- Title
- The Friedlander-Gordon-Miller conjecture is true
- Creator
- Alspach, Brian; Kreher, Donald L.; Pastine, Adrián
- Relation
- Australasian Journal of Combinatorics Vol. 67, Issue Part 1, p. 11-24
- Relation
- http://ajc.maths.uq.edu.au/?page=get_volumes&volume=67
- Publisher
- Centre for Discrete Mathematics & Computing
- Resource Type
- journal article
- Date
- 2017
- Description
- We complete the proof of the Friedlander, Gordon and Miller Conjecture that every finite abelian group whose Sylow 2-subgroup either is trivial or both non-trivial and non-cyclic is R-sequenceable. This settles a question of Ringel for abelian groups.
- Subject
- Friedlander-Gordon-Miller conjecture; abelian groups; R-sequenceable
- Identifier
- http://hdl.handle.net/1959.13/1397674
- Identifier
- uon:34331
- Identifier
- ISSN:2202-3518
- Language
- eng
- Full Text
- Reviewed
- Hits: 3265
- Visitors: 2648
- Downloads: 298
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 143 KB | Adobe Acrobat PDF | View Details Download |