- Title
- Molecular dynamics simulation of alloying in an Al-coated Ti nanoparticle
- Creator
- Levchenko, Elena V.; Evteev, Alexander V.; Lorscheider, Tanja; Belova, Irina V.; Murch, Graeme E.
- Relation
- ARC
- Relation
- Computational Materials Science Vol. 79, p. 316-325
- Publisher Link
- http://dx.doi.org/10.1016/j.commatsci.2013.06.005
- Publisher
- Elsevier BV
- Resource Type
- journal article
- Date
- 2013
- Description
- The alloying reaction of an Al-coated Ti nanoparticle having equi-atomic fractions and a diameter of about 4.8 nm is studied using molecular dynamics simulation in combination with an embedded atom method potential. We demonstrate that the Al-coated Ti nanoparticle is much less reactive than the Ti-coated Al nanoparticle of similar size studied previously (E.V. Levchenko et al., Intermetallics 22 (2012) 193). The reason for this is that the pre-alloying in the vicinity of the interface at moderate temperatures is noticeably more pronounced in the Al-coated Ti nanoparticle. It comes about because of the distorted structure of a rather thin Al shell in the vicinity of the interface with a quite high level of short-range icosahedral order. The distorted structure is a consequence of the influence of the interface between the Ti-core and Al-shell. In the previously studied Ti-coated Al nanoparticle the interface influence was not so pronounced because the larger Ti atoms formed a greater strength shell to confine the Al core. Such a nanoparticle morphology resulted in avoidance of the strong distortions in both core and shell structures. The distorted shell structure of the Al-coated Ti nanoparticle enhances the diffusion mobility of atomic components in the Al shell in the vicinity of the interface at intermediate temperatures, thereby promoting the pre-alloying process. The pre-alloying eventually results in development of a well defined f.c.c. crystal structure in the Al-based shell at high temperatures which has good alignment of the close-packed orientation with the h.c.p. Ti-based core. As a result, the pre-alloyed interfacial layer and improved crystal structure of the Al-based shell serve as an effective reaction barrier in the Al-coated Ti nanoparticle. This slows down the reaction by extending the temperature range of the solid-state interdiffusion process in the Al-coated Ti nanoparticle.
- Subject
- alloying; diffusion; phase formation; structure; intermetallic compound; bimetallic nanoparticle; titan; aluminium; molecular dynamics; embedded atom method
- Identifier
- http://hdl.handle.net/1959.13/1299475
- Identifier
- uon:19885
- Identifier
- ISSN:0927-0256
- Language
- eng
- Reviewed
- Hits: 3219
- Visitors: 3501
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|