- Title
- Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts
- Creator
- Stefanowicz, Dorota; Ullah, Jari; Lee, Kevin; Shaheen, Furquan; Olumese, Ekiomoado; Fishbane, Nick; Koo, Hyun-Kyoung; Hallstrand, Teal S.; Knight, Darryl A.; Hackett, Tillie L.
- Relation
- BMC Pulmonary Medicine Vol. 17, no. 24
- Publisher Link
- http://dx.doi.org/10.1186/s12890-017-0371-0
- Publisher
- BioMed Central
- Resource Type
- journal article
- Date
- 2017
- Description
- Background: Recognition of the airway epithelium as a central mediator in the pathogenesis of asthma has necessitated greater understanding of the aberrant cellular mechanisms of the epithelium in asthma. The architecture of chromatin is integral to the regulation of gene expression and is determined by modifications to the surrounding histones and DNA. The acetylation, methylation, phosphorylation, and ubiquitination of histone tail residues has the potential to greatly alter the accessibility of DNA to the cells transcriptional machinery. DNA methylation can also interrupt binding of transcription factors and recruit chromatin remodelers resulting in general gene silencing. Although previous studies have found numerous irregularities in the expression of genes involved in asthma, the contribution of epigenetic regulation of these genes is less well known. We propose that the gene expression of epigenetic modifying enzymes is cell-specific and influenced by asthma status in tissues derived from the airways. Methods: Airway epithelial cells (AECs) isolated by pronase digestion or endobronchial brushings and airway fibroblasts obtained by outgrowth technique from healthy and asthmatic donors were maintained in monolayer culture. RNA was analyzed for the expression of 82 epigenetic enzymes across 5 families of epigenetic modifying enzymes. Western blot and immunohistochemistry were also used to examine expression of 3 genes. Results: Between AECs and airway fibroblasts, we identified cell-specific gene expression in each of the families of epigenetic modifying enzymes; specifically 24 of the 82 genes analyzed showed differential expression. We found that 6 histone modifiers in AECs and one in fibroblasts were differentially expressed in cells from asthmatic compared to healthy donors however, not all passed correction. In addition, we identified a corresponding increase in Aurora Kinase A (AURKA) protein expression in epithelial cells from asthmatics compared to those from non-asthmatics. Conclusions: In summary, we have identified cell-specific variation in gene expression in each of the families of epigenetic modifying enzymes in airway epithelial cells and airway fibroblasts. These data provide insight into the cell-specific variation in epigenetic regulation which may be relevant to cell fate and function, and disease susceptibility.
- Subject
- asthma; histone modification; epigenetics; airway epithelium; airway epithelial cells; airway fibroblasts; epigenome; histone code; post-translational modification; DNA methylation
- Identifier
- http://hdl.handle.net/1959.13/1352157
- Identifier
- uon:30829
- Identifier
- ISSN:1471-2466
- Rights
- © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
- Language
- eng
- Full Text
- Reviewed
- Hits: 10594
- Visitors: 11310
- Downloads: 275
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 1 MB | Adobe Acrobat PDF | View Details Download |