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Abstract

This thesis considers a number of related problems in the areas of passive and semi-
active vibration control of piezoelectric laminates.

The thesis consists of three main parts. The first part of the thesis develops a math-
ematical model of a physical resonant system-—piezoelectric laminated simply supported
beam. It is essential to have a good understanding of the physical system so that the
associated problems with passive and semi-active shunt damping can be addressed.

The second part of the thesis is concerned with problems related with current passive
shunt damping techniques using a single piezoelectric laminate. One of the current prob-
lems with multiple mode techniques is determining the correct resistive damping for each
resonant mode. Therefore, a systematic method is presented for determining the optimal
resistance elements by minimizing the Hs norm of the damped system. After the design
process, shunt circuits are normally implemented using discrete resistors, capacitors and
virtual inductors (Riordan Gyrators). The difficulty in constructing the shunt circuits and
achieving reasonable performance has been an ongoing problem. A new approach to im-
plementing piezoelectric shunt circuits is presented. A “synthetic impedance”, consisting
of a voltage controlled current source and digital signal processor (DSP) system, is used to
synthesize the terminal impedance of a required shunt network.

The third part of the thesis is concerned with is semi-active vibration control of piezo-
electric laminates. This part addresses a number of associated problems with the current
passive shunt damping schemes. The foremost being the complexity of the shunt circuits
required to dampen multiple modes. They generally act to minimize structural vibration at
a specific frequency - which are rarely stationary. Therefore, a new broadband semi-active
shunt technique for controlling multiple modes has been developed. The “negative capac-
itor” controller is proposed theoretically, and then validated experimentally. The negative
capacitor is similar in nature to a passive shunt damper as it uses a single piezoelectric

transducer to dampen multiple modes of a flexible structure.
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Chapter 1

Introduction

1.1 Piezoelectric Devices

Piezoelectric devices have shown promising applications in active, semi-active and passive
vibration control [25]. Piezoelectric materials convert mechanical strains into electrical
energy and vice versa. This characteristic can be exploited, allowing these piezoelectric

materials to be used as both sensors and actuators.

1.1.1 Piezoelectricity

Piezoelectricity was discovered by Pierre and Jacques Curie in 1880. It is the phenomenon
in which certain crystalline substances develop an electric field when subjected to pres-
sure/forces, or conversely, exhibit a mechanical deformation when subjected to an electric
field. This reciprocal coupling between mechanical and electrical energy renders piezo-
electric materials useful in many applications including passive, semi-active and active
vibration control.

The piezoelectric effect is found only in crystals having no center of symmetry. Exam-
ples include quartz, Rochelle salt and synthetic polycrystalline ceramics; polyvinyl-flouride
(PVDF) and lead-zirconate-titanate (PZT). The last two are commonly used in vibration
control.

The piezoelectric effect is based on the elastic deformation of electric dipoles in a ma-
terials crystal lattice. If an external mechanical force (or strain) deforms the crystal, an
electric field is created and hence a charge distribution at the crystal’s surface is generated.

This phenomenon is termed the direct piezoelectric effect or “sensory effect”. Applying an
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Figure 1.1: Two equivalent electrical models for a piezoelectric shunting layer: (a) parallel

and (b) series piezoelectric equivalent models.

electric field causes a deformation of the dipoles, leading to a constant volume strain of the
crystal. This is termed the inverse piezoelectric effect or the “actuator effect”.

1.1.2 Piezoelectric Model

Piezoelectric crystals have a three-dimensional structure, i.e. crystal deformation occurs in
3 dimensions. Practical mechanical uses only require the effect in one- or two- dimensions;
this can be approximated by manufacturing piezoelectric patches with large length and
width to thickness ratios.

Piezoelectric transducers behave electrically like a capacitor and mechanically like a
stiff spring [5]. Two equivalent electrical models for the piezoelectric shunting layer have
been proposed in the literature [8, 9, 13, 26] and are presented in Figure 1.1. They are (a)
parallel and (b) series piezoelectric model circuits. The quantities V,, and I, are the equiva-
lent voltage and current generators, which are dynamically dependent on the piezoelectric
sensory effect. The most common model of the two is to model capacitor C), in series with
a dependent voltage source, as shown in Figure 1.1 (b).



1.2 Overview

Today’s increasingly high speed and lightweight structures are subject to extensive vibra-
tions that can reduce structural life and contribute to mechanical failure. Piezoelectric
transducers in conjunction with appropriate circuitry, can be used as mechanical energy
dissipation devices. By placing electrical impedance across the terminals of the piezoelec-
tric element, the passive network is capable of damping structural vibrations. Researchers
have used this type of suppression technique for decades.

If a simple resistor is placed across the terminals of the piezoelectric element, the
piezoelectric device will act as a viscoelastic damper [13]. If the network consists of a series
resistor-inductor R— L circuit, the passive network combined with the inherent capacitance
of the piezoelectric element creates a damped electrical resonance. The resonance can be
tuned so that the piezoelectric element acts as a tuned vibrational energy absorber [13].
This damping methodology is commonly referred to as “passive shunt damping”. Passive
shunt damping is regarded as a simple, low cost, lightweight, and easy to implement method
of controlling structural vibrations [9, 12, 14, 27, 28, 29, 30]. A desirable property of passive
shunt damping is that the controlled system is guaranteed to be stable in the presence of
structural uncertainties, unlike active controllers.

Flexible mechanical structures have an infinite number of resonant frequencies (or struc-
tural modes). If the tuned R — L energy absorber [13] is used to minimize the vibration
of a number of modes, one would need an equal number of piezoelectric element patches
and shunting circuits. This is clearly impractical. Wu [28] reports a method of damping
multiple vibration modes using a single piezoelectric transducer. The method differs from
other multiple mode shunting schemes, see for example [9, 14]. The proposed circuit in-
cludes a “current blocker”, consisting of a parallel capacitor-inductor C'— L network placed
in series with each R — L shunt circuit designed for one structural mode. Depending on
the number of structural modes to be shunt damped simultaneously, a different number of
C — L networks are placed in series with the parallel R — L shunt branch.

Although shunt damping circuits have a fixed structure, the designer is still faced with
the problem of choosing component values. The blocking circuit and branch inductance
values are easily found using classical circuit theory and the resonant frequencies of the
structure. Currently, damping resistors are determined experimentally by observing the
frequency response of the damped system and varying the resistances to achieve a desirable
trade off between peak reduction and side lobe amplitude [9, 12, 14, 27, 28, 29, 30]. The



thesis proposes an optimization technique that minimizes the Hs norm of the damped
system. This provides a systematic and reliable method for determining the resistance
values of shunt damping branches.

There are also a number of implementation problems associated with single and multi-
mode shunt damping techniques. Piezoelectric shunt circuits typically require large induc-
tance values. Therefore, virtual inductors (Riordan Gyrators [22]) are required to imple-
ment the inductor elements. Virtual inductors are large in size and sensitive to component
variations and non-ideal characteristics. Also, piezoelectric shunt circuits are capable of
generating large voltages for moderate structural excitations. This requires that the virtual
inductor circuits be constructed from high voltage operational amplifiers. At least 30 high
voltage operational amplifiers are required to damp three structural modes!. This thesis
introduces a method of implementing a specified shunt circuit with arbitrary order and
complexity. The “synthetic impedance” uses a voltage dependent current source and dig-
ital signal processing (DSP) system to implement the terminal impedance of an arbitrary
shunt network. It replaces physical circuits to provide effective structural damping without
the problems encountered with direct circuit implementations.

Passive shunt damping generally acts to minimize structural vibration at a specific
frequency (9, 12, 14, 27, 28, 29, 30]. These frequencies are rarely stationary in real ap-
plications, i.e. the resonant frequencies shift with environmental conditions. Therefore,
some damping is usually added to guarantee some level of effectiveness over a range of
frequencies [9, 12, 14, 27, 28, 29, 30]. Also, maximum amplitude reduction is achieved only
if the shunt absorber is lightly damped and accurately tuned to the required frequency
of concern. Thus, a semi-active (passive-active) vibration absorber should perform better
than a purely passive shunt damper.

Many of the semi-active vibration schemes involve modifying the effective stiffness of
the piezoelectric element [4, 6, 7, 20, 21|. Normally this involves switching the piezoelectric
element between high (open-circuit) and low (short-circuit) stiffness states. These tech-
niques are broadband and passive. Another type of semi-active vibration controller is the
active-passive hybrid piezoelectric network (APPN), which involves using a passive shunt
in conjugation with an appropriate broadband active controller (e.g. a simple R— L passive
shunt with a LQG active controller). This method is claimed to be more effective than a

system with separated active and passive control schemes [1, 3, 23, 24].

! Based on a series circuit configuration with “current blockers” in every branch, as shown in reference
to [28] .



A new technique for semi-active (passive-active) controlling piezoelectric laminated
structures is proposed in this thesis. The effect of the “negative capacitor” is studied theo-
retically and then validated experimentally on a piezoelectric laminated simply supported
beam. The negative capacitor is similar in nature to passive shunt damping techniques
9, 12, 14, 27, 28, 29, 30|, as a single piezoelectric transducer is used together with an
attached electrical impedance. While achieving comparable performance, the negative ca-
pacitor has a number of advantages over current passive shunt damping systems. It is

simpler to implement and has less sensitivity to environmental variations.

1.3 Motivations and Application

Vibration control of smart structures is regarded as an active area of research in the
aerospace industry. Aerospace research companies, such as Boeing, Lockheed-Martin,
NASA and other US government agencies, are investing large capital to investigate novel
methods for controlling structural vibration.

Listed below are examples of some interesting applications:

e Modern commercial or military aircraft, for example the Boeing-Lockheed Martin-
Pratt & Whitney F-22 fighter shown in Figure 1.2, is often required to fly at high
velocities and high angles of attack. In this type of operation, the highly turbulent
flow from the leading edge of the wings can impinge on the vertical tails of the
aircraft, causing acute buffeting vibrations. This vibration increases the fatigue of
critical structural members, requiring frequent inspections, reducing the aircraft’s
flight time, and shortening the useful life of the aircraft.

e Novelty items, such as the prevention of vibration in snow skies. A snow ski company,
K2 Sports (http://www.k2skis.com), has developed “Smart Ski Technology”. They
claim their skis provide a smooth, chatter-free ride that reduces skier fatigue and
increases a skier’s control. A piezoelectric patch is embedded into the ski composite
structure, where the piezoelectric patch absorbs mechanical energy and dissipates

this energy through a simple LED light.
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1.4 Outline of the Thesis

The thesis is organized as follows:

e Chapter 2: Physical Modeling: A mathematical model of a resonant structure,
a piezoelectric laminated simply supported beam, is developed to assist with the
design of different passive and semi-active vibration control strategies. The modeling
techniques are based on modal analysis and the one dimensional Euler-Bernoulli
beam equation. The model of the resonant system is modified to include the effect

of approximate experimental simply supported boundary conditions.

e Chapter 3: Piezoelectric Passive Shunt Damping: Current passive shunt damp-
ing techniques of multiple mode configurations is examined. Modeling of the compos-
ite system, i.e. the passive shunt controller present on the damped system, is derived
in state-space form. A Hs norm optimization technique is developed to determine
the optimal multiple mode shunt resistances. A theoretical finding of optimal re-
sistive damping elements is validated through experimental results on the simply
supported beam. All experimental shunt circuits were constructed using discrete

elements, e.g. resistors, simulated inductors (Riordan Gyrators) and capacitors.

e Chapter 4: Synthetic Impedance: Current research implementation of discrete
shunt circuits raise many implementation problems, such as non-linear circuits. A
new method is introduced which tackles the discrete shunt implementation problems.
“Synthetic impedance” is established based on a voltage controlled current source
model and a digital signal processor (DSP). The synthetic impedance is utilized to
simulate two multiple mode shunt circuits, as described in Chapter 3. The synthetic
impedance is compared experimentally to the direct circuit method. The theoretical
damped response of the piezoelectric laminate beam is critically assessed against the

experimentally proposed synthetic impedance and direct circuit methods.

e Chapter 5: Shunt Damping using a Negative Capacitance Circuit: A pas-
sive shunt absorber acts to minimize structural vibration at a specific frequency
which is rarely stationary in real applications. Maximum amplitude reduction is only
achieved if the resonant shunt absorber is lightly damped and accurately tuned. A
semi-active (passive-active) vibration controller should perform better than a purely

passive shunt. This chapter introduces theoretically, a new type of broadband semi-



active piezoelectric shunt controller. The “negative capacitance” controller incor-
porates some fundamental properties of the piezoelectric element into the control
strategy. This new passive-active controller is validated on the simply supported
piezoelectric laminated beam, with promising results.

Chapter 6: Conclusion and Future Development: This chapter will conclude
the thesis with final remarks from each chapter. Suggestion for future research are

also raised.



Chapter 2

Physical Modeling

A mathematical model has been developed to assist in the development of passive and
semi-active vibration shunt controllers. One of the most popular methods of modeling
piezoelectric laminate structures is modal analysis [16]. Since we are interested in modeling
a piezoelectric laminated simply supported beam, the governing equation is the modified
Euler-Bernoulli beam equation. A model of experimental boundary conditions has also
been developed, in which shim material replaces the ideal pinned boundary conditions.

Consider the piezoelectric laminate simply supported beam in Figure 2.1. A pair of
piezoelectric patches is bonded to the resonant structure surface. One piezoelectric layer
will be used as an actuator and the other for shunting. The subscripts “a”, “b” and “s”
correspond to the actuating piezoelectric layer, the beam and the shunting piezoelectric
layer respectively.

Using the modal analysis procedure, the position function y(z,t) is expanded as an

infinite series in the form:

v t) = 3 06, (2), (2.1)

where ¢;(t) is referred to as the modal displacement or generalized coordinate and ¢,(z) are
the eigenfunctions satisfying the ordinary differential equations (ODEs). Before considering

this approach we need to consider the piezoelectric actuator and shunting sensor dynamics.
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Figure 2.1: (a) Cross-section of the beam with piezoelectric laminates present; and (b) the
piezoelectric laminated simply supported beam.
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y Piezoelectric
Actuator

Figure 2.2: Anti-symmetric piezoelectric actuator.

2.1 Dynamics of the Beam with a Piezoelectric Actu-

ator

A common arrangement for the piezoelectric actuator is the one dimensional anti-symmetric
wafer configuration [10], shown in Figure 2.2. The actuator is bonded to the surface
of the resonant structure using a strong adhesive material. This configuration assumes
that the piezoelectric element is very long in the = direction compared to the z direction,
ie. ly = (wo — x1) > w, > h, (refer to Figures 2.1 and 2.2). Since the patch is longer
in the z direction, compared to the y and z directions, when a voltage is applied across
the electrodes (in the direction of polarization), the actuator induces surface strains to the
beam in the x direction.

Before making any derivations we must make some important assumptions. The first
assumption is that the structure (the beam) is covered by a thin layer of piezoelectric
material of thickness h,, which is perfectly adhered to the beam. We also assume that the
piezoelectric element only strains in the = direction, since I, = (22 — 1) > w, > h,. And
finally, if the piezoelectric patch is thin and lightweight, compared to the beam system, we
can ignore the inertial effects.

When a voltage is applied across the parallel plates of an unconstrained (i.e. not at-
tached) piezoelectric element, the actuator will strain by an amount &,, in the x direction
as depicted by [10]

€q = %a(t)? (2.2)

where V,(t) is the applied voltage in the direction of polarization, h, is the actuator thick-

11
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Figure 2.3: Decomposition of wafer strain distribution: (a) asymmetric strain distribution,
(b) flexural component and (c¢) longitudinal component [10].

ness and ds; is the piezoelectric material strain constant.

When a voltage is applied across the bonded piezoelectric element, it will attempt
to deform but will be constrained due to the stiffness of the beam. Due to its symmetric
nature, the beam will both bend and elongate, leading to an asymmetric strain distribution,

as shown in Figure 2.3. We assume that the strain distribution is linear, thus

e(y) = Cy + &0, (2.3)

where C' is the slope and ¢ is the uniform strain component at the y intercept.
Consider the asymmetric strain distribution show in Figure 2.3. Using Hooke’s law the

stress distribution within the beam structure can be expressed as

oo(y) = Ey(Cy + €o),

where F is Young’s elastic modulus of the beam material. The linear stress distribution,

within the piezoelectric actuator o,(y), is thus

Ua(y) = Ea(cy + €0 — 5a):

12



where F, is Young’s elastic modulus of the piezoelectric material.

By applying moment equilibrium about the centre of the beam and force equilibrium

in the x direction, the following two relationships can be formulated:

h(, hb+ha
/ oy(y)ydy + /h oa(y)ydy =0

—hy,

and

hb hb+ha
/ oy(y)dy + / caly)dy = 0,

hy hy
where hy is the half-thickness of the beam.
Integrating (2.4) and (2.5) and solving for the unknowns C' and ey, we obtain

g0 = Kle,,
where K is specified by [10]

B E.ha(8Eyhi + E,h3)
~ 16E2ht + EyE,(32h3h, + 24h2h2 + 8hyh3) + E2ht
and the slope C' is given by

KL

C =K'e,,
where the material-geometric constant K/ is specified by [10]

;o EyEyhyha(2hy + he)
~ 16E2h} + EyEo(32h3he + 24h2h2 + 8hyh3) + E2h:

(2.4)

(2.5)

(2.6)

(2.7)

The induced moment distribution, M,, beneath the actuator in the beam structure is given

by

M, = EbIbeEa,

(2.8)

where the strain &, is related to the applied voltage via (2.2) and I, is the moment of

inertia of the beam.

13



2.2 Dynamics of the Beam with a Piezoelectric Shunt

Sensor

We make similar assumptions for the piezoelectric shunt sensor as the actuator layer [10].
The shunt sensor is very thin, lightweight, perfectly adhered to the beam and only strains
in the z direction. When the beam is strained, it results in the following strain distribution,

d%y(x, 1)
oxr?

Due to the piezoelectric effect, this strain produces a charge distribution per unit area

es(x,t) = — (he + hs) (2.9)

q(z,t), given by [10]

q(z,t) = <k—%> es(z,1), (2.10)

g31
where k3, is the piezoelectric electromagnetic coupling constant and g3, is the piezoelectric
stress constant. The total charge accumulated on the shunting layer can be found by
integrating q(x,t) over the entire surface area of the piezoelectric element (with reference
to Figure 2.1), as

T4

Q(t) = /m wsq(x, t)de = —ws (hy + hy) ( (2.11)

3

k3 > y(z,1)

g31

0x

Since the piezoelectric patch, once charged, can be considered as a simple parallel plate

x3

capacitor, the voltage across the two layers vs(t), can be found to be

QW

Cupws(z4 — 3) Y Oz

T4

vs(t) =

)
z3

where C,,, is the capacitance per unit area for the piezoelectric shunting layer. The above
equation can be simplified to show that Cj is a geometric constant, which can be determined
from (2.10) and (2.11), thus

2
W, k3,

_cp (ho + hs) (—> (2.12)

gs1

Cs =

where C), is the capacitance of the shunt sensor.

14



2.3 Dynamical Model of the Beam System
Dynamics of the beam is governed by a modified Euler-Bernoulli beam equation [10],

0 0%y(, ) oA y(z,t)

o~ Ma g =0, (2.13)

where Ey, I, A, and p represent the Young’s modulus, moment of inertia, cross-section
area and linear mass density of the beam respectively. Furthermore, the additional term
M, = C,v,(z,t) is the moment applied to the beam by the piezoelectric actuator layer, as
shown in (2.8). The model assumes that the piezoelectric laminate is very thin compared
to the thickness of the beam element and that the beam deflects in z dimension.

We use the modal analysis expression (2.1) to find the particular solution of two essential

ordinary differential equations (ODEs). That is, from the unforced equation of motion

2 2
o Ebfbm +pATM:0
T Ot?

after substitution of y;(x,t) = ¢;(x)q(t), we have

54@%’ PA, 82¢i%

8134 E},Ib 8t2 =0

which reduces to .
1 o= — PAr i
¢ EyIy g,

Now both expressions must be equal to a constant w?. That is,

l I PAr Ay QZ 2

. = = W s
b5 ¢ EbI b 4i ’
which yields two ordinary linear differential equations, namely
ql + wfqi =0 (214)
and
¢;" — Big; =0 (2.15)
where, by definition
18, 2PA
/8 i W Eb Ib :

15



We apply the simply supported boundary conditions to the two ordinary differential equa-
tions (2.14) and (2.15). At 2 = 0, the pinned boundary conditions are

y(0,t) =0 (2.16)
and dy(0,1)
Yy,
Ey1, = 2.1
vlo—o 0 (2.17)
and at length x = L, we also have
y(L,t) =0 (2.18)
and Oy(L, 1)
yi,1v)
Eblbiax =0. (2.19)

To solve the partial differential equation (2.13), the mode shapes ¢,(z) are assumed to

be expressed using the eigenfunction solution,
¢;(x) = A;sin B,x + B, cos B;x + C;sinh 3,2 + D; cosh 3.
The solution of the characteristic equation is
sin(3;,L) =0 (2.20)
and to which corresponds the infinite set of eigenfunctions,
B.L=ir if i=12 .. .

The resonant frequencies w; are related to (3, via

Byl it\?% |E,I
2 (b [0 b2b
W, 52’/pAT <L> ’/pA,.‘ (2.21)

The mode shapes ¢,(x) are generally normalized according to the orthogonality conditions

/ " 0u()6,(5) Buly do — w26, (2.22)
0

and

| aars@parda =5, (2.23)
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where the Kronecker delta function is defined by

%:{1 if i=j

0 if i#j
The mode shapes are found to be of the form
5 .
oi(x) = AL sin <?> : (2.24)

To formulate the dynamical response of the system, Lagrange’s equation [10, 16] will
be used. Lagrange’s equation provides a general formulation for the equations of motion

of a dynamical system. The system’s kinetic energy T'(t) can be written as

|
T(t) = 3/ y(x,t)*pA, dz,

in which the constant symmetric mass coefficients m;; depend on the continuous system
mass properties and the eigenfunctions ¢,(z). After substitution of (2.1) and using the
orthogonality conditions (2.22) and (2.23) of the mode shapes, we define T'(¢) as

T(1) =5 > () (229

2

where we define ¢, = fOL ¢ (x)pA, de.
Similarly, the potential energy can be expressed as

1 L
V(t) = 5/0 ' (x,t)(t, x)* By, dx

due to the orthogonality conditions. This expression reduces to

1 — 1 —
V() = 5 Y kigi(t) = =5 D wiedl(t). (2.26)
1=1 1=1

The stiffness coefficients k; = w?, depend on the continuous system stiffness properties
and derivatives of the eigenfunctions ¢,(z) [16].

External forces are generally regarded as non-conservative, so that Lagrange’s equation
of motion has the form

d<w> O OV _out) if k=12.. N . (2.27)

() -5+ =
dt \ Oqy, 0q.  Oqy
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where the general non-conservative forces Qy(t) are determined to be [17],

Qu(t) = /0 Covl(t, )y (z) dax.

The constant C, is defined in the previous section as

o EyIyK7dy

Ca
ha

and the second derivative of the actuating voltage function can be determined as

0?vg(w,t)
Oz?

v (z,t) =

Now, the applied voltage to the piezoelectric actuator goes through a step change at the
boundaries of the “perfectly bonded” element and hence the spatial derivative is two im-

pulse functions of opposite sign. That is [10, 17]
V(x,t) = [6' (2 — 1) — 8 (z — 22)]va(t).

Using the Lagrange equation of motion (2.27) and substitution of (2.25) and (2.26), we get

an equation in terms of the input voltage V,(s)
6i(8)pA(s* + wy) = Culdf(w1) — df(w2)]Vals)

and substituting Y;(z, s) = ¢,(x)q;(s) we can formulate the total response:

Y(z,5)  ~o= Caldi(z1) — ¢i(22)]¢4(x)
V) _; (2.28)

2 2 ’
5%+ w;
— + w;

The above equation describes the elastic deflection of the entire flexible beam due to an
applied voltage to the piezoelectric actuator. To find the transfer function between the

actuator voltage and the shunting sensor voltage, we note that [17]
vs(t) = Cy Y qi(t)(¢i(w3) — ¢i(a)). (2.29)
i=1

By taking the Laplace transform of (2.29), we obtain the following expression

oo

V(o) = el = 6l(50) Y- 0(5) = Cletlo) = lla) o oy

i=1

18



With the above expression, the transfer function from the applied actuator voltage to the

shunt sensor voltage is

(s) i di(wa)l[¢i(25) — di(za)] (2.31)

(s) 82—|—wi

Note that the (2.31) assumes no natural damping. This is somewhat unrealistic and usu-
ally damping is added (2(,w;s) at some arbitrary point in the formulation of the transfer
function. And thus

Gy, s) 2 Z Oi(22)]0:() (2.32)

32+2szs—|—w

and

Guu(s) 2

Vi(s) = CsCaldi(m1) — ¢i(x2)][¢(23) — ¢ (w4)]
)" Z] : (2.33)

% $2 4+ 2¢w;s + w?

The above transfer functions (2.32) and (2.33) can be simplified to a more general
second order system, as

Goo(s) = Z i 5, (2.34)

— % + 2(w;s + w;

where the F; are constant with respect to frequency, position and shape of the piezoelec-
tric actuator/shunting layers. Here, (, are the damping ratios that is often determined
experimentally and w; are the modal frequencies. In a typical control design scenario, the
designer is often interested only in a particular bandwidth. Therefore, the transfer function
(2.34) is simplified by truncating the out-of-bandwidth mode, i.e.

N

Gy(s) = Z b o (2.35)

— % + 2(,w;s +w;

A drawback of this approach is that the truncated high orders modes may contribute
to low frequency dynamics in the form of distortion of the zero location. This problem
is considered in Section 2.6. The state-space equation for G,,(z,s) and G,,(s) can be
represented as

x, = Ax,+ BV,
Y = CyXb (236)
‘/s = CVst7
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where x; corresponds to the beam states, then A and B are as follows:

0 1 0 0
—w? —2¢,w; 0 0
A .
0 0 0 1
| 0 0 —w? —2(w;
and
T
B:[O 1 ... 0 1} .

For a general case, Cy and Cy, is of the form
[ F, 0 --- F, 0 } ,

where Fi, ..., F; depends on Y (z,s) and V(s).

2.4 Experimental Boundary Conditions

The pinned boundary conditions for the simply supported beam described in Section 2.3
are difficult to simulate under laboratory conditions due to their physical nature. An
alternative method is needed to simulate the required experimental boundary conditions.
One possible solution is to replace the pinned boundary conditions with a weak torsional
spring [19], as in Figure 2.4.

To construct the required experimental spring boundary conditions, we attach a shim
material to each end of the experimental beam, as shown in Figure 2.5. The other end of the
shim material is attached to a fixed structure. The shim material acts as a fixed-moment
beam [19], as shown in Figure 2.6.

If we replace the ideal boundary conditions with the shim material, the new boundary
conditions change the system’s dynamics, especially the resonant frequencies w;. We need
to modify the Euler-Bernoulli beam equation to include the shim boundary conditions
(SBC), which are [19]: (refer to page 22)
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Figure 2.4: Torsional spring boundary conditions.
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Figure 2.5: Experimental boundary conditions, Ly, = d5mm.
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Figure 2.6: Shim material with a moment load at the free end, i.e. a fixed-moment beam.
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y(0,t) = y(L,t)=0,
0%y(0, ¢ Oy(0,t
e

and

Py(L.t) _, OyL1)
t

ox2 oxr '
where k; is the torsional spring constant of the shim material. Using the above boundary

By, (2.37)

conditions, the natural frequencies w; can be determined. Assuming a solution of the form,
as in Section 2.3,

¢;(z) = A;sin B,z + B; cos 3,z + C;sinh 3,z + D; cosh 3,z
and using the first three boundary conditions (2.37), replacing A;, C; and B;, we obtain

i - D;(ky cos(B,L)—ki cosh(B,L) — 25, EyI, sinh(5,L))
b i(sin(3;L) — sinh(5;L)) ’
- Dj(—kicos(B;L)+k; cosh(B,L) + 23,E,I,sinh(3;L))

ki (sin(B;L) — sinh(5;L))

and

Using the last boundary condition in (2.37),

9%y(L, 1)
Ox?

— ktay(L?t),

BT
vlo O

the following non-linear equation can be derived
0 = k?— kycos(B,L) cosh(B;L)+283;EyIyk; cosh(B,L) sin(3,L)
—28,E, Ik cos(8,L) sinh(3,L) + 462 E+ 12 sin(B,L) sinh(B,L).  (2.38)

Using a numerical method to determine (,, we can determine the natural frequencies of

the experimental structure by
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BT

2 blb

=02 =22 2,
wl /87, pA,,, (39)

We can assume that the mode shapes retain their original form of ¢,(z) = \/M% sin (22),
since only the resonant frequencies are affected by the shim boundary conditions. The
experimental simply supported beam still retains its symmetric mode shapes.

To determine the experimental shim stiffness k;, we can model the shim material as a
simple beam, therefore, we are able to derive a solution using fundamental beam properties.
From [15], the following relationship holds for a moment load at the end of a cantilever

beam (refer to Figure 2.6),

Mshm?h
2Esh]sh
where FEy;, is the Young’s elastic modulus of the shim material and I, is the moment of

ysh(xsh) = Zf 0<zg < Lsha (240)

inertia of the shim material. By differentiating with respect to x,,, we obtain

dysh (xsh)
d'Tsh

. Mshxsh
Eshfsh

. Msthh
B Eshfsh ‘

(2.41)

msh,:Lsh, xsh,:Lsh.
Approximating the torsional spring behavior of the shim material, for small angles, the

deflection will be described by

0 ~ dysh ($sh)
dwsh

: (2.42)

Tsh=Lsn
where 6 is the angle of twist of the shim from its neutral axis. For a torsional spring, the

following equation is also valid for small angles [15],

My =~ kb, (2.43)
Therefore, from (2.42) and (2.43), we obtain

M, sh E sh[ sh
- = . 2.44
T Lan (244)
Using the shim parameters shown in Table C.1, we obtain k; ~ 2N/m. Therefore, the exper-
imental boundary conditions are equivalent to the ideal boundary scenario, i.e. Ej 1, bw =

Ox2
EbIb% ~ 0 and y(0,t) = y(L,t) = 0.
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Figure 2.7: Experimental simply supported piezoelectric laminated beam, L, = 5mm.

2.5 Verification of Experimental Boundary Condition

The experimental beam apparatus, as illustrated in Figure 2.7, consists of a uniform alu-
minum beam of a rectangular cross section. The beam parameters are given in Table B.1.
A pair of piezoelectric ceramic patches are attached symmetrically to either side of the
beam structure at 0.05m from one of the shim boundary conditions, i.e. z; = 23 = 0.05m
with reference to Figure 2.1. The piezoceramic elements used on the experimental struc-
ture are PIC151 PZT (lead-zirconate-titanate) patches. The physical parameters for the
PIC151 piezoelectric patches are given in Table D.1. Small screws attach the shim mate-
rial to the end of the beam structure, as shown in Figures 2.5 and 2.7. The shim material
are appropriately fastened at Lg, = dmm to a secure structure, i.e. a Newport RS3000
optical table with passive isolation structural supports. The optical table is used to lower
ambient noise levels that may effect measurements, such as machinery noise and building
transmission noise.

To validate the experimental boundary conditions, a Polytec Scanning Vibrometer
(PSV-300) was used to observe the mode shape behavior. The vibrometer measures the

two-dimensional distribution of vibration velocities on the basis of laser interferometry.
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Figure 2.8: First mode, w; = 20.63H z.

The PSV-300 system is used as a non-contact transducer to measure the velocity of many
points on the resonant beam structure. A periodic chirp was generated using a Hewlett
Packard 33120A function generator, the signal was amplified using a high voltage power
amplifier and then applied to the piezoelectric actuator. The frequency responses were
taken, relating the point velocity to the actuator voltage, i.e. Vi (x, s)/V,(s). Results from
the area scans are displayed in Figures 2.8 to 2.12 for the first five resonant modes of the
experimental simply supported beam.

From the area scans, the experimental simply supported beam shows good mode shape
behavior. Omne observation that was observed was that the beam had added torsional
dynamics at 306.6Hz, as shown in Figure 2.11. The additional torsional dynamics are
due to the orientation of the shim material and should not cause any real problems when

designing different passive and semi-active control strategies.

2.6 Model Verification

For the design of passive and semi-active controllers, we are interested in a particular
bandwidth. For obvious reasons, the infinite order models produced by the modal analysis
technique is not suitable, as in Section 2.3. As an alternative, the displacement and voltage

frequency responses are measured and used a finite order model (say N = 5), with the
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Figure 2.9: Second mode, wy = 75.31H 2.
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Figure 2.10: Third mode, w3y = 171.3H 2.
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Figure 2.11: Fourth mode, ws = 306.6H 2.

Figure 2.12: Fifth mode, ws = 474.4H 2.
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following structure:

V(o) 5~ Fu
Gynl,8) = T L 24 2 wis + W Ko
i=1 ¢ i

Va(s) Ciw
and .
Vs(s) Fu;
v = = K, ’
Cns) Va(s) Z $% + 2C,w;s + w? A opt

i=1
where K yo and Kv,, are the zero frequency correction terms introduced in [17]. Although
the truncated model can be found by minimizing the Hs norm of the additive error system
[17], the inherent feedthrough term K, causes the corrected system to approach infinity!.

A. | B. |. .
To overcome this adverse effect, the corrected system is remodeled with an
additional parallel low pass filter G(s) = W“CSW If we > max(w;) and %5 = Kop,

the dynamics of the system in the bandwidth of interest are retained. The state-space

realization becomes:

A, 0 ‘ Bc AlB
0 A B —’— .
f f C :
C. C; | 0
A; | By | . L
where . D is the state space realization of the filter G(s). Note that the
! !

feedthrough term D, has been eliminated.

To validate the theoretical model with shim boundary conditions, experiments were
carried out on the experimental piezoelectric laminated beam. The beam was excited using
the piezoelectric actuator layer with a swept sine source from a Hewlett Packard 33120A
function generator. The signal was then amplified using a high voltage power amplifier.
A Hewlett Packard 35670A signal analyzer was used to measure the transfer function
G (8), i.e. the voltage applied to the actuator to the shunting piezoelectric voltage. The
displacement measurement is performed using a Polytec Laser Scanning Vibrometer. The
Gyw(z, s) transfer function was determined for a point on the composite structure located at
xq = 0.170m, as shown in Figure 2.1. The frequency response of the experimental system
and identified model is shown in Figure 2.13. It is observed that the identified model is a

good representation of the true system over the bandwidth of interest.vs

1This will become important in later chapters, as in Section 3.3, as we minimize the Hy norm of the
passive dampened system.
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Figure 2.13: Frequency responses of a) |Gy, (8)|, b) |G, (0.170, s)|: experimental (- --) and
modeled results (—).
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Mode | Ideal Model (Hz) | Model w/ SBC (Hz) | Experimental (Hz)
1 18.72 19.89 20.63
2 74.85 74.52 74.61
3 168.43 171.4 171.3
4 299.43 304.9 306.6
5 467.87 468.5 474.4

Table 2.1: Model frequencies: mathematical models vs experimental results.

The first five resonant frequencies wy, . .
boundary conditions (SBC) and experimental results are tabulated in Table 2.1. The
experimental damping values (, shown in Table 2.2, were measured using the Hewlett
Packard 35670A signal analyzer and were incorporated into the state-space model. From
the tabulated frequencies, we can see that the theoretical SBC model closely predicates

Mode | Damping (¢)
1 0.0053
2 0.0014
3 0.0021
4 0.0017
) 0.0011

Table 2.2: Damping parameters determined experimentally.

.,ws for the ideal boundary conditions, shim

the experimental results compared to the ideal pinned boundary conditions.

2.7 Chapter Conclusion

The application of the models derived in the chapter to a practical simply supported beam

has been demonstrated. The models derived here are now used to design passive and

semi-active controllers to improve the damping of the resonant system.
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Chapter 3
Passive Shunt Damping

Shunt damping methodologies are often grouped into three broad categories: resistive, sin-
gle mode and multiple modes. Resistive shunt dampens the structure but the performance
is limited. Single mode shunt damping techniques are simple but damp only one structural
mode for every piezoelectric element. Multiple mode shunt damping techniques require

more complicated shunt circuits but are capable of damping several modes.

3.1 Introduction

3.1.1 Resistive Shunt Damping

When a simple resistor is placed across the terminals of a piezoelectric element, the piezo-
electric damper will act as a viscoelastic damper [13]. The resistor provides a means of
energy dissipation, i.e. increases the mechanical loss factor. This type of damper has limited
performance. The optimal damping resistance depends on the specific damping frequency,
mechanical coupling coefficients and the inherent capacitance of the piezoelectric element.
For further reading the reader is referred to [13].

3.1.2 Single Mode Shunt Damping

Single mode damping was introduced to decrease the magnitude of one structural mode [13].
Two examples of single mode damping are shown in Figure 3.1, parallel [27] and series shunt
damping [13]. Using the inherent capacitance of the piezoelectric, a R — L shunt circuit

introduces an electrical resonance. This can be tuned to one structural mode in a manner
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(a) (b)

Figure 3.1: Examples of single mode shunt circuits: (a) parallel case and (b) series case.

analogous to a mechanical vibration absorber [13]. Single mode damping can be applied
to reduce vibration due to several structural modes with the use of as many piezoelectric
patches and damping circuits. The optimal damping resistance R; depends on the specific
damping frequency, mechanical coupling coefficients and the inherent capacitance of the
piezoelectric element [13, 27].

Problems may arise if these piezoelectric patches are bonded to or embedded in the
structure. First, the structure may not have sufficient room to accommodate all of the
patches. Second, if there is insufficient room, the structure may be altered or weakened
when the piezoelectric patches are applied. In addition, a large number of patches can
increase the structural weight, making it unsuitable for applications such as aerospace

systems.

3.1.3 Multiple Mode Shunt Damping

To alleviate the problems associated with single mode damping, multi-mode shunt damping
has been introduced, i.e. the use of one piezoelectric patch to damp several structural
modes. There are two common circuit configurations for multi-mode shunt damping and
they are called parallel and series cases. Examples of these two configurations are shown
in Figure 3.2. There are other examples of multi-mode shunt damping but these will not
be discussed in this thesis.

The principle of multi-mode shunt damping is to insert a “current blocking” or an-
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Figure 3.2: Examples of multiple mode shunt circuits: (a) parallel case [28] and (b) series

case.

tiresonance circuit [27, 28, 29, 30] in series with each shunt branch. In Figure 3.2, the
blocking circuit consists of a capacitor and inductor in parallel, C's — L3. The number of
antiresonance circuits in each R — L shunt branch depends on the number of structural
modes to be damped simultaneously. Each R — L shunt branch is designed to dampen only
one structural mode. For example, Ry — L; in Figure 3.2 is tuned to resonate at wq, the
resonant frequency of the first structural mode to be damped. Ry — Lo is tuned to ws, the
second structural mode to be damped, and so on.

According to Wu [28], the inductance values for the shunt circuits shown in Figure 3.2

(a) and (b) can be calculated from the following expressions. It is assumed that w; < ws.

1
Ly = —— 3.1
T w20, (3:-1)
and
(Llig + E2L3 — L1L3 - W%L1E2L303>
Ly = - : (3.2)
<L1 — LQ) (1 - w%Lg}Cg)
where
~ 1
= 3.3
27 WiC, (3:3)
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and

1
W%C;),.

C, is the capacitance of the piezoelectric element and Cs is an arbitrary capacitor used in

L3y =

(3.4)

the current blocking network.

Current techniques for determining the resistive elements for shunt damping are based
on rather ad-hoc methodologies [9, 12, 14, 27, 28, 29, 30]. Even though this technique
for determining the resistance values (R; and Ry) is reliable and the complete circuit
can be fine-tuned by trial and error [9, 12, 14, 27, 28, 29, 30], there are two important
questions that need to be addressed when applying multiple mode shunt damping. The first
question is how the shunt resistive values required for optimal multi-mode shunting should
be calculated. The second question is why the parallel shunt damping case presented in
[27, 28, 29, 30] is easier to implement practically than the series shunting circuit [9, 12, 14].

It is, therefore, the aim of this chapter to present answers to these two questions.

3.2 Dynamic Model of the Composite System

As discussed in Section 3.1.3, there are two common circuit configurations used for multi-
mode shunt damping and they are called series and parallel cases, as shown in Figure 3.2.
In order to model the presence of the shunt network, the coupled terminal dynamics of the
circuit and laminated beam are considered.

Piezoelectric transducers behave electrically like a capacitor €}, and mechanically like
a stiff spring. It is common to model the piezoelectric element as a capacitor C), in series
with a strain dependent voltage source [8, 13]. Consider Figures 2.1 and 3.3, where a
piezoelectric patch is shunted with an impedance Z. The current-voltage relation of the
impedance can be represented in state-space form as

}.(z = Azxz + Bz‘/z (35)

and

iz = szz + Dz‘/za (36)

where V, is the voltage across the impedance and i, is the current flowing through the

circuit. The relationship between V, and V,, shown in Figures 2.1 and 3.3, is

).(b = AXb + B‘/z, (37)
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Figure 3.3: Shunt piezoelectric element schematic.

and
V, = —Cy.xy (3.8)

where V,, is the voltage induced from the electromechanical coupling effect. By shunting
the piezoelectric patch, the voltage V, across the shunting layer or impedance, shown in

Figure 3.3, is related to the terminal voltage and current by

1 [
u:w—a/@ﬁ

The variable i, can be replaced with ¢, the charge on the piezoelectric patch. Conse-
quently, by replacing V, and substituting V,, = —Cy,xs, (3.5), (3.6) and (3.7) becomes

1
x, = (A —BCy,)x, — —Baq,. (3.9)
Cp
For the variable x,, it can be shown that
1
x,=A,x,—B.,Cy.x, — =—B.q, (3.10)
Cp
and thus q, is
1
q. =C.x, —D,Cy,x, — —D.q.. (3.11)
Ch

The combination of (3.9), (3.10) and (3.11) leads to the following state-space represen-
tation,
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%, A-BCy, 0 -ZB |[x,

X, | =

~B.Cy,
q,z _DzCVs

A, _C%,BZ X, |- (3.12)
C, —CipDz 9.

If a voltage V, is applied to the piezoelectric actuator, then (3.12) becomes

AX + BV,
Cy.X (3.13)

8

CyX,

We now have the state-space representation of V. (s)/V,(s) and Y (z,s)/V,(s) for a single

input single output (SISO) system. During the course of the thesis, Y (x, s)/V,(s) is of most

interest, since we want to minimize the vibration at a point on the beam structure. By

minimizing the vibration at a point, we are minimizing the energy of the resonant system.

3.3 Determining the Shunting Resistances via Opti-

mization

In order to find appropriate values for the shunt resistors R = { Ry, Ry, ..., R}, an opti-

mization approach is proposed. A set of resistors can be found so that the Hy norm of the

damped system is minimized. Minimizing the Hy norm of the system minimizes the RMS

displacement at a single or series of points due to a spectrally white disturbance signal

applied to the actuator(s).
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3.3.1 Optimization Technique

Consider a transfer function matrix G(s) € C™*" representing the damped system (3.13).
The H, norm of G(s), denoted Hé(s)

, is defined as:
2

Gs) = o /_oo tr (G () G(jw)do)

2 21 J_o

Let G(s) have the realization G(s) = C(sI — A)~!B. If the matrix A is stable, the
following equality holds

J = ||G(s)|? = tr(CPC"), (3.14)
where P satisfies the Lyapunov equation ATP + PA + BBT = 0. In this case A is a
function of R. This leads to the following constrained optimization problem:

R* =arg min J, (3.15)
s.t. g=0

where g = ATP + PA + BB' and R = {Ry, R, ..., Ry} > 0.

Having set up the optimization problem (3.15), a number of methods can be employed
to find an optimal set of resistors R* = { R}, R}, ..., R:}. One such method is the Nelder-
Mead simplex search algorithm. A more elegant and computationally efficient method
of solving (3.15) is to use the gradient search algorithm. By introducing the matrix of

Lagrange multipliers S, the Lagrangian L is formed as follows
L =tr(CPC") + tr(gS).

The first order necessary conditions for optimality are found by equating the derivatives

of L with respect to the parameters P, S and R to zero:

I - - -

g_s - AP+PA +BB =0, (3.16)
OL  <p x ana

o= = ATS+SA+C"C=0, (3.17)
oL i _r

s = (ElPS-i—PElS):O,

oL e =T

— tr (E,PS + PE s) — 0. 1

SR r( +PE,S) =0 (3.18)

With n resistors, A can be represented as A=A+ le)l + ...+ Rnf}n, where A is inde-
pendent of R.
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The Hy norm of the system can now be minimized by solving the above equations
simultaneously. It is not possible to obtain a closed form solution, so a numerical approach
is required.

As preliminaries for the optimization, the static matrices (B and é) are computed and
an initial estimate Rq is made for R*. Matrix A is a function of Ry and is updated at each
iteration. Matrices P and S are calculated by solving the Lyapunov equations (3.16) and
(3.17). The direction of steepest descent is found by evaluating the gradient vector, whose
entries are the partial derivatives of L with respect to Ry, R, ..., R, (3.18). The process is
iterated by updating Ry, until a minima is obtained (i.e. until the exiting conditions g—é ~ 0
and Ly, ~ Lj are satisfied). Since the problem is not convex, an iterative optimizétion

procedure can be carried out for a number of initial guesses to obtain the best solution.

3.4 Experimental Verification

To validate the optimal shunt damping concept, experiments were carried out on the simply
supported piezoelectric laminated beam. The experimental setup was introduced in Section
2. Two different multi-mode shunt circuits were examined and they are: (a) the parallel
shunt circuit; and (b) the series shunt circuit, as shown in Figure 3.2. Also, for simplicity,
only the 2nd (w; = 74.5Hz) and 3rd (wy = 171.3H z) structural modes of the piezoelectric
composite beam were considered for shunting. The 2nd and 3rd structural modes were
chosen due to their high resonant amplitudes, as shown in Figure 2.13. The reason for
only considering the 2nd and 3rd mode is because these modes have more authority in
comparison to other structural modes due to the chosen location of the piezoelectric patch.

According to [28], the inductance L, Ly and L3 of these two circuits are defined in
equations (3.1) to (3.4). Both parallel and series circuit cases were designed under the
assumption that w; < we. The “blocking” capacitance C3 was chosen to be 100n F' because
of the commercial availability of these capacitors. The inductor parameters were found
to be Ly = 43H, Ly = 20.9H and L3 = 45.2H. Using the already mentioned circuit
parameters for the shunt and dynamic composite modeling method, the Hs norm of the
composite system was minimized. The optimal resistance values for R; and R,, for both
the parallel and series shunt cases, are obtained. Figures 3.4 and 3.5 show the Hs norm
cost surface as a function of R; and R.

From Figures 3.4 and 3.5, it can be seen that both cost surfaces have a minimum. For

the parallel shunt case, the optimal region is larger than the one for the series shunt case.
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This justifies the work presented in [27], which states that “the parallel shunt circuit is
therefore easier and more practical”, i.e. the parallel shunt case is less sensitive to circuit
tuning compared with the series case.

The optimization algorithm found a minimum at R} = 262.75kQ2 and R3 = 550.73kS2
for the parallel shunt case, while the minimum for the series shunt case was found to be at
R} = 1543.4) and R} = 1145.2€).

mm

OPA445 OPA445

I
|
|
|
|
|
|
|
: OPA445
|

Figure 3.7: Experimental series shunt circuit for Ry, Ry, L1, Lo, L3 and Cj.
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Parameters Ly, Lo, L3 and C5 were then employed in the design of the two shunt
circuits, parallel and series (refer to Figures 3.6 and 3.7) shunt cases, and then tested
across the piezoelectric patch. Construction of the shunt circuits requires Riordan high Q
factor simulated floating/grounded inductors [22] for L;, L, and Ls. A summary about
ground/floating inductors can be found in Appendix A. Burr-Brown OPA445 operational
amplifiers were used to construct the inductor circuits. These operational amplifiers have
a supply voltage limit of £45 v.

To justify the Hy norm optimization technique, the magnitude frequency response were
taken for the G,,(0.170,s) before and after shunt damping at z; = 0.170m. Figure 3.8
shows the results for the parallel and series circuit cases respectively.

| | | | |
60 80 100 120 140 160 180 200
Frequency (Hz)

| | | | |
60 80 100 120 140 160 180 200
Frequency (Hz)

1 | | | |
60 80 100 120 140 160 180 200
Frequency (Hz)

Figure 3.8: Parallel and series shunt circuit cases of |G,,(0.170, s)|: theoretical (—) and

experimental results (- - -).
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Figure 3.9: Experimental time responses, V,;(0.170, s)/V,(s).

After tuning the shunt resistances, the following experimental values were found: in
the parallel multi-mode shunt case Ry = 246.3k€) and R, = 540.2k€); and in the series
multi-mode shunt case R; = 935.2€2 and Ry = 732.1€). Comparing resistors obtained from
experimental results with these obtained from theoretical results, it can be seen that the
experimental tuned values are near to the predicated theoretical optimal values. Figure
3.8 shows the magnitude results for G,,(0.170, s), in the parallel and series circuit cases
respectively.

The experimental resonant amplitudes for the 2nd and 3rd modes were successfully
reduced for both the parallel and series cases. The parallel resonant amplitudes were
reduced by 18.9dB and 19.1dB. For the series case, a reduction of 18.7dB and 19.2d B was
obtained. From theoretical simulations the resonant amplitudes at 2nd and 3rd modes for
the both parallel and series circuit cases were 21.6dB and 21.1dB; and 21.5dB and 21.2dB.
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Parallel Case (k2) Series Case (12)

Mode | Simulated | Experimental | Simulated | Experimental
Ry 262.75 246.3 1543.4 935.2
R, 550.73 540.2 1145.2 732.1

Table 3.1: Summary of resistance damping elements.

Parallel Case (dB) Series Case (dB)
Mode | Simulated | Experimental | Simulated | Experimental
2nd 21.6 18.9 21.5 18.7
3rd 21.1 19.1 21.2 19.2

Table 3.2: Summary of magnitude reduction results.

Parallel Case

Series Case

Undamped Settling Time
Damped Settling Time

L
10

L
10

Table 3.3: Summary of experimental time results.

To complete the validation, a second set of experimental data was taken to test the
proposed optimal approach in a transient regime. The experiment consisted of exciting
the beam structure using a step voltage across the piezoelectric actuator and monitoring
the velocity decay at a point on the beam structure, V,;(0.170,s)/V,(s). A Polytec Laser
Scanning Vibrometer (PSV-300) was used to monitor the velocity decay at a point at
xq = 0.170m. The rapid prototype system, dSpace, was used to generate the voltage step
and capture the time response data from the vibrometer. The sampling frequency was
set at 20kHz. Within dSpace, a low-pass digital filter was used to remove high order
structural modes and noise. The cut-off frequency for the digital filter was set at 230H z.
After sampling the time response, the data was filtered with a high-pass digital filter to
remove low frequency noise. The cut-off frequency was chosen to be 30H z so as to remove
the dynamics of the 1st structural mode. Results from the transient time regime are shown
in Figure 3.9.

A summary of the optimal resistive values, magnitude reduction results and experimen-

tal time results are shown in Tables 3.1, 3.2 and 3.3 respectively.

43



3.5 Chapter Conclusion

From this chapter, we have developed a systematic way of determining the required optimal
damping resistance for multiple mode shunts. Two different multi-mode shunt damping
techniques were examined, namely the parallel [28] and series cases. A state-space theoret-
ical model of the dampened system was also developed. Damped theoretical results were
found to closely agree with experimental results.
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Chapter 4

Synthetic Impedance

4.1 Introduction

Currently shunt damping circuits are implemented using a network of physical components,
as shown in Figures 3.6 and 3.7. There are a number of problems associated with this direct

circuit implementation, the foremost of which are listed below.

1. Typically shunt circuits require large inductor values (up to thousands of Henries).
Virtual grounded/floating inductors (Riordan Gyrators [22]) are required to imple-
ment the inductor elements. Such virtual implementations are typically poor repre-
sentations of ideal inductors. They are large in size, difficult to tune and are sensitive

to component age, temperature and non-ideal characteristics.

2. Piezoelectric patches are capable of generating hundreds of volts for moderate struc-
tural excitations. This requires the entire circuit to be constructed from high voltage
components. Furthermore, voltage limitations arise due to the internal gains of the

virtual inductors.

3. The minimum number of operational amplifiers required to implement the shunt
damping circuit increases rapidly with the number of modes to be damped. At least
30 operational amplifiers are required to implement a series configuration multi-mode
shunt damping circuit with a “current blocker” in every branch. The relationship
between the number of operational amplifiers and the number of modes to be damped
for this circuit configuration is given by 2n + 4n(n — 1), where n is the number of

modes to be damped.

45



DSP

S
__________7\_________
I

+
|

Figure 4.1: Current source implementation.

4.2 Implementation of Shunt Damping Circuits

It should be clear from the previous section that the concept of multi-mode shunt damping
is useful, but implementation difficulties make its application somewhat limited. This
section introduces a new method of implementing an arbitrary shunt impedance, namely
the “synthetic impedance” using a voltage controlled current source and a digital signal
processor (DSP).

4.2.1 The Synthetic Impedance

We define a “synthetic impedance” as a two terminal device that establishes an arbitrary
relationship between voltage and current at its terminals. The functionality is shown in
Figure 4.1, where i,(t) = f(v.(t)). This can be made to synthesize any network of physical

components by fixing i, to be the output of a linear transfer function of v,, i.e.
I(s) =Y (s)Vi(s), (4.1)

where Y (s) = % and Z(s) is the impedance to be seen from the terminals.
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4.2.2 Circuit Diagram / Transfer Function Equivalence

In Section 4.2.1, Y(s) is formed analytically by calculating the complex admittance of
the network. In practical situations where there may be a large number of shunt circuit
elements, it is desirable to “redraw” the circuit as a transfer function block diagram so that
the overall % relationship is equal to Y (s). This can simplify the process of writing
DSP algorithms. Moreover, if a graphical compilation package such as the Real Time
Workshop (RTW) for MATLAB is available, the need for any transfer function derivations
or algorithm coding is removed.

Two transformations of interest are shown in Figures 4.2 and 4.3. These can be com-
bined to find an equivalent transfer function form for any network of impedances.

Parallel circuit equivalence. Consider the parallel network components 71, Zs, .. .,

Zm as shown in Figure 4.2. The terminal impedance and admittance of this network are:

1 1 1
Z =(=—4+—+4...+=—)""
2(s) = (G + 5+t )
and 11 1
Y, =— 4+ —4...+—. 4.2
rs) =ttt (4.2)
Now consider the transfer function block diagram, also shown in Figure 4.2.
T(s) 1 1 1
= =— 4+ —4...+ — 4.
G(s) Re) - 7 ot (4.3)

It is noted that Yy (s) and G(s), as described in equations (4.2) and (4.3) are identical.
Therefore, if a synthetic impedance as shown in Figure 4.3 is implemented with a transfer
function equal to G(s), the impedance seen from the terminals will be identical to the
impedance of the parallel network shown in Figure 4.2 (with impedance Z7(s) given by
(4.2)).

Series circuit equivalence. Consider the series network components 71, Zs, ..., Z,

as shown in Figure 4.3. The terminal impedance and admittance of this network are:
Zr(s) =71+ Zo+ ...+ Zn

and
1

Y = .
7(s) W+ 2o+ ...+ 2y

(4.4)
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Figure 4.2: Parallel block equivalence.
Now consider the transfer function block diagram, also shown in Figure 4.3.
T(s) A
G(s) = = -
() R(s) 1+ 5Za+...+ 52
1
G(s) = (4.5)

vt 2o+ .o+ L
It is noted that Y7 (s) and G(s), as described in equations (4.4) and (4.5), are identical.

Therefore, if a synthetic impedance as shown in Figure 4.3 is implemented with a transfer
function equal to G(s), the impedance seen from the terminals will be identical to the

impedance of the series network shown in Figure 4.3 (with impedance Zr(s) given by

(4.4)).

4.3 Experimental Results

To assess the merit of the concepts presented, a number of experiments were carried out on a
simple test circuit and the simply supported piezoelectric laminate beam. An experimental
test circuit will be used to validate the proposed synthetic impedance device. Finally, the
optimal multi-mode parallel and series shunt circuits (see Section 3.3.1) are synthesized
and applied to the structure. Damping performance is evaluated by measuring the free
and damped frequency responses of the beam.
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Figure 4.3: Series block equivalence.

4.3.1 Synthesis of Impedance

The implementing circuit is similar to the example implementation shown in Figure 4.1.
A voltage controlled current source constructed from a single operational amplifier is used
together with buffer/amplifiers and a DSP system to simulate impedance. The two unity
gain buffers are replaced with non-inverting amplifiers of gain % and 10. This retains the
functionality while allowing the DSP system to operate at a voltage 10 times lower than
that dealt with by the current source and buffer /amplifiers. A voltage protection device is
placed at the input to the DSP analog to digital converter. The only required high voltage
components are now the buffer /amplifier and current source operational amplifiers. The
resistor R, sets the transconductance gain of the system. In order to minimize quantization
error, a reasonable portion of the digital to analog converters range should be utilized. A
larger resistor requires a larger voltage to provide a specified current. To maintain a unity
transconductance, a gain equal to the value of the resistance R, should be placed internally
in the DSP algorithm or in series with a transfer function block diagram.

As discussed in Section 4.2.2, there are two approaches to designing the DSP algorithm.
The first involves deriving the admittance transfer function of the network, then imple-

menting the time domain response on the DSP. The second approach, using a graphical
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Figure 4.4: Ideal test circuit.

compilation package, does not require any derivations or coding and will be used here.
The Real Time Workshop for MATLAB is now invoked to compile the Simulink! diagram
into an executable code. This is downloaded onto the DSP hardware? and executed in
real time. The sampling time of the digital system is 40 kHz. The current source and
buffer /amplifiers required for the synthetic impedance are constructed from Burr-Brown
OPA445 operational amplifiers. These operational amplifiers have a supply voltage limit
of +45 v.

4.3.2 Test Example: Synthesizing a series R — L. impedance

Consider the circuit diagram shown in Figure 4.4. Suppose that it is desired to synthesize
the L and R components, as for a single mode shunt. (Refer to Section 3.1.2 on page 31).
The desired impedance is Z, = Ls + R, thus G(s) = Y (s) = 55, where L = 5H and
R =100082. Y (s) can be implemented using a digital signal processor. In this example, the

dSpace® DSP system is used to simulate the required transfer function in real time (any
other suitable DSP system may be used). The implementation of the voltage controlled
current source is shown in Figure 4.5. To verify the correct operation, the frequency

response was measured between the source voltage V.(s) and the synthetic impedance

LA graphical simulation environment for MATLAB.
2The target processing hardware is the dSpace DS1103 processing and I/O board.
3 A real time DSP package for prototyping control systems.
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Figure 4.5: Test circuit with synthetic impedance.

V.(s). This is plotted along with the theoretical frequency response |V.(s)/V.(s)| as shown
in Figure 4.6. We can see that the simulated response along with the theoretical response
in Figure 4.6 are closely matched, therefore verifying that the circuit developed agrees with

expected results.

4.3.3 Shunt Damping Performance

The circuits of Figure(s) 3.2 is “redrawn” in Simulink as a transfer function block diagram
using the methods described in Section 4.2.2. The resulting Simulink block diagrams are
shown in Figure 4.7. The optimized series and parallel shunt elements from Section 3.4 are
now applied to the simply supported beam. As shown in Section 4.3.1, the circuits are first
converted into a transfer function block diagram, compiled with RTW, then downloaded
onto the DSP hardware. The dSpace DS1103 processing and I/O board was chosen as the
target DSP hardware

The displacement and voltage frequency responses are measured using a Polytec laser
scanning vibrometer and a Hewlett Packard spectrum analyzer (35670A). In both cases
a swept sine excitation is applied to the piezoelectric actuator. Figure 4.8 shows the
theoretical and experimental damped frequency responses for both parallel and series
multi-mode shunt circuits. Figure 4.9 shows the experimental time domain response,
Ve1(0.170, 8)/V,(s), to a filtered step disturbance (band pass filtered between 40 and 200
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Figure 4.6: Theoretical (—) and experimental (- --) frequency responses, |V.(s)/V.(s)|.

Hz).

Experimental resonant amplitudes for the 2nd and 3rd modes were successfully reduced
for both parallel and series cases using the synthetic impedance. Parallel resonant ampli-
tudes were reduced by 19.8dB and 20.2 dB and in the series case a reduction of 20.3dB
and 20.1dB was obtained.

4.4 Synthetic Impedance vs Direct Circuits

To evaluate the performance of the synthetic impedance, we need to compare it with
the current direct circuit method (using discrete resistors, capacitors and virtual Riordan
inductors [22]) and the predicated theoretical damped results. The performance was com-
pared for both parallel and series multiple mode configurations, as shown in Figure 3.2,
using the following parameters as outlined in Table 4.1.

The frequency response |G, (0.170, s)|, (obtained using the same procedure as described
in Section 4.3.3), was plotted for both multiple mode shunt methods. The achieved ex-
perimental results are shown in Figures 4.10 and 4.11, for the 2nd and 3rd mode of the
piezoelectric laminated simply supported beam. Note for Figures 4.10 and 4.11 that the
following abbreviations represent: Exp. — experimental results, TM — theoretical model,
SimZ — synthetic impedance and VC — virtual circuit.

Performance of the theoretical model (TM), synthetic impedance (SimZ) and virtual
circuit (VC) results are shown in Table 4.2. From experimental results, the synthetic

impedance closely agrees with the predicated theoretical results.
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Figure 4.7: Admittance transfer function: (a) parallel and (b) series multi-mode shunts.
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Figure 4.8: Parallel and series shunt circuit cases, |G,,(0.170, s)|: experimental (---) and
theoretical results (—).

Circuit Values

Parallel Case | Series Case
1 262.75k82 1543.4%)
R; 550.7kS) 1145.29)
Ly 43H 43H
Lo 20.9H 20.9H
Ls 45.2H 45.2H
Cs 100nF 100nF

Table 4.1: Circuit values: theoretical model, virtual circuit and synthetic impedance.
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Theoretical Model (TM)
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Virtual Circuit (VC)

Mode

Parallel

Series

Parallel

Series

Parallel

Series

2nd

21.0dB

21.5dB

19.8dB

20.3dB

18.1dB

17.5dB

3rd

21.6dB

20.2dB

20.2 dB

20.1dB

18.0dB

18.1dB

Table 4.2: Compare amplitude reduction using benchmark circuit values:

model, synthetic impedance and virtual circuit.
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Figure 4.10: Compare 2nd mode theoretical model with experimental synthetic impedance

and direct circuit results.
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Figure 4.11: Compare 3rd mode theoretical model with experimental synthetic impedance
and direct circuit results.
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4.5 Chapter Conclusion

The problems associated with the direct circuit implementation mentioned in Section 4.1
have been addressed. Non-idealities in the virtual inductors result in a poor correlation
between experimental and predicted frequency responses. Peak damping performance is
~ 3dB lower than that achieved by the direct circuit method. The synthetic impedance
has proven to be a high performance method of implementing shunt damping circuits. It
has a low number of high voltage components, is immune to component non-ideality, and
requires no tuning of sensitive virtual circuits. When using a DSP system, the synthetic
impedance has the additional advantage that the shunt circuit parameters can be adjusted

on-line, in real time.
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Chapter 5

Shunt Damping using a Negative

Capacitance Circuit

A passive vibration shunt damper generally acts to minimize structural vibration at a spe-
cific frequency associated with a lightly damped structural vibration mode. Because this
frequency is rarely stationary in real applications, i.e. changes in climactic conditions may
shift the resonant frequencies, some damping is usually added to ensure some level of effec-
tiveness over a range of frequencies. Maximum amplitude reduction, however, is achieved
only if the shunt absorber is lightly damped and accurately tuned to the required frequency
of concern. Thus, a semi-active (passive-active) vibration absorber should perform better

than a passive shunt and, furthermore, could be made much simpler.

5.1 Introduction

There are many different types of semi-active vibration controller schemes. One of the
many semi-active vibration schemes involves modifying the effective stiffness of the piezo-
electric element, such as switch damping [4, 6, 7, 20, 21]. Switch damping involves switching
the piezoelectric actuator element between high (open-circuit) and low (short-circuit) stiff-
ness states. These techniques are broadband and passive, but the amplitude reduction
performance is limited.

Another type of semi-active vibration controller is the active-passive hybrid piezoelectric
network (APPN), which involves using a passive shunt damping technique in conjugation

with an appropriate broadband active controller (e.g. a simple R — L passive shunt with a
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LQG active controller). This method is claimed to be more effective than a system with
separated active and passive control schemes [1, 3, 23, 24].

This chapter will attempt to developed a new technique for semi-active (passive-active)
control. The “negative capacitor” controller is studied theoretically and then validated
experimentally. The negative capacitor controller is similar in nature to passive shunt
damping techniques; a single piezoelectric transducer is used, but is capable of damping
multiple modes. In order to present the new semi-active shunt dampener, the composite
system dynamics need to be considered.

5.2 Modeling the Composite System in Transfer Func-

tion Form

The transfer function between the displacement at any point along the beam and the
actuator voltage G, (x, s), and between the shunting piezoelectric voltage and the actuator
voltage Gy (s), were found in Section 2.3 as

32+2Cw18+w

and

)2y Vi( - ¢'($2)] [¢' (I3) ¢i(z4)]
With reference to Figure 5.1, we can also derive the follovving transfer functions if a distur-

bance signal F'(r, s) at x = r is applied to the beam structure, e.g. a point force disturbance,
as [18]

F(r,s)

and -
Gyf(ilZ,S) A Y(I,S) _ Z qﬁl(l’)¢z(7“) ) (54)

— 5% +2(;w;s + W}

When modeling the piezoelectric element, there are two different models, as shown in
Figure 1.1. Both concepts are presented in papers [8, 9, 13, 26]. The most common of
these piezoelectric models considers the piezoelectric element as a capacitor C, in series
with a voltage source V,,(s), which is dependent on the dynamics of the resonant structure
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Actuator
Layer

Shunting
Layer

+V(s) -
Z

Impedance

Figure 5.1: Flexible structure with piezoelectric patches attached.

[13]. This chapter will only consider the series piezoelectric model, as in Figure 1.1 (b),
but can be extended for the parallel case, as in Figure 1.1 (a).
Consider Figures 5.2, where a piezoelectric patch is shunted by an impedance Z. Hence,

the current-voltage relation of the impedance can be represented in Laplace domain as
Vi(s) = L(s)Z(s), (5.5)

where V, is the voltage across the impedance and I, is the current flowing through the
impedance Z. Using Kirchhoff’s voltage law in the circuit shown in Figure 5.2, we obtain
the following relationship V,(s) as

1

Va(s) = Vals) - Cos

L.(s), (5.6)

where V,, is the voltage induced from the electromechanical coupling effect [13] and C,

represents capacitance of the shunting layer. Using (5.5) and (5.6) we obtain

Z(s)

V.(s) = m

Vi(s) (5.7)

CpsZ(s)
V.(s) = 1T CosZ(s) p(s).
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Figure 5.2: Schematic of piezoelectric shunting layer with a shunting impedance Z present.

Notice that when Z = oo, i.e. for an open-circuit, we have
Z =00 = Vi(s) 2 Vp(s) = Guu(5)Vin(s). (5.8)

However, if the circuit is shunted by Z, we can assume that

Vo(8) = Guu(8)Vin(s) — Guu(s)Vi(s) st Z # o0,0. (5.9)

Note: These essential equations (5.8) and (5.9) are reported in state-space form in reference
[11], as the sensing and actuator equations, where (5.8) is part of sensing equation and
(5.9) is the actuator equation.

By substituting (5.7) into the above equation, V,,(s) is found to be

Z(s)

Vo(8) = Gop(8)Vin(s) — va('s)m

Vi(s)-

Using simple algebra, the transfer function relating V,(s) to Vi, (s) can be found as

Vols) Guw(3)
Vin(s) 1+ Gu(s)K(s)’ (5.10)
where
__Z)
K@) =75+ — (5.11)

62



Note that if V,(s) is dynamically equivalent to Vi(s), then the following relationships hold:

. a Vils) Guw(3)
Gol8) = 30 = T Gon(5) K 5) (5.12)
and
Gyo(z,5) 2 Yiws) __ Gwls) (5.13)

Vin(s) 1+ Guu(s)K(s)’
We can see from the above equations (5.12) and (5.13) that shunt damping is a simple
negative-feedback control problem. Therefore, the classical control theory can be applied
to gain a better understanding of the compound system.

Aside, from reference [18], the actuator voltage V,(s) is given by:

Va(s) = Vin(s) — K(s)Vi(s). (5.14)
We can define the transfer functions shown in Figure 5.3 as follows:

Gor(s) & _Vs{s) Goo(s) 2 g_gg

Y(x,s Y (x,s
Gyylw,s) & Trs Gl s) & P4

With the above definitions, the sensor shunt voltage is given by:
Vi(s) = GupF(1,8) + Guu(s)Va(s). (5.15)

After substituting (5.14) in the above expression, V;(s) becomes
Vyls) = Gog F(r, ) — Gn(5) K (5)Va(5) + Ginl(5) V(). (5.16)

On rearranging, the sensor voltage in terms Vi(s) is

Goy(s)F(r,5) Gon(8)Vin(s)

Val) = T R (8)Gw(s) T T+ K()Gon(5) (5:17)
and the displacement Y (z, s) at a given location x is
Gyr(s)F(r,s) Gy (8)Vin(s)
Y (z,8) = —4 v . 1
) = T K (9)G(s) T 14 K()Gun(5) (5.18)
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F(r,s) —»{ Gy(s)
V(s) \
Vo(s) — (Pl G (sl Y(s)
K(s)
(a)
Vi(s) —»{(Y > G, (x,5)
+
Go(s){+] K(s) Y(x,s)
+
F(r,s) A Z Gy(x,s)

Go(s) [ K(s) [—

(b)

Figure 5.3: Composite system transfer function block diagram.
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5.3 Developing the Negative Capacitance Controller

This section will develop the fundamental concept of the new broadband semi-active con-

troller. Consider the two following relationships, as in Section 5.2,

Guo(s)

Gm}(S) B 1 + G’U’U(S>K(s) (519)
and
_ ()
K(s) = 2+ & (5.20)

where G, () is the undamped response of the structure, C,, is the piezoelectric capacitance,
and Z(s) is the impedance of the shunt network. By substituting (5.19) and (5.20) we
obtain the following relationship for Gy, (s), i.e. the transfer function of a shunt damped
mechanical structure as

 Gu(9) (GZ()s + 1)
CZ(8)s (1+ Gup(s)) + 17

Goo(s) (5.21)

The damped structural transfer function (5.21) can be minimized by equating the nu-

merator to 0, i.e. by selecting Z(s) = _}js, where C' = Cj,. This is not a realizable network

as it creates an undamped electrical resonance. A compromise between damping perfor-
mance and practicality (i.e. the node voltages and currents) can be achieved by introducing
a series resistor R. The electrical model of the shunt piezoelectric with attached negative
capacitor and resistor is shown in Figure 5.4. It should be noted that this control scheme
is virtually immune to variations in structural dynamics since it is not tuned into specific
frequencies, unlike passive shunt damping.

If Z(s) is chosen to be —&- + R, then Z(s) will have the following transfer function:

RCs —1
Substituting (5.22) in (5.20), K(s) becomes
o L
K(s) = Al : (5.23)

1 (c
S+ RC <C_p — 1)
The shunt damped system will be stable if the capacitance of the controller K (s) is greater

than or equal to the capacitance of the piezoelectric patch, i.e. if C' > C,, [2]. In practice,
the equivalent electrical model of the piezoelectric element does not fully describe the
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_____i;j______

Figure 5.4: Negative capacitance controller with appropriate damping resistance.

piezoelectric dynamics, in particular the piezoelectric capacitance tends to be frequency
dependent. To deal with this uncertainty, C' is chosen conservatively, i.e. C' > C,(f)
Vf € R. For our case, C' was chosen to be 115nF, since C, = 105nF".

In summary, we want to cancel out the capacitance of the piezoelectric element C), and
dissipate the electrical energy of the system via a resistor k. We will see that it is important
to select an appropriate resistive value that maximizes the damping of the structure for a

range of structural modes, say 5 modes.

5.4 Optimal R Damping using H> norm Optimization

In order to find the appropriate value for resistor R, an optimization approach is proposed,
such that the Hs norm of the combined system is minimized for 5 structural modes. From
Section 3.3.1, we have the following optimization problem:

R* = arg min tr(@f’CT) ) (5.24)
st. A(R)TP+PA(R)+BB =0
R>0

where G,,(0.170, s) = C(sI — A(R))"'B. Note that A is a function of R. For optimality
we take the derivatives of L, with respect to parameters f’, S and R, and set the derivatives

to zero, such as
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Figure 5.5: G,,,(0.170, s) H, norm plotted against resistance R (£2), for 5 modes.

g—g — ARP+PART+BB =0 (5.25)
% _ ARS8+ 8A(R)+ &TC =0 (5.26)
oL T

o=t (EPS +PE s) —0, (5.27)

where A = A + RE and matrix A is not a function of R.
Using the same numerical approach as in Section 3.3.1, the optimization algorithm
found a local minimum at R* = 1309.9¢2. Figure 5.5 shows the H, norm cost surface which

contains a minima at R*.

5.5 Simulated Results

Using C' = 115nF and R* = 1309.992, simulations of G,,(0.170,s) and G,,(0.170, s) show
that the structural modes of the structure have been considerably dampened, as shown in
Figure 5.6. From Figure 5.7, we can see that the poles of the compound system have moved

to the left of the imaginary axis. By shifting the poles to the left, we have added damping
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Figure 5.6: Simulated responses: |G, (0.170,s)| undamped (---) and |Gy, (0.170, )
damped system (—).

to the compound system, therefore effectively minimizing vibration of the structure. From

Figure 5.7, we can foresee that the controller has a localized effect on the close-loop poles.

5.6 Experimental Results

5.6.1 Creating the Negative Capacitance

If our semi-active shunt circuit requires a negative capacitance element, how do we create
such an element? To answer this question we begin with the following circuit given in

Figure 5.8. If we use nodal analysis, at node 1 the Kirchhoff’s current law implies
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Figure 5.7: G,,(0.170, s) undamped poles (o) and G, (0.170, s) damped poles (x).
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Figure 5.8: Example of a negative impedance converter.
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Vo —V;
L+—2—1=0 (5.28)
Ry

and at node 2,

Vo=V n (0—W)
Ry Z
Eliminating V5 from the two equations (5.28) and (5.29) gives us

—0. (5.29)

ViR,

LR, — = 0. 5.30
i = (5.30)
Solving for the ratio ‘%, we obtain the following
Vi R
Tin=—=——21 5.31
LR (5.31)

or alternatively, Y;, = —Ro/R, Y.

From these equations we can see that the circuit, shown in Figure 5.8, creates a negative
impedance and also scales the value by the ratios of the resistors, i.e. a transconductance
gain. Thus if Z;, = 1/C's, then Z;,, = —1/C's. The circuit shown is one of a general class
of circuits known as a negative impedance converter (NIC).

We can now use this circuit for reducing the amplitudes of the resonant peaks of the
structure. When considering this type of circuit, we need to be aware that the impedance
Z has become a semi-active shunt circuit. Therefore, stability issues need to be addressed

when constructing the experimental circuit.

5.6.2 Test Example: Negative Capacitance

A test circuit was constructed, as in Figure 5.9, with the appropriate components, as
outlined in Table 5.1. Construction of the test circuit incorporated Burr-Brown OPA445
high voltage operational amplifiers. The frequency response was measured between the
source voltage ‘Z-m and the voltage across the semi-active controller ‘th as shown in Figure
5.9. The simulated magnitude and phase response are plotted against the experimental
responses, as illustrated in Figure 5.10. From experimental results we can see that the
predicted theoretical results agree closely, therefore verifying that the semi-active shunt

controller is working correctly.
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Circuit Component | Value
R 10k

R 33MS)

C~C, 100nF

C 115nF

R 1.3k€2

Table 5.1: Parameters of negative capacitance test circuit.

R
—}NN—
R OPA445
NI -
[ ;
C=— §R 1, e

Figure 5.9: Test circuit with negative capacitance present.

5.6.3 Semi-active Shunt Damping

Using the tested circuit from above, the semi-active controller is now applied to the piezo-
electric laminated simply supported beam. The displacement and actuator voltage fre-
quency responses are measured using a Polytec laser scanning vibrometer (PSV-300) and
the Hewlett Packard function generator (33120A). A swept sine excitation is amplified then

applied to the piezoelectric actuator.

The experimental resonant amplitudes for the 1st, 2nd, 3rd, 4th and 5th modes were
successfully reduced as shown in Figure 5.11. Resonant amplitudes were reduced by 6.1,
16.3, 15.2, 11.7 and 10.2d B respectively. From theoretical simulations, the resonant ampli-
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Negative Capacitance Amplitude Reduction
Mode | Theoretical Simulations (dB) | Experimental (dB)
1 7.3 6.1
2 22.4 16.3
3 18.6 15.2
4 13.4 11.7
bt 11.8 10.2

Table 5.2: Amplitude reduction: simulations and experimental results.

tudes 1st, 2nd, 3rd, 4th and 5th modes were 7.3, 22.4, 18.6, 13.4 and 11.8dB respectively.
The analytical and experimental results show encouraging developments, as summarized
in Table 5.2.

5.7 Chapter Conclusion

This chapter has introduced a new type of semi-active (passive-active) controller. The
“negative capacitor” piezoelectric shunt circuit has been introduced as an alternate method
of reducing structural vibrations. The negative capacitor has a number of advantages over
current passive shunt damping systems: simplicity, robustness and broadband disturbance

attenuation.
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Chapter 6

Conclusions and Further Research

6.1 Conclusion

6.1.1 Physical Modeling

From this chapter we developed a comprehensive understanding of how to model a simple
resonant structure using the Euler-Bernoulli beam equation and modal analysis. Experi-
mental results match theoretical modeling of the piezoelectric laminated simply supported

beam.

6.1.2 Passive Shunt Damping

An optimization based method for obtaining the optimal resistances for multi-mode shunt
damping was presented. The method is intended to solve the difficulties encountered in
previous multi-mode damping [28, 29]. By using this technique, it is possible to determine
the required resistances and/or a starting point for fine-tuning of the shunt circuits in
a systematic manner. The optimization technique provides an easy and reliable way of
obtaining the optimal resistance for multi-mode damping. It also eliminates the tedious
trial and error method of obtaining the optimal shunt resistance [9, 12, 14, 27, 28, 29, 30].

From the H, cost surfaces, it can be inferred that the parallel shunt circuit case is less
sensitive to resistance tuning than the series circuit case and this is due to the relative
flatness of the cost function in the vicinity of a minimum. This justifies the experimental
work presented in [27], that the “parallel case is more practical for circuit tuning”.

In the experiments, two multi-mode shunt circuits, namely the parallel and series shunts,
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of a piezoelectric laminated simply supported beam were implemented. The experimental
results were very encouraging. Even though only two modes were shunted, the optimization
technique can be extended to incorporate more modes.

A distinct characteristic of this technique is that it can be easily extended to the case

when several piezoelectric patches are to be shunt damped on the same resonant structure.

6.1.3 Synthetic Impedance

Previous shunt damping methodologies have also suffered from issues relating to the dif-
ficulty in implementing the passive shunt network. A synthetic impedance has been pre-
sented that implements the terminal impedance of a specified shunt network. The synthetic
impedance also provides a means for designing circuit network substitutes with arbitrary
response and functionality. The concepts presented have been experimentally verified with
good results. The modal resonant magnitudes have been reduced by up to 20dB; this cor-
responds to a damped settling time 1—10“1 that of the free response!. In general, theoretical

predictions have been coherent with experimental results.

6.1.4 Shunt Damping using a Negative Capacitance Circuit

The negative capacitor piezoelectric shunt circuit has been introduced as an alternate
method of reducing structural vibrations. While achieving comparable performance, the
negative capacitor has a number of advantages over current passive shunt damping sys-
tems: simplicity - it is non-model based and requires only a single operational amplifier
for implementation; and robustness - the negative capacitor depends only on the dynamics
of the piezoceramic device. A method has been presented for synthesizing a semi-active
controller that alleviates some of the problems associated with active and passive control
schemes with promising results. Resonant magnitudes have been reduced up to 16dB for

multiple modes.

LFor the excitation described in Section 4.3.3.
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6.2 Suggestions for Further Research

6.2.1 Active Shunt Controllers

Future work could involve remodeling the passive shunt damping problem in an active

feedback control systems perspective. Since we know the relation {Z((z)) = Z%S) = G,(s),
where V,(s) is the voltage being sensed by the synthetic impedance and I, (s) is the current
produced by the synthetic impedance, we can apply different active controller strategies to
determine G,(s), such as LQG and H, optimal control strategies. This is now possible, as

an impedance of arbitrary structure can be implemented using the synthetic impedance.

6.2.2 Negative Capacitance (Semi-active Controller)

Figure 6.1: Current controlled voltage sources.

A number of future issues need to be addressed for the semi-active controller. These

are:

1. To understand and model the structural uncertainty associated with the piezoelectric

element, we need to consider the frequency dynamics of the piezoelectric shunt.

2. To develop an impedance Z, such that it senses a current I, and outputs a voltage
V., as shown in Figure 6.1, similar to the synthetic impedance as derived in Section
6.1, but as a current controlled voltage source. This type of impedance can be used

to simulate the required semi-active controller, i.e. Z(s) = “&=1,
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Appendix A

Summary of Active Inductors

A.1 Grounded Simulated Inductor

To simulate large inductance values, say 1H to 15,000H, we need to use active elements,
i.e. operational amplifiers. The most successful is the Riordan’s grounded gyrator [22]. It
is claimed that these gyrators have the lowest sensitivity to component variations. This
circuit is shown in Figure A.1 and is seen to consist of two operational amplifiers and five

impedances. To analyze this circuit, using the appropriate nodal analysis, we observe that

Zy
= ]_ —_—
Va V1< +Z5>

- 7, 7,
a=W (1+Z3> V2<Z3)

727,
Vo=V (1 )
3 1( + Z3Z5>

and that

or

Now the input current is

ViV, Bz

I — .
! A Y 72,747

Thus, the input impedance is seen to be

Vi %%

T = - = .
L 7y

(A1)
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Zs
Figure A.1: Simulated grounded inductor.

From this equation we see that if either Z, or Z,; are capacitors, such that Z = é and all

remaining elements are resistors of value R, then the last equation becomes

Zin = (CR?) s = Legs (A2)

and the circuit behaves as if it were an inductor of value

Leg = OR2. (A.3)

For example, if C' = 0.01uF and four resistors have the value R = 1k€2, then at the
input, the circuit appears to be a 10mH inductor.

A.2 Floating Simulated Inductor

One problem with gyrator circuits has been the difficulty of making “floating” inductors:
- both terminals are accessible. It is possible to make a floating inductor with two gyrator
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Figure A.2: Simulated floating inductor.

circuits and this usually requires four operational amplifiers. The realization of a floating
inductor is to connect two identical grounded inductors back-to-back as shown in Figure
A.2. Tt is straightforward to show that the input impedance is

Zin = (CR?) s = Legs. (A4)

Riordan [22] presented the floating inductor in his early papers. The floating element of
our present interest is the floating inductor for which the two terminals may be at different
voltages, neither equal to zero (or grounded). A representation of such an inductor is
shown in Figure A.2 where the two terminals are floating. With a floating inductor all the

elements must be matched, i.e. all resistance and capacitance must have the same values.
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Appendix B

Beam Parameters

Length, L 0.6m
Width, wy 0.05m
Thickness, h,, 0.003m
Young’s Modulus, Ej, | 65 x 10°N/m?
Density, p 2650kg/m?

Table B.1: Parameters of the simply supported beam.
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Appendix C

Shim Parameters

Width, wg, 0.05m
Thickness, hgy, 0.00034m
Young’s Modulus, Ey, | 65 x 109N /m?
Density, pg, 2650kg/m?
Length, Ly, 0.005m

Table C.1: Parameters of the shim material.
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Appendix D

PIC151 PZT Piezoelectric

Parameters

Charge Constant, ds; —210 x 1072m/V
Voltage Constant, g3; | —11.5 x 1073Vm/N
Coupling Coefficient, k3, 0.340
Capacitance, C,, 0.105uF
Width, w, w, 0.025m
Thickness, hg hq 0.25 x 1073m
Length, I [, 0.0699m
Young’s Modulus, E, E, 63 x 109N/m?

Table D.1: Parameters of the PIC151 piezoelectric patches.
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