- Title
- Assessment of the imprinting efficiency of an imide with a "stoichiometric" pyridine-based functional monomer in precipitation polymerisation
- Creator
- Lim, K. Fremielle; Hall, Andrew J.; Lettieri, Stefania; Holdsworth, Clovia I.
- Relation
- Journal of Molecular Recognition Vol. 31, Issue 3, no. e2655
- Publisher Link
- http://dx.doi.org/10.1002/jmr.2655
- Publisher
- John Wiley & Sons
- Resource Type
- journal article
- Date
- 2018
- Description
- The efficiency of the stoichiometric non‐covalent imprinting of the imide 2,3,5‐tri‐O‐acetyluridine (TAU) with 2,6‐bis(acrylamido)pyridine (BAAPy) as functional monomer due to their strong donor‐acceptor‐donor/acceptor‐donor‐acceptor (DAD/ADA) hydrogen bond array interaction has been evaluated by bulk imprinting. This study is the first to investigate the imprinting and template rebinding efficiencies of the TAU/BAAPy molecularly imprinted polymeric (MIP) system prepared by precipitation polymerisation. We found that the stoichiometric 1:1 T:FM ratio has not been maintained in precipitation polymerisation and an optimal TAU:BAAPy ratio of 1:2.5 was obtained in acetonitrile without agitation affording an affinity constant (1.7 × 104 M−1) and a binding capacity (3.69 μmol/g) higher than its bulk counterpart. Molecular modelling, NMR studies, and selectivity assays against analogues uridine and 2,3,5‐tri‐O‐acetyl cytidine (TAC) indicate that, aside from the DAD/ADA hydrogen bond interaction, BAAPy also interacts with the acetyl groups of TAU. Template incorporation and rebinding in precipitation MIPs are favoured by a moderate initiator concentration, ie, initiator:total monomer (I:TM) ratio of 1:131, while low I:TM ratio (ie, 1:200) drastically reduced template incorporation and binding capacity. Vigorous agitation by stirring showed higher template incorporation but significantly lower template rebinding compared to that prepared without agitation. While the imprinting efficiencies for the best performing bulk and precipitation TAU MIPs generated in this study were moderate, 41% and 60%, respectively, their rebinding capacities were only between 3 and 4% of the incorporated template. We also present quantitative nuclear magnetic resonance spectroscopy as an efficient method for MIP characterisation.
- Subject
- 2,6-bis(acrylamido)pyridine; hydrogen bond array; molecularly imprinted polymers; precipitation imprinting; precipitation polymerisation; quantitative NMR
- Identifier
- http://hdl.handle.net/1959.13/1405411
- Identifier
- uon:35485
- Identifier
- ISSN:0952-3499
- Rights
- This is the peer reviewed version of the above article, which has been published in final form at http://dx.doi.org/10.1002/jmr.2655. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
- Language
- eng
- Full Text
- Reviewed
- Hits: 3139
- Visitors: 3551
- Downloads: 300
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Author final version | 699 KB | Adobe Acrobat PDF | View Details Download |