Passive and Semi-active Vibration Control of Piezoelectric Laminates

A thesis presented by

Sam Behrens

B.E. (Mech.)

Supervisor: Dr. S. O. Reza Moheimani

The Department of Electrical and Computer Engineering University of Newcastle, Australia

A THESIS FOR THE DEGREE OF MASTER OF ENGINEERING (RESEARCH)

December 2000

© 2000 by Sam Behrens All rights reserved.

Declaration

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution.

Sam Behrens
December 2000

Acknowledgments

The author would like to thank Dr. S. O. Reza Moheimani from the University of Newcastle for all the guidance and help that he has provided during the past one and a half years. He has always been very patient and has made himself available for discussion and advice. I would also like to thank Reza and the Department for giving me the opportunity to develop my research skills.

I wish to extend my appreciation to Dr. Will Heath who attempted to answer all theoretical questions. The author wishes to acknowledge the help of Mr. Andrew Fleming and Mr. Matthew Smith for their assistance in this work. Also, Mr. Tim Wylie and Mr. Russel Hicks are acknowledged for their practical ideas.

On a personal note, I would like to thank my parents who offered their love and support in time of need. Also, my good friends Andrew, Marco, Scott and Eggy.

Contributions

Some of the work presented in this thesis was in collaboration with Dr. S. O. Reza Moheimani and Mr. Andrew Fleming. Dr. S. O. Reza Moheimani introduced the concept of optimal shunting damping. Design, construction and testing of the synthetic impedance circuit were in collaboration with Mr. Andrew Fleming. The negative capacitance (semi-active) controller was also in collaboration with Mr. Andrew Fleming. All other theoretical work and implementation presented was solely mine.

The simply supported beam experimental apparatus was designed by myself. Mr. Russel Hicks constructed the experimental apparatus; this work included gluing the piezoelectric laminate patches onto the beam structure and the construction of the bench clamps.

This project was considerably aided with the financial assistance of the Center of Integrated Dynamics and Control (CIDAC), Australian Research Council (ARC), University of Newcastle Postgraduate Research Scholarship (UNRS) and the Department of Electrical & Computer Engineering, University of Newcastle, Australia.

Publications

During the course of this research, a number of papers have been submitted to international journals and conferences. The following is a list of those articles, which have already appeared in an international journal or have been submitted for publication. Conference papers, which have been presented or submitted for presentation, are also listed. Technical reports and patents follow these international publications.

• Journal Publications

- 1. A. J. Fleming, S. Behrens and S. O. R. Moheimani. Synthetic impedance for implementation of piezoelectric shunt damping circuits, **36**(18):1525-6, *IEE Electronics Letters*, 31st August 2000.
- 2. A. J. Fleming, S. Behrens and S. O. R. Moheimani. Optimization and implementation of multi-mode piezoelectric shunt damping systems. Submitted to *IEEE/ASME Transactions on Mechatronics*, 2000.
- 3. S. Behrens, A. J. Fleming and S. O. R. Moheimani. Negative capacitor for multiple mode semi-active shunt damping of a piezoelectric laminate beam. Submitted to *IEE Electronics Letters*.

• Conference Proceedings

- 1. A. J. Fleming, S. Behrens and S. O. R. Moheimani. A new approach to piezoelectric shunt damping. *In: Proceedings of International Symposium on Smart Structures and Microsystems*, Hong Kong, October 2000.
- 2. A. J. Fleming, S. Behrens and S. O. R. Moheimani. Innovations in Piezoelectric Shunt Damping. *In: Proceedings of SPIE: Smart Structures and Devices 2000*, Melbourne Australia, 13-15th December 2000.

3. S. Behrens and S. O. R. Moheimani. Optimal resistive elements for multiple shunt damping of a piezoelectric laminate beam. *In: Proceedings of IEEE Conference on Decision and Control*, Sydney, Australia, December 2000.

• Technical Reports

- 1. A. J. Fleming, S. Behrens and S. O. R. Moheimani. Synthetic impedance for damping of smart structures. Technical Report EE0016. The Department of Electrical and Computer Engineering, University of Newcastle. March 2000.
- 2. S. Behrens and S. O. R. Moheimani. Optimal resistive elements for multiple mode shunt damping of a piezoelectric laminate beam. Technical Report EE0015. The Department of Electrical and Computer Engineering, University of Newcastle. March 2000.
- 3. S. Behrens and A. J. Fleming. Negative capacitor for multiple mode semi-active shunt damping of a piezoelectric laminate beam. Technical Report EE0045. The Department of Electrical and Computer Engineering, University of Newcastle. October 2000.

• Patents

An impedance synthesising arrangement, an improved vibrational damping apparatus and a method for deriving a digital signal processing algorithm. (Lodged: May 2000 - Pending)

Abstract

This thesis considers a number of related problems in the areas of passive and semiactive vibration control of piezoelectric laminates.

The thesis consists of three main parts. The first part of the thesis develops a mathematical model of a physical resonant system—piezoelectric laminated simply supported beam. It is essential to have a good understanding of the physical system so that the associated problems with passive and semi-active shunt damping can be addressed.

The second part of the thesis is concerned with problems related with current passive shunt damping techniques using a single piezoelectric laminate. One of the current problems with multiple mode techniques is determining the correct resistive damping for each resonant mode. Therefore, a systematic method is presented for determining the optimal resistance elements by minimizing the \mathcal{H}_2 norm of the damped system. After the design process, shunt circuits are normally implemented using discrete resistors, capacitors and virtual inductors (Riordan Gyrators). The difficulty in constructing the shunt circuits and achieving reasonable performance has been an ongoing problem. A new approach to implementing piezoelectric shunt circuits is presented. A "synthetic impedance", consisting of a voltage controlled current source and digital signal processor (DSP) system, is used to synthesize the terminal impedance of a required shunt network.

The third part of the thesis is concerned with is semi-active vibration control of piezo-electric laminates. This part addresses a number of associated problems with the current passive shunt damping schemes. The foremost being the complexity of the shunt circuits required to dampen multiple modes. They generally act to minimize structural vibration at a specific frequency - which are rarely stationary. Therefore, a new broadband semi-active shunt technique for controlling multiple modes has been developed. The "negative capacitor" controller is proposed theoretically, and then validated experimentally. The negative capacitor is similar in nature to a passive shunt damper as it uses a single piezoelectric transducer to dampen multiple modes of a flexible structure.

Contents

1	Intr	coduction	1
	1.1	Piezoelectric Devices	1
		1.1.1 Piezoelectricity	1
		1.1.2 Piezoelectric Model	2
	1.2	Overview	S
	1.3	Motivations and Application	5
	1.4	Outline of the Thesis	7
2	Phy	vsical Modeling	9
	2.1	Dynamics of the Beam with a Piezoelectric Actuator	11
	2.2	Dynamics of the Beam with a Piezoelectric Shunt Sensor	14
	2.3	Dynamical Model of the Beam System	15
	2.4	Experimental Boundary Conditions	20
	2.5	Verification of Experimental Boundary Condition	24
	2.6		25
	2.7	Chapter Conclusion	30
3	Pas	sive Shunt Damping	31
	3.1	Introduction	31
		3.1.1 Resistive Shunt Damping	31
		3.1.2 Single Mode Shunt Damping	31
		3.1.3 Multiple Mode Shunt Damping	32
	3.2	Dynamic Model of the Composite System	34
	3.3		36
		3.3.1 Optimization Technique	37
	3 /	Experimental Verification	38

	3.5	Chapter (Conclusion		. •				•	•	44
4	Syn	thetic Im	pedance								45
	4.1	Introduct	on								45
	4.2	Implemen	tation of Shunt Damping Circuits								46
		4.2.1 Th	ne Synthetic Impedance								46
		4.2.2 Ci	rcuit Diagram / Transfer Function Equivalence								47
	4.3		ntal Results								48
		4.3.1 Sy	nthesis of Impedance								49
		4.3.2 Te	st Example: Synthesizing a series $R-L$ impedance				•				50
		4.3.3 Sh	unt Damping Performance								51
	4.4	Synthetic	Impedance vs Direct Circuits								52
	4.5	Chapter (Conclusion							•	58
5	Shu	hunt Damping using a Negative Capacitance Circuit 59								5 9	
	5.1	_	on								59
	5.2	Modeling	the Composite System in Transfer Function Form								60
	5.3	Developin	g the Negative Capacitance Controller								65
	5.4	Optimal I	R Damping using \mathcal{H}_2 norm Optimization								66
	5.5	Simulated	Results								67
	5.6	Experimental Results							68		
		5.6.1 Cr	eating the Negative Capacitance								68
		5.6.2 Te	st Example: Negative Capacitance								70
		5.6.3 Se	mi-active Shunt Damping								71
	5.7	Chapter (Conclusion								72
6	Con	clusions a	and Further Research								75
	6.1	Conclusio	n								75
		6.1.1 Ph	ysical Modeling								75
			ssive Shunt Damping								75
			nthetic Impedance								76
			unt Damping using a Negative Capacitance Circuit								76
	6.2	Suggestion	ns for Further Research								77
		6.2.1 Ac	tive Shunt Controllers			•					77
		6.2.2 Ne	gative Capacitance (Semi-active Controller)								77

\mathbf{A}	Summary of Active Inductors	78
	A.1 Grounded Simulated Inductor	78
	A.2 Floating Simulated Inductor	79
В	Beam Parameters	81
\mathbf{C}	Shim Parameters	82
D	PIC151 PZT Piezoelectric Parameters	83

List of Figures

1.1	Two equivalent electrical models for a piezoelectric shunting layer: (a) par-	
	allel and (b) series piezoelectric equivalent models	2
1.2	F-22 Jet Fighter (Boeing-Lockheed Martin-Pratt & Whitney 2000)	6
1.3	"Smart Ski Technology" (K2 Sport 2000)	6
2.1	(a) Cross-section of the beam with piezoelectric laminates present; and (b)	
	the piezoelectric laminated simply supported beam	10
2.2	Anti-symmetric piezoelectric actuator	11
2.3	Decomposition of wafer strain distribution: (a) asymmetric strain distribu-	
	tion, (b) flexural component and (c) longitudinal component [10]	12
2.4	Torsional spring boundary conditions	21
2.5	Experimental boundary conditions, $L_{sh} = 5mm$	21
2.6	Shim material with a moment load at the free end, i.e. a fixed-moment beam.	21
2.7	Experimental simply supported piezoelectric laminated beam, $L_{sh} = 5mm$.	24
2.8	First mode, $\omega_1 = 20.63Hz$	25
2.9	Second mode, $\omega_2 = 75.31Hz$	26
2.10	Third mode, $\omega_3 = 171.3Hz$	26
2.11	Fourth mode, $\omega_4 = 306.6Hz$	27
2.12	Fifth mode, $\omega_5 = 474.4Hz$	27
	Frequency responses of a) $ G_{vv}(s) $, b) $ G_{yv}(0.170,s) $: experimental (\cdots)	
	and modeled results (—)	29
3.1	Examples of single mode shunt circuits: (a) parallel case and (b) series case.	32
3.2	Examples of multiple mode shunt circuits: (a) parallel case [28] and (b)	
	series case	33
3.3	Shunt piezoelectric element schematic	35
3.4	Parallel case: $G_{uv}(0.170, s)$ \mathcal{H}_2 norm cost surface as a function of R_1 and R_2 .	39

3.5	Series case: $G_{yv}(0.170, s)$ \mathcal{H}_2 norm cost surface as a function of R_1 and R_2 .	39
3.6	Experimental parallel shunt circuit for R_1 , R_2 , L_1 , L_2 , L_3 and C_3	40
3.7	Experimental series shunt circuit for R_1 , R_2 , L_1 , L_2 , L_3 and C_3	40
3.8	Parallel and series shunt circuit cases of $ G_{yv}(0.170, s) $: theoretical (—) and	
	experimental results (\cdots)	41
3.9	Experimental time responses, $V_{el}(0.170, s)/V_a(s)$	42
4.1	Current source implementation	46
4.2	Parallel block equivalence	48
4.3	Series block equivalence	49
4.4	Ideal test circuit	50
4.5	Test circuit with synthetic impedance	51
4.6	Theoretical (—) and experimental (···) frequency responses, $ V_c(s)/V_z(s) $.	52
4.7	Admittance transfer function: (a) parallel and (b) series multi-mode shunts.	53
4.8	Parallel and series shunt circuit cases, $ G_{yv}(0.170, s) $: experimental (\cdots)	
	and theoretical results (—)	54
4.9	Experimental time domain results, $V_{el}(0.170, s)/V_a(s)$	55
4.10	Compare $2nd$ mode theoretical model with experimental synthetic impedance	
	and direct circuit results	56
4.11	Compare $3rd$ mode theoretical model with experimental synthetic impedance	
	and direct circuit results	57
5.1	Flexible structure with piezoelectric patches attached	61
5.2	Schematic of piezoelectric shunting layer with a shunting impedance Z present.	62
5.3	Composite system transfer function block diagram	64
5.4	Negative capacitance controller with appropriate damping resistance	66
5.5	$G_{yv}(0.170,s)$ \mathcal{H}_2 norm plotted against resistance R (Ω) , for 5 modes	67
5.6	Simulated responses: $ G_{yv}(0.170, s) $ undamped (\cdots) and $ \hat{G}_{yv}(0.170, s) $ damped	d
	system (—)	68
5.7	$G_{yv}(0.170,s)$ undamped poles (o) and $\hat{G}_{yv}(0.170,s)$ damped poles (×)	69
5.8	Example of a negative impedance converter	69
5.9	Test circuit with negative capacitance present	71
5.10	Frequency responses $\tilde{V}_{out}(s)/\tilde{V}_{in}(s)$ of the test circuit: ideal (\cdots) and exper-	
	imental results (—). \dots	73

5.11	Experimental responses: $ G_{yv}(0.170, s) $ undamped (\cdots) and $ \hat{G}_{yv}(0.170, s) $	
	damped system (—)	
6.1	Current controlled voltage sources	77
	Simulated grounded inductor	
A.2	Simulated floating inductor	80

List of Tables

2.1	Model frequencies: mathematical models vs experimental results	30
2.2	Damping parameters determined experimentally	30
3.1	Summary of resistance damping elements	43
3.2	Summary of magnitude reduction results	43
3.3	Summary of experimental time results	43
4.1	Circuit values: theoretical model, virtual circuit and synthetic impedance.	5 4
4.2	Compare amplitude reduction using benchmark circuit values: theoretical	
	model, synthetic impedance and virtual circuit	55
5.1	Parameters of negative capacitance test circuit	71
5.2	Amplitude reduction: simulations and experimental results	72
В.1	Parameters of the simply supported beam	81
C.1	Parameters of the shim material	82
D.1	Parameters of the PIC151 piezoelectric patches	85