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Abstract

This thesis considers a number of related problems in the areas of passive and semi-
active vibration control of piezoelectric laminates.

The thesis consists of three main parts. The first part of the thesis develops a math-
ematical model of a physical resonant system-—piezoelectric laminated simply supported
beam. It is essential to have a good understanding of the physical system so that the
associated problems with passive and semi-active shunt damping can be addressed.

The second part of the thesis is concerned with problems related with current passive
shunt damping techniques using a single piezoelectric laminate. One of the current prob-
lems with multiple mode techniques is determining the correct resistive damping for each
resonant mode. Therefore, a systematic method is presented for determining the optimal
resistance elements by minimizing the Hs norm of the damped system. After the design
process, shunt circuits are normally implemented using discrete resistors, capacitors and
virtual inductors (Riordan Gyrators). The difficulty in constructing the shunt circuits and
achieving reasonable performance has been an ongoing problem. A new approach to im-
plementing piezoelectric shunt circuits is presented. A “synthetic impedance”, consisting
of a voltage controlled current source and digital signal processor (DSP) system, is used to
synthesize the terminal impedance of a required shunt network.

The third part of the thesis is concerned with is semi-active vibration control of piezo-
electric laminates. This part addresses a number of associated problems with the current
passive shunt damping schemes. The foremost being the complexity of the shunt circuits
required to dampen multiple modes. They generally act to minimize structural vibration at
a specific frequency - which are rarely stationary. Therefore, a new broadband semi-active
shunt technique for controlling multiple modes has been developed. The “negative capac-
itor” controller is proposed theoretically, and then validated experimentally. The negative
capacitor is similar in nature to a passive shunt damper as it uses a single piezoelectric

transducer to dampen multiple modes of a flexible structure.
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