- Title
- Rational and Heron tetrahedra
- Creator
- Chisholm, C.; MacDougall, James A.
- Relation
- Journal of Number Theory Vol. 121, Issue 1, p. 153-185
- Publisher Link
- http://dx.doi.org/10.1016/j.jnt.2006.02.009
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2006
- Description
- Buchholz [R.H. Buchholz, Perfect pyramids, Bull. Austral. Math. Soc. 45 (1991) 353–368] began a systematic search for tetrahedra having integer edges and volume by restricting his attention to those with two or three different edge lengths. Of the fifteen configurations identified for such tetrahedra, Buchholz leaves six unsolved. In this paper we examine these remaining cases for integer volume, completely solving all but one of them. Buchholz also considered Heron tetrahedra, which are tetrahedra with integral edges, faces and volume. Buchholz described an infinite family of Heron tetrahedra for one of the configurations. Another of the cases yields a new infinite family of Heron tetrahedra which correspond to the rational points on a two-parameter elliptic curve.
- Subject
- tetrahedra; integer volume; Heron tetrahedra; Buchholz
- Identifier
- http://hdl.handle.net/1959.13/26739
- Identifier
- uon:1082
- Identifier
- ISSN:1096-1658
- Language
- eng
- Full Text
- Reviewed
- Hits: 2420
- Visitors: 3062
- Downloads: 387
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Author final version | 441 KB | Adobe Acrobat PDF | View Details Download |