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[1] A hierarchical framework for incorporating modes of climate variability into stochastic
simulations of hydrological data is developed, termed the climate-informed multi-time scale
stochastic (CIMSS) framework. A case study on two catchments in eastern Australia
illustrates this framework. To develop an identifiable model characterizing long-term
variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices
describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation
(PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced,
combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit
low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO
states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr.
The Markov chain model, previously used to simulate oscillating wet/dry climate states, is
found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a
gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the
second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated
IPO-PDO state. The model is able to replicate observed statistics such as seasonal and
multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal
rainfall in the IPO-PDO dry states is found to be 15%–28% lower than the wet state at the
case study sites. In comparison, an annual lag-one autoregressive model is unable to
adequately capture the observed rainfall distribution within separate IPO-PDO states.
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1. Introduction
[2] Globally, water supply systems are becoming increas-

ingly more vulnerable to the combined effects of climate
variability, increasing water demand from growing popula-
tions [Vörösmarty et al., 2000], and climate change. The
management of these systems requires a reliable estimation
of water supply drought risk, with stochastic models playing
a key role when undertaking Monte Carlo simulations to
estimate such a drought risk.

[3] Much work has been done to improve the ability of
stochastic models to reproduce the observed statistics of
hydrological records including both parametric and non-
parametric approaches [Salas, 1993; Koutsoyiannis, 2000;
Frost et al., 2007; Samuel and Sivapalan, 2008; Sharma
et al., 1997; Mehrotra and Sharma, 2007]. However, most
of these stochastic models have neglected valuable climate
information.

[4] The Australian climate is influenced by large-scale
ocean-atmosphere climate mechanisms such as the El
Niño-Southern Oscillation (ENSO) [McBride and Nicholls,

1983; Allan et al., 1996], the Interdecadal Pacific Oscilla-
tion (IPO) [Power et al., 1999; Folland et al., 2002], the
Pacific Decadal Oscillation (PDO) [Zhang et al., 1997;
Mantua et al., 1997], the Indian Ocean Dipole (IOD) [Saji
et al., 1999], and the Southern Annular Mode (SAM)
[Meneghini et al., 2007]. The variability explained by these
mechanisms presents a valuable means for improving the
ability of stochastic models to characterize temporal and
spatial hydrological behavior. Interdecadal variability is
increasingly seen as an important mode of variability in the
climate system [Arblaster et al., 2002]. Persistent periods
of widespread rainfall deficit in the historical record under-
line the importance of interannual [Hendon et al., 2007;
Ummenhofer et al., 2009] to interdecadal [Arblaster et al.,
2002; Speer, 2008] variability.

[5] Meinke et al. [2005] identified the effect of global-
scale climate variability on rainfall variability at a range of
timescales. The frequency component consistent with ENSO
(2.5–8.0 yr) was found to account for most of the annual
rainfall variability. Decadal (9–13 yr) variability had a sig-
nificant (but lesser) impact, and interdecadal (15–18 yr) vari-
ability also had a significant (but lesser again) impact. For a
detailed account of natural variability in the climate system
at decadal and multidecadal timescales and the dominant cli-
mate change background signal, see Parker et al. [2007].

[6] Of importance for Australian water resource manag-
ers, is that most of the global annual rainfall variability at
frequencies lower than ENSO was found in the study by
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Meinke et al. [2005] to occur in the Australasian region, in
particular, the eastern half of the Australian continent.
Water supply reservoirs typically have sufficient carry-over
storage to maintain supply through shorter (e.g., El Niño)
drought spells with run lengths up to 12–18 months, but are
usually not designed to cope with decadal-scale dry peri-
ods. Low inflows associated with longer drought sequences
present a greater challenge to environmental and water
resource managers than shorter-lived events [McGowan
et al., 2009]. Verdon et al. [2004] demonstrated the impacts
of ENSO and the IPO on rainfall on the east coast of Aus-
tralia. The evidence of low frequency rainfall variability
and the vulnerability of water supply systems to prolonged
drought sequences prompt the need for a better understand-
ing of this variability. Understanding low frequency vari-
ability in the climate system also has an important role in
acting as a baseline against which climate change scenarios
can be compared.

[7] Most hydroclimatic data records in Australia are
100–150 yr in length. Thyer et al. [2006] found that such
records are too short to identify suitable stochastic models
to simulate decadal- to multidecadal-scale variability with-
out producing large uncertainty in the results. It follows that
non-hydrological data such as indices of climate mecha-
nisms may provide more information on persistent anoma-
lous behavior of hydrological regimes. Paleoclimate records
can provide further information to help improve certainty in
light of short instrumental climate records.

[8] This paper focuses on modeling the decadal- to mul-
tidecadal-scale variability identified from observed paleo-
climate IPO and PDO records in the context of the impact
on water supply systems in Australia. The indices describ-
ing the PDO and the IPO phenomena relate to different
regions of the Pacific Ocean. The PDO index is typically
defined using North Pacific sea surface temperature (SST)
data [Mantua et al., 1997], while the IPO phenomenon is
often described as a Pacific-wide manifestation of the PDO
[Power et al., 1999; Folland et al., 2002]. The IPO and
smoothed PDO indices are highly correlated (correlation ¼
0.86). Therefore, for this study it is assumed that the IPO
and PDO indices represent the same broad pattern of vari-
ability and the phenomena in this study will be referred to
collectively as the IPO-PDO phenomenon, except where
reference to individual indices is required.

[9] Most stochastic hydrological models are conditioned
only on observed rainfall or streamflow data. The lag-one
autoregressive (AR(1)) model continues to be used widely
by the water resources industry for stochastic rainfall simu-
lations [Thyer and Kuczera, 2000]. Some models such as
the hidden Markov model (HMM) of Thyer and Kuczera
[2000] have conceptually incorporated mechanisms that
describe long-term climate variability. However, they are
limited in that they rely on instrumental rainfall and stream-
flow records. Thyer et al. [2006] suggested that climate/
paleo data be used to better identify longer-term variability.

[10] There have been relatively few stochastic hydrologi-
cal models that explicitly incorporate simulations of climate
mechanisms using climate data, and none to date have
incorporated parameter uncertainty. Drought risk can be sig-
nificantly underestimated by approaches that ignore param-
eter uncertainty [Stedinger and Taylor, 1982; Frost et al.,
2007]. Whiting et al. [2003] used a regression approach to

relate indices for the PDO and the ENSO to point rainfall
and Kiem and Franks [2004] investigated the effect of the
IPO on water supply drought risk. Samuel and Sivapalan
[2008] used a Markov chain model to obtain stochastic
sequences of IPO and ENSO states and incorporated the
effects into a rainfall model.

[11] Few studies have collated information from multiple
paleoclimate indices of the IPO-PDO. Verdon and Franks
[2006] identified state changes of the PDO from several
paleo sources, however, additional indices [D’Arrigo and
Wilson, 2006; Shen et al., 2006; Linsley et al., 2008] will
be used in this study. Verdon and Franks [2007] condi-
tioned rainfall simulations on a ‘‘composite index’’ of the
IPO, based on paleoclimate data. They simulated the run
lengths of positive and negative states of the IPO with a log-
normal distribution. However, a formal model selection pro-
cedure for the stochastic model used to simulate IPO-PDO
state run lengths was not undertaken in any of the studies by
Samuel and Sivapalan [2008], Verdon and Franks [2006],
Kiem and Franks [2004], or Whiting et al. [2003].

[12] Prairie et al. [2008] calibrated a nonhomogeneous
Markov model to the wet/dry hydrologic state from a paleo
reconstruction of streamflow for the Colorado river, simu-
lating streamflow using a k-nearest neighbor model condi-
tioned on the hydrologic state. This approach offered a
method to incorporate wet/dry hydrologic states guided by
paleo data into a stochastic streamflow model. However, it
relies exclusively on the availability of a site-specific
streamflow paleo reconstruction and, moreover, did not
undertake a formal model selection for the simulation of
the hydrologic state.

[13] Kwon et al. [2009] used wavelet decomposition to
isolate selected frequency components in climate proxies
before simulating these components with autoregressive
models. They then performed a regression of climate prox-
ies against mean seasonal rainfall in South Florida to deter-
mine an appropriate subset of the proxies for use in the
conditioning of a nonhomogeneous hidden Markov model
(NHHM) of daily rainfall sequences. Their wavelet autore-
gressive modeling (WARM) approach for simulating fre-
quency bands offers some promise in terms of a more
explicit replication of variability over a particular range of
timescales. However, there is considerable subjectivity in
terms of the choice of the frequency bands. Moreover, the
study by Kwon et al. [2009] did not investigate the ability
of the WARM model to capture the observed statistics of
the paleo/climate data. Another weakness of their approach
is that the regression of climate proxies on the mean does
not allow for the influence of climate on the variance of
seasonal rainfall processes. Kwon et al. [2009] compared
the observed wavelet power spectrum for Florida rainfall to
the simulated spectra of the WARM-NHHM model and a
simple AR(1) model on monthly data. The observed spec-
trum was found to be within the simulated 90% probability
limits of both models. Their study also did not incorporate
Pacific decadal-scale climate impacts, which is the focus of
this paper.

[14] This paper presents a more comprehensive analysis
than previous studies. It combines information from multi-
ple paleo series in a thorough and objective manner to esti-
mate the run length behavior of the IPO-PDO phenomenon.
It undertakes a formal model selection process to identify a
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stochastic model to simulate the IPO-PDO state run lengths.
Furthermore, the influence of climate indices on additional
seasonal rainfall characteristics, such as variance and skew,
is included and parameter uncertainty is integrated into sto-
chastic simulations of IPO-PDO states and seasonal rainfall.

[15] The key objective is to develop a climate-informed
stochastic hydrological model (section 2). To achieve this
objective, this study: (1) investigates the character of low
frequency Pacific Ocean variability (IPO-PDO) using mul-
tiple sources of paleoclimate and instrumental data (section
3); (2) identifies a suitable stochastic model for low fre-
quency Pacific Ocean variability for the purpose of simulat-
ing hydrological data (section 4); and (3) incorporates this
new information into a stochastic model for hydrological
data (section 5).

2. The General Hierarchical CIMSS Framework
[16] A Bayesian hierarchical approach for incorporating

climate mechanisms and their effect on hydrological data is
proposed, referred to here as the climate-informed multi-
time scale stochastic (CIMSS) framework. Under this
approach, physical phenomena operating at multiple time-
scales are simulated with stochastic models. In this study,
the simplest form of the CIMSS model is adopted. It has a
two level hierarchy, with the upper level simulating the
wet/dry states of the IPO-PDO and the lower level simulat-
ing rainfall or streamflow, conditioned on the upper level.
The upper level, level 0, contains a stochastic process for
simulating the IPO-PDO, y0

t  pðy0jY 0
t�1; �

0Þ. The simu-
lated value at time step t, y0

t is drawn from a stochastic pro-
cess conditioned on previous simulated data Y 0

t�1 ¼ ½y0
1;

y0
2; . . . ; y0

t�1� where �0 are the level 0 model parameters.
This model is developed in sections 3 and 4. The process at
level 1 is conditioned on level 0, as in: y1

t  pðy1j
Y 1

t�1; �
1; y0

t Þ. The level 1 model is developed in section 5.
Observed data is referred to in this study as Y 0

obs (the IPO-
PDO run lengths) and Y 1

obs (the rainfall data).

3. Characterizing IPO-PDO Variability Using
Paleo Data

[17] Given the hydrological impacts of modes of Pacific
climate variability, the time within each IPO-PDO state is
an important factor affecting water supply drought risk in
the Pacific region. The term ‘‘run length’’ is used here to

refer to the length of time between consecutive crossings,
where a crossing is determined by a shift from the negative
to positive state (or vice versa) with respect to the long-
term median of the time series.

[18] The IPO index of Power et al. [1999] and Folland
et al. [2002] exhibits eight positive and negative states in
the 161-yr observed (partially instrumental, partially recon-
structed) record from 1850–2010 (based on 11-yr low-pass
Chebyshev filtered HadSST2 data [Rayner et al., 2006], as
in the work of Parker et al. [2007]). The observed run
lengths range from 7 to 32 yr. So few instrumental realiza-
tions of IPO states induces large uncertainty about the run-
length behavior of the IPO.

[19] Paleoclimate data provides a valuable source of infor-
mation on the long-term behavior of IPO-PDO. McGregor
et al. [2010] combined 10 ENSO paleo proxies and com-
pared a 13-yr low-pass filtered version of their ENSO proxy
with two PDO reconstructions [Biondi et al., 2001; D’Arrigo
et al., 2001] and the IPO and PDO. A more direct approach
to obtain a preinstrumental paleo IPO-PDO time series
would be to directly combine the available IPO-PDO paleo-
climate reconstructions, as is undertaken in this paper.

[20] To the best of the authors’ knowledge, there are
seven formally published paleoclimate indices for the PDO
or the IPO. These paleo records, as described in Table 1, are
from both the eastern and western sides of the Pacific basin
and use tree rings, coral, and drought/flood index records.
The correlation between the indices ranges between �0.02
and 0.75. Given the varying levels of agreement between
signals, attempting to subjectively identify the precise his-
tory of state changes is likely to be problematic. A robust
procedure to combine the signals and extract the run length
behavior from the IPO-PDO paleo data sources is needed.

3.1. Previous Investigations Into Identifying Pacific
Multidecadal Hydrological Variability

[21] Previously, Verdon and Franks [2006] identified
step changes in both IPO and PDO paleo and instrumental
data sources. They used the first four of the published paleo
records in Table 1 and a coral record at Raratonga [Linsley
et al., 2000]. Their approach used the Mann-Whitney
U-test to identify differences between two halves of data in
a moving window. Mauget [2003] used a similar approach
to detect intra- and multidecadal shifts in streamflow, precipi-
tation, and temperature. However, a critically important issue

Table 1. Pacific Paleoclimate Indices, Mean Run Lengths for Shift Detection Testsa

Paleo Series
Proxy
For

Length
(yrs) Location of Source Weight

Mean Run Lengths

Order
Cutoff

Period (yrs)10-yr window 40-yr window

Biondi et al. [2001] PDO 330 Southern and Baja California tree rings 0.14 8.2 35.6 8 19
D’Arrigo et al. [2001] PDO 300 West-coast of North America tree rings 0.16 14.0 20.1 6 27
Gedalof and Smith [2001] PDO 400 West-coast of North America tree rings 0.10 10.3 25.9 2 26
MacDonald and Case [2005] PDO 1000 California and Alberta tree rings 0.10 9.6 24.9 8 19
D’Arrigo and Wilson [2006] PDO 420 East Asia tree rings 0.17 12.1 17.0 2 14
Shen et al. [2006] PDO 530 Eastern China drought/flood index records 0.13 25.2 26.6 2 19
Linsley et al. [2008] IPO 350 Fiji/Tonga oxygen isotopes from coral

cores
0.20 6.7 26.1 3 45

PDO (Instrumental) - 107 Leading EOF of North Pacific SST - 13.7 25.5 - -
IPO (Instrumental) - 158 Leading EOF of 11-yr filtered Pacific SST - 11.3 18.0 - -
Mean of paleo - - - - 12.3 24.4 - -

aTests were done using 10 and 40 yr windows and low-pass filter orders and cutoff periods.
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arises: the decision of a suitable window length. Verdon and
Franks [2006] used a subjective choice of 30 yr for the win-
dow length. Once the individual series of step changes was
derived, further subjective choices were made to estimate the
history of state shifts in IPO-PDO, despite the coherence
between the state shifts being poor at several points in the
records. Tome and Miranda [2005] recommend an adaptive
technique for detecting continuous partial trends in the data.
Their method required the user to input a minimum time
(i.e., run length) between breakpoints, and relaxes this condi-
tion at the data boundaries. Related studies emphasize the
need for care in the choice of smoothing filter/window width
and the treatment of boundary constraints [Soon et al., 2004;
Mann, 2004, 2009; Arguez et al., 2008]. Mann [2004] warns
against false conclusions based on ‘‘unobjective’’ statistical
smoothing approaches.

3.2. Sensitivity of Run lengths to the Choice of Shift
Detection/Smoothing Window

[22] The sensitivity of run lengths to the choice of win-
dow width was investigated using the shift detection test as
used by Mauget [2003] and Verdon and Franks [2006]. The
test was applied to the seven paleo series and the instrumen-
tal PDO and IPO using a range of window widths (from 4 to
60 yr). The mean run length was found to be strongly de-
pendent on the choice of window width; Table 1 shows the
results for window widths of 10 and 40 yr. Similar tests
using both moving-average smoothing and low-pass filters
with a range of smoothing orders/cut-off periods produced
similar results. The mean run lengths were strongly depend-
ent on the smoothing order/cut-off period. It can be con-
cluded that a subjective choice of window width/smoothing
order/cut-off period, as used by Verdon and Franks [2006],
with any of these three signal extraction techniques is likely
to bias the results significantly. This motivates the develop-
ment of a more objective method for identifying decadal-
scale variability from paleo records.

3.3. Extracting the IPO-PDO Signal From the Paleo
Records

[23] As well as low frequency (e.g., decadal/multideca-
dal) variability, the paleo records exhibit higher frequency
variability, which is not typical of the IPO-PDO signature.
This higher variability is likely due to the paleoclimate
time series being based on proxies, which induce some
additional noise. Despite these uncertainties, it is hypothe-
sized that the IPO-PDO paleo records from multiple sour-
ces and locations (especially when combined) contain a
robust representation of the IPO-PDO phenomenon. To
extract the signal from the paleo records that is most simi-
lar to the instrumental IPO-PDO series, filtering is required
to remove the noise and higher frequency variability.
3.3.1. Filtering the Paleo Records

[24] A low-pass Butterworth filter was used to filter each
paleo index. The Butterworth filter was chosen because it
has flatter frequency response in the passband than other fil-
ters, resulting in uniform treatment of the passband frequen-
cies in the signal. However, the choice of filter is not
considered to have as significant an impact on the results as
the parameters of the filter. The filter parameters, the filter
order (n), and the cut-off period (!c) were calibrated by
maximizing the Nash-Sutcliffe efficiency (NSE) between

the filtered paleo index and the instrumental IPO record dur-
ing the instrumental period (1850–2008). Signals were
standardized prior to calculation of the NSE. Parameter
ranges of n 2 ð2; 8Þ and !c 2 ð3; 50Þ were used. The fitted
parameter values are shown in Table 3. Maximum NSE val-
ues range between �0.03 and 0.48, with a mean of 0.21.
This technique removes noise from the paleo indices and
preserves the signal within each reconstruction that provides
the best fit to the IPO index during the instrumental period.
This technique is less sensitive to assumptions about the fre-
quency of state changes of the IPO-PDO than a subjective
decision [e.g., Verdon and Franks, 2006], since the parame-
ters are chosen using the best fit to the instrumental record.
3.3.2. Coherence of the Filtered Signals

[25] The coherence of the filtered indices was investigated
by examining the cross-correlation coefficients between the
filtered indices. During the instrumental (calibration) period,
the values ranged from –0.32 to þ0.84 (mean of þ0.38);
however, during the preinstrumental period the coherence
was reduced, with cross-correlation coefficients varying
between –0.43 and þ0.35 (mean of –0.06). This is likely
because (1) the IPO-PDO does not necessarily explain a
large degree of the variability in the proxies (because of a
range of independent regional and local effects, for example,
orographic effects) and (2), the relationship between the cli-
mate phenomena and the predictor signal (tree ring width,
oxygen isotopes from coral) is not necessarily time-invariant.

[26] To take account of the varying coherence during the
instrumental period, a weighted average of the seven time
series was computed to produce a combined paleo IPO-
PDO signal (referred to hereafter as the CPIPO index).
Before combining them, each filtered paleo time series was
normalized so that its mean and standard deviation matched
those of the instrumental IPO index. The weights used were
proportional to the inverse of the error variance between the
filtered paleo series and the instrumental IPO index. This is
similar to the weighting method used in weighted least
squares regression. This method assumes that the coherence
is stationary throughout the preinstrumental and instrumen-
tal periods. This is discussed further in section 6. Table 1
shows the resulting weights for each paleo record.

[27] Figure 1 shows the CPIPO time series. The instru-
mental IPO index compares favorably with the new recon-
struction (NSE ¼ 0.75). The distribution of run lengths
from the CPIPO is used to inform the model selection and
calibration procedures in section 4.

4. Modeling the Run lengths Within States of the
IPO-PDO
4.1. Distribution of Run lengths

[28] Figure 2 compares the smoothed empirical density of
run lengths of the CPIPO signal to that of Verdon and
Franks [2006]. There are marked differences between the
two distributions. The subjective choice of window length
(30 yr) and historical shifts in the paleo records by Verdon
and Franks [2006] resulted in some sets of shorter runs, pos-
sibly being mistaken as single (longer) runs. As such, the
run length distribution of Verdon and Franks [2006] appears
to have been biased toward longer run lengths. The results
of this study favor a considerably higher likelihood of run
lengths under 10 yr: the proportion being 0.39, while in the
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Verdon and Franks [2006] study it was 0.05. The apparent
bimodality of the empirical PDF is most likely because of
sampling variability. Stationarity of the run lengths was
investigated with a two-sided Kolmogorov-Smirnov (KS)
test between the sets of run lengths in each century, with no
statistically significant difference evident at the 5% level.
Thus, no evidence was found to reject the assumption of sta-
tionarity of the run lengths between centuries.

4.2. Model Selection
[29] To simulate the run lengths of IPO-PDO states, it is

necessary to identify the probability model that best fits the
empirical distribution of run lengths shown in Figure 2.
The candidate models were chosen either because they had
been previously used to model long-term variability in
hydrological data, or their probability density functions ex-
hibit a similar shape to the empirical density in Figure 2.
The run length models included the first- and second-order
autoregressive (AR(1) and AR(2)) processes (calibrating
the run length distribution, rather than the time series
directly), the generalized extreme value (GEV) distribution,
the truncated normal distribution with Box-Cox transfor-
mation (TN-BC), a two-state Markov chain model (MCM),
the truncated normal (TN) distribution, the lognormal
distribution as used by Verdon [2007], and the gamma

distribution. The MCM has been widely used in stochastic
hydrology to simulate the wet/dry behavior of climate
[Thyer and Kuczera, 2003; Lambert et al., 2003; Akintug
and Rasmussen, 2005; Frost et al., 2007; Potter et al.,
2010] and was used by Samuel and Sivapalan [2008] to
simulate IPO states and by Prairie et al. [2008] to simulate
wet/dry hydrologic states. The two-state MCM was fitted in
the usual manner, by estimating the transition probabilities
using p̂dw ¼ PðStþ1 ¼ wjSt ¼ dÞ ¼ ndw=nd , where p̂dw is
the estimate of the probability (P) of a transition from a dry
state (St ¼ d) to a wet state (Stþ1 ¼ w), based on the number
of transition years from dry to wet (ndw) as a proportion of
the total number of dry years (nd) (similarly for the wet to
dry transition probability). AR models have been used
widely to simulate persistence and were used in the wavelet
autoregressive model (WARM) by Kwon et al. [2009]. In
this model selection all models were calibrated using the
method of maximum likelihood. The AR models were cali-
brated by evaluating the likelihood of the observed paleo
run lengths using the Monte Carlo simulated run length
distribution for a given parameter set. The aim here is to
determine if an AR lag combination can outperform the
other distributions in terms of the Bayesian information cri-
terion (BIC) based on the run lengths. Simulations from the
continuous distributions were discretized to the annual time
step during the simulation. A two-sided KS test between
the observed run lengths indicated symmetry of the positive
and negative runs (p ¼ 0.77), so all models used a symmet-
rical distribution of runs in the two states.

[30] The model selection was guided by the BIC of
Schwarz [1978],

BIC ¼ �2 ln Lþ k ln n; ð1Þ

where L is the maximized value of the likelihood function
after fitting the model, k is the number of fitted parameters,
and n is the number of observations. A lower BIC value
indicates a more favorable model. Figure 3 compares the
BIC results for the calibrated models. The model with the
lowest BIC was the gamma distribution. In addition, a two-
sided KS test was performed to determine if the fitted
gamma distribution provided a good fit to the observed
data. The KS test showed no significant inconsistency
between the observed and simulated data (p ¼ 0.83). Con-
sequently, the gamma model was adopted.

[31] Figure 2 compares the distribution of simulated runs
for the MCM and gamma models against the observed
CPIPO distribution. The MCM has a geometric probability
density with its mode at a run length of 1 yr, quite unlike
the observed data. Thus, it is structurally inappropriate for
the simulation of quasiperiodic data such as the run lengths

Figure 2. Observed and simulated IPO-PDO runlength
distributions. The observed distributions include the com-
posite index of Verdon and Franks [2006] and the CPIPO
from this study (3-yr kernel smoothing window).

Figure 1. The combined paleo IPO-PDO and instrumental IPO time series.
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of the IPO-PDO. As demonstrated in Figure 2, the MCM
overestimates the probability of shorter runs (e.g., 1–5 yr)
and underestimates the probability of longer runs (e.g.,
>5 yr). It should be noted that a hidden Markov model cali-
brated to hydrological data alone would have the same
shortcoming because the wet/dry state evolution is a Markov
chain, and thus has the same monotonically decreasing run-
length probability density. Thus, the gamma distribution for
run lengths was found to provide the best fit (in terms of
BIC) to the observed data.

4.3. Combining Paleo IPO-PDO and Instrumental
IPO Information

[32] The paleo and instrumental data were combined to
infer the posterior distribution of the parameters for the
gamma model for the run lengths:

pð�0jY 0
obs;ins; Y

0
obs;palÞ / pðY 0

obs;ins; Y
0
obs;palj�0Þpð�0Þ; ð2Þ

where �0 ¼ ½�; ��, � (shape), and � (inverse scale) are the
parameters of the gamma distribution, Yobs,pal represents
the runs from the portion of the CPIPO in the preinstrumen-
tal period, Yobs,ins represents the runs in the instrumental pe-
riod, and pð�0Þ is an uninformative prior. The posterior
distribution in equation (2) was estimated using a Markov
chain Monte Carlo (MCMC) method, the Metropolis algo-
rithm (see section 5.4). Convergence was verified by check-
ing that the average jump ratio and R-statistic were within
ranges recommended by Gelman et al. [2004].

[33] Figure 4 compares the distribution of the mean
(�=�) and the standard deviation (

ffiffiffiffi
�
p

=�) for the gamma
model conditioned on the paleo, instrumental, and the paleo
with instrumental (equation (2)) data. Incorporation of
paleo information reduced the uncertainty in the run length
mean and standard deviation; their posterior modes were
15.3 and 10.3 yr, respectively. The distributions of simu-
lated IPO-PDO run lengths, with an allowance for uncer-
tainty in � and �, are shown in Figure 5. The differences
between the paleo and instrumental distributions could be
attributable to the low number of samples in the instrumen-
tal period or the uncertainty of the paleo data. This is dis-
cussed further in section 6.2.

5. A Stochastic Model for Hydrological Data
Incorporating Pacific Decadal Variability

[34] The CIMSS framework is illustrated for a case study
modeling seasonal rainfall on the east coast of Australia. In
section 5, the spatial and temporal influence of the IPO-
PDO on rainfall is first investigated, then an appropriate
stochastic hydrological model is developed. Following that,
the calibration procedure is explained, and two location-
specific case studies follow.

5.1. The Influence of the IPO-PDO on East Coast
Australian Rainfall

[35] A number of studies have shown the influence of the
IPO-PDO on Australian hydrological regimes, including:
Power et al. [1999]; Arblaster et al. [2002]; Kiem and
Franks [2004]; Micevski et al. [2006]; Speer [2008]; Hein-
rich et al. [2009]; Verdon-Kidd and Kiem [2009]; and
Westra and Sharma [2009]. Figure 6 illustrates the spatial
influence of the IPO-PDO state on mean annual rainfall for
1900–2007 for New South Wales (NSW, eastern Australia).
The data used here is the gridded monthly rainfall data from
the Bureau of Meteorology’s (BOM) Australian Water
Availability Project. The IPO-PDO negative state appears
to coincide with higher annual rainfall over �1000 km of
the coast of NSW, extending inland �100 km. Despite this
consistent spatial impact on the mean rainfall, there
remains much variability. Two point-rainfall case study
sites are used in this study, Stroud and Cataract Dam, as
detailed in Table 2. The data is from the BOM’s high

Figure 4. The posterior distributions of the mean and stand-
ard deviation of the gamma models calibrated to paleo, instru-
mental, and paleo plus instrumental IPO-PDO run lengths.

Figure 5. A comparison of the distributions of simulated
IPO-PDO runs incorporating parameter uncertainty.

Figure 3. The BIC results for candidate IPO-PDO run-
length models.
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quality (HQ) rainfall data set [Lavery et al., 1997]. Using a
linear fit of the annual IPO index values to annual (calendar
year) rainfall totals at two case study sites, the IPO-PDO
explains only 10.5% and 4.7% of the total variance at
Stroud and Cataract Dam, respectively. Figure 7 shows a
time series of smoothed (11-yr moving average) annual
rainfall anomalies at the two case study sites plotted with
the instrumental IPO index. The shift to the negative IPO-
PDO state in the mid 1940s coincides with an increase in
rainfall at both sites. The opposite occurs when the IPO-
PDO state shifts to its positive state in the late 1970s. The
‘‘Federation Drought’’ (�1900) and the ‘‘WWII Drought’’
(late 1930s–mid 1940s) are also visible in the smoothed
rainfall anomalies. Anomalies of the order of 200–400 mm
(the case study sites both have mean annual rainfall of
�1000–1100 mm) appear to be quite closely associated
with the state of the IPO-PDO, despite the low proportion
of rainfall variance explained by annual IPO index values.
Some effects appear to be contrary to this (e.g., pre-1930
and post-1985 rainfall at Cataract Dam), which could be
due to the influence of other climate mechanisms. Despite
this, the results indicate that the IPO-PDO has a consistent
and broad impact on rainfall over a significant region along
the NSW coast.

5.2. Investigating the Temporal Impact of the IPO
[36] Figure 8 shows the influence of the IPO-PDO on

monthly rainfall statistics at the two case study sites. The
impact appears strongest for the summer months, with
some impacts also evident in June. To investigate whether
or not these results were specific to the case study sites
only, an analysis of the monthly and seasonal influence of
the IPO-PDO was undertaken for the 47 BOM HQ rainfall

data sites on the east coast of Australia (the locations of the
NSW sites are shown in Figure 6). The nonparametric Wil-
coxon rank-sum test was used to test for significant differ-
ences between seasonal rainfall totals in the IPO-PDO
positive and negative states at the 95% significance level.
Tests were performed on rainfall totals in all possible con-
tiguous monthly sequences (seasons) for all 47 sites. This
included season durations from 1 to 12 months starting
from January to December, yielding a total of 144 possible
impact seasons. All but eight of the 47 sites exhibited stat-
istically significant differences between IPO-PDO positive
and negative states. The maximum impact seasons (mini-
mum p-value) varied in duration somewhat, but were gen-
erally centered around the Austral summer, with some
statistically significant impacts observed at other times of
the year. Other conventions for the impact season could be
used in simulations, for example, the longest statistically
significant impact season, however, this is left for future
work. The maximum impact seasons for the Stroud and
Cataract Dam rainfall sites are shown in Table 2.

5.3. Seasonal Stochastic Model to Incorporate the
Influence of the IPO-PDO

[37] The general CIMSS framework allows for the incor-
poration of the decadal-scale climate variability of the IPO-
PDO, using the model identified for level 0 of the frame-
work in section 4.2, into stochastic simulations of rainfall
data at a single site. In this implementation, the IPO-PDO
influences the rainfall during the impact season, as defined
by the user, with the aid of a seasonal analysis such as that
described in section 5.2. Impact and nonimpact seasons
were modeled independently. This model structure was
based on analysis of the case study data, which showed stat-
istically significant correlations between consecutive impact
seasons and between consecutive nonimpact seasons, but

Table 2. Rainfall Data and IPO-PDO Impact Seasons

Site Name Data Type Dates Time Resolution IPO-PDO Max Impact

Stroud post office Rainfall 1889–2004 Monthly January–March
Cataract Dam Rainfall 1904–2005 Monthly June–April

Figure 6. The difference in mean annual rainfall (calen-
dar year) for IPO-PDO negative minus IPO-PDO positive
years for 1900–2007 for NSW. Crosses indicate locations
of coastal high-quality rain gages in NSW. The locations of
the Stroud and Cataract Dam case study sites are shown.

Figure 7. Smoothed (11-yr moving average) annual rain-
fall anomaly for Stroud and Cataract Dam (blue bars) and
the instrumental IPO index (orange curve).
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not between the impact and nonimpact seasons in current or
preceding years. At level 1, the short-term process yt ¼ [yjt
: j ¼ I,NI] refers to the rainfall in both the impact (I) and
nonimpact (NI) seasons in year t. The rainfall was simulated
using an AR(1) process with Box-Cox (BC) transformation
to enable simulation of non-Gaussian data [Box and Tiao,
1973] with a shifting mean according to the IPO-PDO state:

zjt ¼ �j þ �j � ðzjðt�1Þ � �jÞ þ �jt

�jt � Nð0; �2
j Þ

; ð3Þ

zjt ¼
y	j

jt � 1

	j
	j 6¼ 0

ln yjt 	j ¼ 0

8><
>: ; ð4Þ

where yj,t is the hydrological data value, zj,t is the trans-
formed value, 	j is the BC transformation parameter, and j
is the season, either impact (I) or nonimpact (NI). The
AR(1)-BC parameters �, �, �2, and 	 are dependent on the
season and IPO-PDO state (w ¼ wet, d ¼ dry).

[38] The model parameters are dependent on the process
at level 0, the state of the IPO-PDO during the impact sea-
son. A simple relationship between the simulated IPO-PDO
state k and the impact season parameters was assumed for
the impact season (I) :

�I ¼
�Id if kt ¼ d and kt�1 ¼ d

�Iw if kt ¼ w and kt�1 ¼ w

0 otherwise

8<
: ; ð5Þ

�I; �I; 	I ¼
�Iw; �Iw; 	Iw if kt ¼ w

�Id ; �Id ; 	Id if kt ¼ d
:

�
ð6Þ

[39] For the nonimpact season (j ¼ NI) there is no
hypothesized dependence on the level 0 process and the
AR(1)-BC parameters are constants: �NI; �NI; �NI; 	NI.

[40] It is emphasized that only the state of the IPO-PDO
is utilized, not the amplitude. This is consistent with the
approach of Kiem et al. [2003] and Samuel and Sivapalan
[2008]. A more complex model based on IPO-PDO magni-
tude is judged not warranted, on account of the relatively
low proportion of rainfall variance explained by IPO index
values alone.

5.4. CIMSS Framework Calibration Procedure
[41] A Bayesian approach is used to infer the posterior

distribution of the CIMSS model parameters. The joint pos-
terior pð�0; �1jY 0

obs;ins;Y
0
obs;pal;Y

1
obsÞ combines the elements

of the hierarchy. At level 1 of the hierarchy, the formula-
tion of the AR(1)-BC likelihood function for the rainfall
process requires the constraint that zjt	j þ 1 > 0 to ensure
real values for zjt. The approach of Frost et al. [2007] was
used to implement this constraint in the likelihood function.
A minor practical modification was made to take account
of the process for y1

I in the impact season. The likelihood
expression was evaluated separately for each block of data
during positive and negative states of the IPO, since �I
takes account of interannual persistence within a state, and
should influence the change point of states. The �I parame-
ter was found to exhibit similar behavior in both positive
and negative IPO-PDO states and as such it was assumed
that �Iw ¼ �Id . A noninformative prior was used for the
level 1 parameters. The joint posterior is then:

pð�0; �1jY 0
obs;ins;Y

0
obs;pal;Y

1
obsÞ ¼

pð�0jY 0
obs;ins;Y

0
obs;palÞpð�1jY 1

obs;Y
0
obs;insÞ

/ pðY 0
obs;insj�0ÞpðY 0

obs;palj�0Þpð�0Þ � pðY 1
obsj�1;Y 0

obs;insÞpð�1Þ

ð7Þ

with

�0 ¼ ½�; ��

�1 ¼ ½�I; �Iw; �Id ; �Iw; �Id ; 	Iw; 	Id ; �NI; �NI; �NI; 	NI�:
ð8Þ

[42] The Bayesian approach allows for the evaluation of
parameter uncertainty, the importance of which has been
well established. For example, in the context of stochastic
hydrological models for use in water resource planning,
system vulnerability (e.g., water supply drought risk) could
be significantly underestimated by approaches that ignore
parameter uncertainty [Stedinger and Taylor, 1982; Frost
et al., 2007]. MCMC methods, such as the Metropolis sam-
pler, can be applied in cases where analytical expressions
of the posterior distributions of the parameters are not
available. Frost et al. [2007], Gelman et al. [2004], and
Haario et al. [2001] give a thorough explanation of the Me-
tropolis algorithm used here.

5.5. Calibration Results
[43] The model was calibrated to rainfall data at the two

case study sites on the coast of NSW, Stroud and Cataract
Dam. These sites are close to major water supply catchments
for the cities of Sydney and Newcastle. In the interests of

Figure 8. Monthly rainfall statistics at Stroud (upper) and
Cataract Dam (lower), data stratified by IPO index.
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brevity, only figures for the Stroud rainfall site calibrated to
the IPO-PDO impact season are presented; similar results
were obtained for the Cataract Dam site. Analysis of the
MCMC parameter samples showed that most of the model
parameters had a low correlation, except for � and �. Fur-
thermore, the MCMC convergence diagnostics confirmed
the MCMC algorithm had converged after 20,000 function
evaluations.

[44] Table 3 shows the mean and standard deviation of
the posterior distribution of the parameters for both sites.
Figure 9 shows very marked differences between the poste-
rior distributions of mean seasonal rainfall in the wet and
dry IPO-PDO states (�Iw and �Id). This highlights an addi-
tional benefit of evaluating parameter uncertainty, without
which it would be harder to determine if the wet and dry
state parameters are markedly different. The impact and
nonimpact season observed rainfall data was found to be
within the 90% probability limits of the simulated data at
both sites. The expected values of the mean seasonal rain-
fall during the IPO-PDO positive state was found to be
15% (156 mm) lower than in the IPO-PDO negative state
for the Cataract Dam data, and 28% (123 mm) lower for
the Stroud data, during their respective impact seasons.

[45] The differences between the simulated marginal dis-
tributions of IPO-PDO positive and negative state impact
season rainfall are evident in Figure 10. Two-sided KS tests
on the parameter samples of the mean and standard devia-
tion revealed statistically significant differences between
the wet and dry distributions (p < 0.001 in all cases).

[46] The distributions of 2, 3, 5, 7, 10, 20, and 30 yr
overlapping and nonoverlapping accumulated totals of the
observed data were found to be consistent with the 90%
probability limits of the simulations for both sites. The
observed and simulated autocorrelations were also com-
pared within the impact and nonimpact seasons. Again, the
observed data was consistent with the 90% probability lim-
its of the simulations.

[47] Figure 11 compares a non-climate-informed model
(a seasonal lag-one autoregressive model with Box Cox
transformation [AR(1)-BC] [Thyer et al., 2002]) to the dis-
tribution of observed annual rainfall at Stroud, using data
stratified by the IPO-PDO state. Without the knowledge of

the climate mechanism, the AR(1)-BC simulated distribu-
tion is a poor fit to the observed distribution within each
state. The CIMSS model simulates these two states sepa-
rately and in doing so captures the observed IPO-PDO
positive and negative state distributions. Thus, the climate-
informed approach is considered to be preferred over the
non-climate-informed AR(1)-BC model.

[48] Frequency domain characteristics were investigated
using the global wavelet power spectrum, as in the work of
Torrence and Compo [1998] and Kwon et al. [2009]. Figure
12a compares the observed and CIMSS simulated wavelet
spectra. The observed spectrum was found to be within the
model’s 90% probability limits as estimated by the Monte
Carlo simulation. An almost identical result was obtained
for a simple AR(1) model of annual rainfall, similar to the
comparison between the WARM and AR(1) models by
Kwon et al. [2009]. This is further discussed in section 6.3.

6. Discussion
6.1. Challenges of Extracting a Common Climate
Signal From Multiple Sources of Paleo Data

[49] This paper has shown that the subjective approach
used by Verdon and Franks [2006] led to an overestimate

Table 3. Mean and Standard Deviations of Posterior Distributions
of CIMSS Model Parameters Calibrated to Stroud and Cataract
Dam Rainfall

Parameter

Mean (Standard Deviation)

Stroud Cataract Dam

� 1.83 (0.42) 2.16 (0.57)
� 8.60 (2.45) 7.74 (2.46)
�Iw 432 (34) 1013 (63)
�Iw 213 (23) 314 (39)
�Id 309 (28) 857 (58)
�Id 168 (19) 287 (37)
�I 0.18 (0.10) 0.40 (0.10)
	Iw 0.52 (0.22) 0.21 (0.17)
	Id 0.57 (0.22) 0.26 (0.20)
�NI 741 (25) 60 (7)
�NI 220 (17) 71 (9)
�NI 0.15 (0.10) �0.04 (0.10)
	NI 0.32 (0.26) 0.13 (0.07)

Figure 9. The posterior distributions of mean impact season
rainfall in IPO-PDO positive and negative years for Stroud.

Figure 10. The marginal probability distributions of
simulated impact season rainfall at Stroud.
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of the probability of IPO-PDO run lengths greater than
10 yr. This study’s more objective approach resulted in a
greater variance in the distribution of run lengths and a
higher likelihood of runs of �10 yr. However, there are sig-
nificant discrepancies between the published paleo IPO-
PDO indices, evident in the low cross correlation between
the indices. This is because of a range of issues with paleo
data and its interpretation, including possible nonlinearities
and errors in the original physical data analysis, nonstatio-
narity of the proxy/climate relationship, and the different
levels of explained variance between the various proxies at
various locations. These factors need further investigation
to ensure that the information content of the paleo data is
best utilized. However, to minimize the impacts of these
factors, this study filtered the paleo indices in accordance
with the best fit to the instrumental IPO data and combined
the filtered series using weights that were proportional to
the goodness of fit. This approach was not undertaken in
the study by Kwon et al. [2009] in their combination of

multiple proxies; nor in the study by Prairie et al. [2008]
as it used a single paleo data source. Until further advances
are made in combining multiproxy paleoclimate informa-
tion [e.g., Haslett et al., 2006], the CPIPO index from 1570
to the present provides water resource planners and
researchers with a provisional estimate of decadal-scale Pa-
cific climate variability going back �440 yr.

6.2. Challenges of Combining Paleo and Instrumental
Data for Use in Stochastic Hydrological Models:
Stationarity and Homogeneity

[50] The CIMSS framework assumes that the random
variation in IPO-PDO run lengths and its influence on rain-
fall is stationary through time. It assumes consistency
between the run lengths in the paleo and instrumental peri-
ods. The procedure for state classification also assumes that
the long-term mean of the paleo series is stationary.
Although there is some evidence from paleoclimate studies
of nonstationarity in the IPO-PDO phenomenon [MacDon-
ald and Case, 2005], other studies highlight the regularity
of the oscillations [Linsley et al., 2008]. A KS test at the
5% significance level on the distribution of run lengths
between each of the centuries did not reject the assumption
of stationarity of the run lengths between centuries. The
difference between the inferred posterior distributions of
the mean and standard deviation of the IPO-PDO run
lengths between the paleo and instrumental period was also
computed (Figure 13). The highest probability density
region suggests that the mean (standard deviation) of the
run lengths for the instrumental data were approximately 2
(2) yr greater than for the paleo data. Nonetheless, the zero
difference point lies within the high probability density
region. It is therefore concluded that there is insufficient
evidence to reject the hypothesis that the paleo and instru-
mental IPO-PDO run lengths are consistent. There remains
a significant research challenge in combining paleo and
instrumental data in a manner that allows for nonstationar-
ity in the past. It is noted that decadal predictability is
a focus for the upcoming Intergovernmental Panel on

Figure 11. AR(1)-BC-simulated seasonal rainfall distri-
bution compared to observed data in IPO-PDO negative
and positive years at Stroud.

Figure 12. Simulated and observed global wavelet power spectra for annual rainfall at Stroud for (a)
CIMSS model with run lengths calibrated to observed and (b) CIMSS model with run length artificially
fixed at 16 yrs (which is equivalent to a period of 32 yr).

W11509 HENLEY ET AL.: CLIMATE-INFORMED STOCHASTIC HYDROLOGICAL MODELING W11509

10 of 14



Climate Change (IPCC) Fifth Assessment Report (AR5)
[Solomon et al., 2011; Taylor et al., 2009].

[51] Although this study made the assumption of statio-
narity in the long term, the rainfall parameters vary on a
decadal-scale according to the IPO-PDO. The timescale of
these wet and dry periods (as demonstrated on the east coast
of Australia) is likely to have significant practical impacts
for water resource systems, since most traditional stochastic
models do not incorporate this decadal-scale variability.

[52] Some general issues remain with combining paleo
and instrumental data. Processing the paleo records neces-
sarily changes the character of the data relative to the
instrumental. The uncertainty, because of the noise that is
removed through the filtering procedure, is not taken into
account in CIMSS model simulations. The assumption was
made that the paleo and instrumental data are homogene-
ous, and that run lengths from paleo and instrumental data
have equal weight, despite paleo and instrumental data
being derived from different sources and paleo records
being subject to greater uncertainty. The method used in
this study to combine the paleo records sought to reduce
the impact of these assumptions. It is noted that these issues
apply to earlier studies by Kwon et al. [2009] and Prairie
et al. [2008].

[53] These considerations suggest that future research
should focus on methods that better take into account the
additional uncertainty in the paleo data. For example, one
approach would be to add a random noise term to the paleo
run length sequences with the characteristics of this noise
calibrated to the instrumental record.

6.3. Challenges of Statistically Assessing Long-Term
Variability

[54] It is hypothesized that the flatness of the spectrum
of the CIMSS model in Figure 12a is due to the high vari-
ability of simulated IPO-PDO run lengths. To test this hy-
pothesis, run lengths were artificially set to precisely 16 yr.
The resulting wavelet spectrum in Figure 12b shows a peak

at a period of �32 yr (equivalent to a run length of 16 yr).
This confirms the hypothesis that the flat rainfall spectrum
was probably due to the high variance in simulated run
lengths, which was in turn due to the variability in the
observed paleo and instrumental IPO-PDO run lengths and
the incorporation of parameter uncertainty, rather than a
shortcoming in the modeling approach.

6.4. Extensions to the CIMSS Framework:
Incorporating Other Climate Processes and Multisite
Analysis

[55] An unresolved question in the climate literature
[Meinke et al., 2005] is whether the low frequency variabili-
ty represented as the IPO or PDO is an artifact of stochastic
variability of ENSO and/or other mechanisms [Newman
et al., 2003; Schneider and Cornuelle, 2005; Power et al.,
2006] or, in fact, an independent dynamical climate mode
[Folland et al., 2002; Cobb et al., 2003; Parker et al.,
2007]. Regardless of the cause and effect status of the large-
scale oscillations of Pacific climate, this study exploited the
association between rainfall and IPO-PDO indices to inform
stochastic rainfall simulation.

[56] Climate modes such as the IPO-PDO, ENSO, IOD,
and SAM and the impacts of climate change have different
spatial and temporal effects on hydrological processes. For
example, ENSO impacts are more intense and ENSO typi-
cally explains a greater proportion of the overall variability
in hydrological data than other mechanisms. However, the
IPO-PDO has much longer run lengths, the likely practical
impacts of which are discussed in section 6.5.

[57] Studies by Cai et al. [2010] and Power et al. [1999]
discussed the asymmetry between the ENSO-rainfall tele-
connection, with the La Niña-rainfall relationship being
more closely linked to the La Niña amplitude than the El
Niño-rainfall relationship is to the El Niño amplitude. The
connection between the amplitude of ENSO events and
rainfall is associated with the IPO-PDO, with the IPO-PDO
positive state leading to a breakdown in the asymmetry in
the pre-1950 and pre-1980 IPO-PDO positive states. Future
work to model this would require explicit modeling of the
oscillations of ENSO, rather than just the IPO-PDO state
run lengths as used here. Possible model formulations
would be to have ENSO event frequency varying with the
IPO-PDO [Kiem et al., 2003] or the variability of the asym-
metry of ENSO impacts [Cai et al., 2010; Power et al.,
1999] being simulated on a decadal timescale. A detailed
investigation of the temporal and spatial IPO-PDO-ENSO
impacts would aid the construction of such a model.

[58] Modeling the interaction of climate modes remains
a challenge, in particular when using a categorical method-
ology. This is because the short instrumental record limits
the number of combinations of multiple climate mode
states (e.g., El Niño and IOD positive) sampled in the
instrumental record. Advances in paleoclimate reconstruc-
tions would provide improved understanding of the dynam-
ics of these modes and their interactions. The method used
in this paper to calibrate filters directly from various paleo
data sources to a target instrumental signal is an objective
approach that could be applied to combine other paleo data
sources, and hence possibly provide greater certainty
around the interaction of climate modes. The appropriate
incorporation of other climate modes is left to future work.

Figure 13. Joint posterior distribution of the mean and
standard deviation of the difference between IPO-PDO run
lengths inferred from data (paleo minus instrumental).
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[59] The CIMSS framework was used here to incorporate
climate variability into stochastic simulations of hydrologi-
cal data at a single site; however, the approach could be
extended to multisite simulation using a Bayesian hierarchi-
cal modeling (BHM) approach similar to those used by
Frost et al. [2007], Lima and Lall [2009], and Kwon et al.
[2009]. Previous BHM methods such as Kwon et al. [2009]
have assumed a constant standard deviation for seasonal
rainfall in different climate states. However, there were dif-
ferences of 27% and 9% in the expected value of the poste-
riors for the standard deviation of seasonal rainfall at Stroud
and Cataract Dam respectively (�Iw and �Id in Table 3).
This illustrates the importance of incorporating the influ-
ence of climate mechanisms on the variance of rainfall
processes in stochastic hydrological models.

[60] This study defined the IPO-PDO impact season as
the contiguous sequence of months with a maximum statis-
tically significant difference (at the 5% significance level)
between IPO-PDO stratified rainfall totals. This resulted in
differences between the impact seasons at the two case
study sites. Nonetheless, a fairly robust trend across the 47
coastal sites, with summer centered impact seasons, was
identified. Several issues might be masking an otherwise
distinct sequence of months where the IPO-PDO has an
impact over a wide area, including the limitation to just one
impact season, the influence of the significance level
threshold on season choice, the limitation to contiguous
sequences of months, high rainfall variability generally,
and possibly uncertainty in the IPO-PDO indices. For
example, the strong IPO-PDO impact in June at Cataract
Dam (Figure 8) appears to be the reason for its much longer
impact season (June–April), compared to Stroud (January–
March). Folland et al. [2002] used data from November–
April in their study of the impact of the IPO-PDO on SPCZ
location because that is the period when the SPCZ is most
active. SPCZ activity could be used to inform the ENSO or
IPO-PDO impact season choice in future work. Although
the impact season choice was data-driven in this study, for
future work a probabilistic method for simulating the
impact season would be preferred over an a priori deter-
ministic method. For example, the impact season could be
drawn from a probability distribution of all monthly
sequences with statistically significant differences between
rainfall totals stratified by IPO-PDO (or other climate
mechanisms). In a multisite simulation context, a consistent
methodology would need to be defined for the simulation
of impact seasons across sites.

6.5. Practical Implications for Water Supply Security
[61] Figure 11 showed that traditional non-climate-

informed models (such as the AR(1) model) are unlikely to
account for the influence of climate mechanisms such as
the IPO-PDO. Future work will investigate the impact of
climate modes on drought risk to water supply systems.
Such analyses could provide insights into appropriate
adaptive management strategies and long-term planning
decisions for water supply systems.

[62] The incorporation of parameter uncertainty helps to
improve the reliability of stochastic simulations. Approaches
such as those of Samuel and Sivapalan [2008], Prairie et al.
[2008] and Kwon et al. [2009] (in the WARM component
of their rainfall model) that do not incorporate parameter

uncertainty in their simulations are likely to underestimate
the variability in predictions. In doing so, these approaches
possibly underestimate the resulting drought (or flood)
risk and overestimate system reliability, as highlighted by
Stedinger and Taylor [1982].

7. Conclusions
[63] A general climate-informed multi-time scale sto-

chastic (CIMSS) framework was presented in which sto-
chastic models of recognized climate mechanisms are used
to condition stochastic hydrological models. A two level hi-
erarchy was chosen to illustrate the framework, with the
upper level focusing on decadal-scale variability. Paleo and
instrumental data were used to identify the variability at the
top level. The lower level of the hierarchy was a stochastic
rainfall model with parameters conditioned on the decadal-
scale variability at the top level. The development of this
model led to the following conclusions:

[64] 1. It was shown that the subjective choice of a 30-yr
window in the study by Verdon and Franks [2006] led to
an overestimation of the run lengths of states of the IPO-
PDO. The adaptive method used in this paper to fit filters to
the contributing signals avoided the need to subjectively
choose a shift detection window width. Furthermore, the
need to make subjective choices to estimate the history of
crossings from multiple paleo proxies was avoided by com-
bining the signals by weighting by the goodness of fit to the
instrumental data. A new combined paleo IPO-PDO
(CPIPO) signal was produced from seven IPO-PDO paleo
sources, dating back �440 yr. The analysis gave improved
certainty regarding the distribution of IPO-PDO run
lengths. Nonetheless, significant uncertainty remains.

[65] 2. Model selection using the BIC on the paleo runs
favored a gamma model over the Markov chain model
(MCM) for IPO-PDO run lengths. The Markov chain fam-
ily of models is structurally deficient in this context
because the mode of the run length distribution is always
located at a run length of 1. This means the MCM overesti-
mates the proportion of shorter IPO-PDO runs (e.g., 1–5 yr)
and underestimates the proportion of longer IPO-PDO runs.
The MCM and related models have been widely used to
simulate wet/dry climate states [Thyer and Kuczera, 2000;
Lambert et al., 2003; Akintug and Rasmussen, 2005; Frost
et al., 2007; Samuel and Sivapalan, 2008; Prairie et al.,
2008]. This study shows that these types of models are a
poor choice for modeling the wet/dry state run lengths of
decadal variability, such as the IPO-PDO phenomenon.

[66] 3. A two-level CIMSS framework was applied to
two rainfall data case study sites on the east coast of NSW,
Australia. The upper level consisted of a gamma model for
the IPO-PDO state run lengths. This was calibrated to the
run lengths of the CPIPO and the instrumental IPO index.
Seasonal rainfall was modeled at the lower level with an
autoregressive model with Box-Cox transformation. An
MCMC calibration routine was utilized to quantify parame-
ter uncertainty and incorporate that uncertainty into the
hydrological simulations. The model was found to replicate
observed statistics such as the seasonal, annual, and multiyear
accumulated rainfall distributions and interannual autocorrela-
tions. In comparison, a non-climate-informed (the AR(1)-BC)
model was found to produce a poor fit to observed data within
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each state of the IPO-PDO. Thus, the CIMSS approach is
preferred over the non-climate-informed model.

[67] 4. The findings of this study are based on the
assumption of stationarity between the paleo and instru-
mental IPO-PDO data. While statistical tests do not reject
this assumption, more research is needed to better inform
such work.

[68] 5. Persistent states of the IPO-PDO lasting for a dec-
ade or more could increase the vulnerability of water sup-
ply reservoir systems to drought. Drought risk simulations
that are uninformed of climate processes could under- (or
over-) estimate drought risk as the IPO-PDO states change.
This could place into question planning decisions that were
based on traditional non-climate-informed stochastic mod-
els. Future work will utilize the climate-informed approach
to assess the impact of longer-term climate variability on
water supply drought risk. The model presented in this
study enables the quantification of risks to water supply
systems due to intrinsic modes of climate variability. This
will help to provide more reliable estimates of system vul-
nerability and an important baseline against which the risks
due to climate change can be compared.
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