- Title
- Climate change impact and risks of concrete infrastructure deterioration
- Creator
- Stewart, Mark G.; Wang, Xiaoming; Nguyen, Minh N.
- Relation
- Engineering Structures Vol. 33, Issue 4, p. 1326-1337
- Publisher Link
- http://dx.doi.org/10.1016/j.engstruct.2011.01.010
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2011
- Description
- Atmospheric CO₂ is a major cause of reinforcement corrosion in bridges, buildings, wharves, and other concrete infrastructure in Australia, United States, United Kingdom and most other countries. The increase in CO₂ levels associated with global warming will increase the likelihood of carbonation-induced corrosion. Moreover, temperature rises will increase corrosion rates. Clearly, the impact of climate change on existing and new infrastructure is considerable, as corrosion damage is disruptive to society and costly to repair. The paper describes a probabilistic and reliability-based approach that predicts the probability of corrosion initiation and damage (severe cracking) for concrete infrastructure subjected to carbonation and chloride-induced corrosion resulting from elevated CO₂ levels and temperatures. The atmospheric CO₂ concentration and local temperature and relative humidity changes with time over the next 100 years in the Australian cities of Sydney and Darwin are projected based on nine General Circulation Models (GCMs) under (i) high CO₂ emission scenario, (ii) medium CO₂ emission scenario, and (iii) CO₂ emission reduction scenario based on policy intervention. The probabilistic analysis included the uncertainty of CO₂ concentration, deterioration processes, material properties, dimensions, and predictive models. It was found that carbonation-induced damage risks can increase by over 400% over a time period to 2100 for some regions in Australia. Damage risks for chloride-induced corrosion increase by no more than 15% over the same time period due to temperature increase, but without consideration of ocean acidity change in marine exposure. Corrosion loss of reinforcement is not significant. The results were most sensitive to increases in atmospheric CO₂.
- Subject
- risk; structural reliability; climate change; corrosion; concrete
- Identifier
- http://hdl.handle.net/1959.13/1065926
- Identifier
- uon:17962
- Identifier
- ISSN:0141-0296
- Language
- eng
- Reviewed
- Hits: 3579
- Visitors: 2425
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|