the direction of the minor allele indicating potential for 
use as a discriminative test.  There is little to choose between the measures and it 
appears that any one of the three might reasonably be used. 

As with any diagnostic test, one must define a threshold at which it can be 
said the outcome is positive.  In the real data set we defined a positive outcome as 
5% or more genotyping error.  This value was based on a previous review that 
indicated genotyping error rates in genetic association studies ranging from 0.5% 
up to 15% per SNP (Pompanon, et al. 2005); our choice  is in the middle of this 
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range and corresponds roughly to the threshold where error rates can start to 
significantly impact power for detection of association (Lincoln and Lander 
1992). The thresholds for screening that we chose were based on maximizing both 
sensitivity and specificity simultaneously.  Depending on the needs of the user, 
one may choose different thresholds, for example the traditional statistical 
approach is to set specificity at 95% (i.e. one minus the significance level of the 
statistical test) and let sensitivity (i.e. power) be determined by the sample size. 

Maximising sensitivity means detecting more cases of genotyping error at 
the cost of re-genotyping many samples with no error, whereas maximizing 
specificity means minimizing the re-genotyping at the cost of missing more 
samples with error.  One may also choose to modify thresholds to detect lower 
levels of genotyping error, e.g. 3%.  It was clear that no “one size fits all” 
threshold could be applied across all allele frequencies, and we propose that if 
these measures are developed then thresholds based on allele frequency should be 
explored. 

The relationships between χ2 and F (i.e. χ2=nˆF2) and χ2 and D (i.e. χ2= 
nˆD2/pA

2 (1-pA)2) are monotonic for a given allele frequency, which indicates that 
these three measures have the same ability to detect genotyping error. So it would 
be possible to calculate the threshold corresponding to a particular choice of 
sensitivity and specificity by using the appropriate central and non-central chi-
squared distributions instead of simulations.  

The blood samples used in this study were from children diagnosed with 
acute lymphoblastic leukaemia.  To allow for the selected nature of the study 
subjects, we only included SNPs where the genotype proportions from the blood 
samples showed no evidence of deviation from HWE using the chi-square test. As 
discussed above, however, this approach only detects genotyping results with 
extreme deviation from HWE.  This methodological study was based on the 
premise that, where there was genotype discordance between blood and buccal 
samples, the results from the blood samples were correct.  We believe this to be a 
justifiable assumption, given that the within-lab error rate from our quality control 
tests was less than 1% (unpublished observations). We considered genotyping 
error per SNP rather than per allele or per PCR since it reflects a combination of 
reliability of laboratory and experimental procedures, and can be compared with 
other markers (Pompanon, et al. 2005).   

Similar patterns were found to hold for all three of the patterns of 
genotyping error that we tested, all of which had loss of heterozygosity, i.e. error 
away from the heterozygotes.  This corresponds to the most common form of 
genotyping error, in that secondary structure of the DNA can make one allele 
more difficult to amplify than another; indeed most errors in our leukemia dataset 
were in the direction of loss of heterozygosity.   Errors in the direction of 
homozygote going to heterozygote, i.e. gain of heterozygosity, are due to 
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contamination, and it is possible that contamination may influence these 3 
measures differently. It is also important to note that previous simulations have 
assumed non-differential genotyping error and indicate greatly reduced ability of 
HWE to detect this kind of error (Zou, 2006 #27).  Non-differential genotyping 
error can affect statistical inference in genetic association studies by decreasing 
power; differential genotyping error however can lead to bias, which is more 
serious and hence the focus of our simulations. Although some methods have 
been developed to incorporate genotyping error into data analysis (Gordon and 
Ott 2001; Hao and Wang 2004), these methods involve assumptions and it may be 
more prudent to detect actual error and correct it.  

In summary, these measures of disequilibrium show favourable 
characteristics as potential tools for detecting differential genotyping error and 
merit further work.  Their discriminative ability is reasonable, i.e. AUCs in the 
range of 0.65 to 0.8, at low allele frequencies and low error rates, and is 
independent of sample size.  Hence, in the context of large-scale genotyping, they 
may have a place among the many other quality control checks, e.g. checking data 
for missingness at random, checking minor allele frequencies against population 
values, etc.  Further work needs to be done to confirm these results and extend 
them to other kinds of genotyping error, and to define other thresholds that may 
increase sensitivity or specificity as desired.  We plan to explore the use of 
measures of disequilibrium in the context of genome-wide association analyses in 
follow-up studies. Finally we note again that genotyping error is only one of the 
possible reasons for departure from HWE and for that reason SNPs that fail the 
screen will require further study before genotyping error can be declared. 
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