- Title
- Feedback-controlled MEMS force sensor for characterization of microcantilevers
- Creator
- Moore, Steven Ian; Coskun, M. Bulut; Alan, Tuncay; Neild, Adrian; Moheimani, S. O. R.
- Relation
- Journal of Microelectromechanical Systems Vol. 24, Issue 4, p. 1092-1101
- Publisher Link
- http://dx.doi.org/10.1109/JMEMS.2014.2382648
- Publisher
- Institute of Electrical and Electronics Engineers (IEEE)
- Resource Type
- journal article
- Date
- 2015
- Description
- This paper outlines the design and characterization of a setup used to measure the stiffness of microcantilevers and other small mechanical devices. Due to the simplicity of fabrication, microcantilevers are used as the basis for a variety of mechanical sensor designs. In a range of applications, knowledge of the stiffness of microcantilevers is essential for the accurate calibration of the sensors in which they are used. Stiffness is most commonly identified through measurement of the microcantilever's resonance frequency, which is applied to an empirically derived model. This paper uses a microelectromechanical system (MEMS)-based force sensor to measure the forces produced by a microcantilever when deformed and a piezoelectric tube-based nanopositioner to displace the microcantilever. A method of calibrating the force sensor is presented that takes advantage of the lumped nature of the mechanical system and the nonlinearity of MEMS electrostatic drives.
- Subject
- microelectromechanical systems; nanopositioning; microcantilevers; displacement measurement; force measurement; stiffness identification
- Identifier
- http://hdl.handle.net/1959.13/1314339
- Identifier
- uon:22751
- Identifier
- ISSN:1057-7157
- Language
- eng
- Reviewed
- Hits: 1380
- Visitors: 1572
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|