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Abstract 
 
Recently Beh (2008, JSPI) presented an index that helps to identify how likely two dichotomous 
categorical variables may be associated given only the aggregate (or marginal) information. Such an 
index was referred to as the aggregate association index. This paper will further consider some of the 
issues concerned with that index. These include variations of the original index as well as 
adaptations for quantifying the possibility that there exists a statistically significant positive or 
negative association between the two dichotomous variables. 

 
Keywords: 2× 2 Contingency Table; Correlation; Ecological Inference. 
 
1 The 2× 2 Contingency Table 
 

Consider a single two-way contingency table where both variables are dichotomous in nature. 
Suppose that n individuals/units are classified into this table such that the number classified into the 
(1, 1)th cell is denoted by 11n . Let the i’th row marginal frequency be denoted by •in , for i = 1, 2, 
and the j’th column marginal frequency by jn • , for j = 1, 2. Also, denote the i’th row and j’th 
column marginal proportion by n/np ii •• =  and n/np jj •• =  respectively. Table 1 provides a 
description of this notation. 

 
Table 1 
 Notation for a single 2× 2 contingency table 

 

 Column 1 Column 2 Total 

Row 1 11n  12n  •1n  

Row 2 21n  22n  •2n  

Total 1n •  2n •  n 
 

Suppose that the cell values in Table 1 are unknown so that only the information in the 
marginal frequencies is known, and fixed. This is commonly the situation in many studies where it is 
prohibitive (because of reasons of confidentiality) or impossible (because such information was 
never obtained) to know the value of the cells.  

The problem at hand is to obtain some information concerning the nature of the association 
between the two dichotomous variables when only the marginal information is provided. When a 
single 2× 2 table is of interest (as is the case in this paper), Fisher (1935) considered this issue and 
judged there to be very little or no information in the margins for inferring individual (or cellular) 
level data. More recent discussions, including those by Plackett (1977), Aitkin and Hinde (1984), 
Barnard (1984) and Beh (2008) concluded that the marginal information was not completely useless 
for making such inferences. For a set of G 2× 2 tables (for example, such tables collected at G 
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geographical/institutional regions) the problem of understanding the nature of the association 
between the two dichotomous variables given only the marginal information falls within the realm of 
ecological inference. Political scientists and statisticians have proposed a variety of solutions to the 
problem including those of King (1997), Steel, et al. (2005) and others, however the issue of the 
applicability of these results to G 2× 2 tables will not be considered here. 

Consider the case where, for now, the cell values of Table 1 are known. Define the proportions  
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Here, 1P  is the conditional probability of an individual/unit being classified into “Column 1” given 
that they are classified in “Row 1”. Similarly 2P  is the conditional probability of an individual/unit 
being classified into “Column 1” given that they are classified in “Row 2”. For reasons of simplicity, 
we shall focus only on 1P  in this paper. Although similar conclusions can be made concerning 2P . 
 When the joint frequencies of Table 1 are not known 1P  will also be unknown, although since 
it is a proportion it will lie within the interval [0, 1]. Duncan and Davis (1953) showed that this 
interval can be narrowed such that 
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If one wishes to obtain a ( )%1100 α−  confidence interval for 1P  given only the marginal information 
in the 2× 2 contingency table, Beh (2008) showed that such an interval is 
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where 2
αχ  is the α−1  percentile of the chi-squared distribution with 1 degree of freedom. However, 

for extremely small sample sizes and/or a small α  value, the bounds can lie outside of the 
permissible range of [0, 1]. For example, the 95% confidence interval of 1P  for the set of marginal 
frequencies ( ) ( )3,2,3,2n,n,n,n 2121 =••••  is (-0.126, 0.926). This problem can be alleviated by 
decreasing the level of confidence, say to 85% which gives (0.0137, 0.786). Alternatively increasing 
the sample size can help resolve the problem. For example, if a sample was selected which leads to a 
doubling of each of the marginal frequencies that appeared in the original table, the 95% confidence 
interval is (0.028, 0.772). A more appropriate resolution to the problem is to enforce the bounds to 
lie within [0, 1] in the same manner as undertaken by Duncan and Davis (1953). That is, we shall 
consider modifying the bounds of 1P  given by (2) such that  
 

( ) ( ) αααα =<<= UU,1minPL,0maxL *
1

* . 
 
Given the marginal information in the table, and a level of significance α , one may conclude that 
there may exist a statistically significant association between the two dichotomous variables if 

α≤≤ LPL 11  or 11 UPU ≤≤α . If this is the case, then for a given α , the marginal information 
provides some evidence to suggest that a statistically significant association between the two 
dichotomous variables may exist. Such an interval is derived assuming that the two dichotomous 
variables are independent. 
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 The extent to whether (2), or [ ]αα U,L , provides an accurate reflection of the coverage of P1 
has not yet been a topic of discussion, although further work to investigate this aspect of the analysis 
can be made. However, Agresti and Coull (1998) review several procedures that are appropriate for 
the interval estimation of a binomial proportion and may lead to useful insights into this issue. 
 
2. The Aggregate Association Index 
 
2.1 The Original Index 
 

 In practice 1P  can not be estimated precisely and so the relative width of these intervals may 
only be used as an indication of the extent to which the two dichotomous variables may be 
associated. It must also be noted that the more statistically significant association structures will arise 
when 1P  lies at, or near, the boundaries of (1) – see, for example, Fig. 1. To overcome these issues, 
Beh (2008) proposed that, when only aggregate information is known, the extent to which the 
variables may be associated can be measured using the aggregate association index (AAI) 
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Equation (4) is the sample chi-squared statistic of the 2× 2 contingency table as a function of 1P , 
when only the marginal information is known. For the AAI, (3), Beh (2008) treated 1P  as a 
continuous random variable and Fig. 1 provides a graphical representation of its meaning. 
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Fig. 1. Graphical perspective of the AAI (3). The shaded area indicates the magnitude of αA  



4 

 The index (3) is bounded by [0, 100]. It quantifies, for a given α , how likely a particular set of 
fixed marginal frequencies will enable the user to conclude that there exists a statistically significant 
association between the two dichotomous variables. A value of αA  close to zero indicates that there 
is virtually no information in the margins to suggest that an association might exist between the two 
variables. On the other hand, an index value close to 100 reflects that it is highly likely that such an 
association may exist. The choice of index thresholds to define when the marginal information infers 
that a statistically significant association may exist can be appropriately chosen. For the purposes of 
exploring the indices in this paper, an index at, or above, 75 will be considered to reflect that there is 
strong evidence to suggest that the variables may be statistically significantly associated. An index 
above 50 will highlight that it is more likely that a significant association may exist than not. We will 
consider that an association is very unlikely, given only the marginal information, if the index is 
below 25. 
 The justification for the index may be made by observing that (4) is a quadratic function in 
terms of 1P  and is maximised at the endpoints of the function and minimised at independence 
( 11 pP •= ). This is also consistent with comments made in the ecological inference, and related, 
literature. For example, refer to Beh (2008) and Wakefield (2004).   
 We can simplify the aggregate association index of (3) by removing the integrals in the 
expression. After simplification, 
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Thus, the definite integral on the denominator of (3) is ( ) ( ) ( )[ ]3
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(3). Thus, αA , as defined by (3), can be written in terms of the bounds of 1P  by 
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When α= UU1  and α= LL1  (so that the width of the confidence interval of 1P  is at its maximum), 

0A =α . Also, in the rare case where 111 pLU •≈=  (such as when a very large sample of 
individuals/items exists) the aggregated data will always provide some information about the 
association structure of the variables since, in this case, 100A ≈α .  
 
2.2 The Discrete Version of the Index 
 
 The AAI of (3) originally considered by Beh (2008), and its alternative derivation (5), assumes 
that 1P  is a continuous quantity. However, given a set of specific marginal frequencies there are a 
discrete number of values that 11n , and hence 1P , can take. Therefore the AAI can be considered in 
this context. For Fig. 1, rather than determining the area under the curve defined by the function (4) 
but above the critical value 2

αχ  using integration, one can instead consider determining the area of 
this region using a more simple approach involving rectangular regions, or bins – see Fig. 2. The 
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shaded region of this figure represents the proportion of the total region of interest that describes 
when an association exists between the two dichotomous variables given the presence of the 
marginal frequencies only. 
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Fig. 2. Graphical perspective of the AAI (6), where ( ) 23LUn1 111 =−+ • . 

 
 The number of bins within the interval [ ]11 U,L  is ( )111 LUn1 −+ • . Therefore Fig. 2 considers 
an example were an analysis of an artificial contingency table results in ( ) 23LUn1 111 =−+ •  bins. 
Fig. 2 also highlights where αL and αU  lie in relation to those bounds of Duncan and Davis (1953); 
equation (1). The discrete number of possible values 1P  can take given the marginal frequencies is 
equivalent to the number of possible values that 11n  can have and is ( )111 LUn1 −+ • . Therefore, 
assuming that each of these bins is identical in width, the proportion each bin width represents in 
terms of the total width of the Duncan and Davis (1953) bounds (i.e. the bin width) is 
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 Suppose we now consider the height of each bin. Let the height of the i’th bin above the 
critical value, 2

αχ , be denoted by 
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Therefore the total area of the ( )111 LUn1 −+ •  bins above the critical value (indicated by the shaded 
region of Fig. 2) is 
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Similarly, the total area of these bins is ( ) ( )
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the aggregate association index, (3), is 
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where 100A0 D ≤≤ α  for all α . When the number of possible discrete values of 1P  is small there can 
be quite a large difference between (6) and (5). 

 
2.3 The Empirical Version of the Index 
 
 One may also compare the AAI with an empirical version of the index. Since the bounds of (1) 
specify the valid interval in which 1P  can lie, the interval [ ]1111 Un,Ln ••  indicates the range of values 
for which 11n  is valid. Therefore, for each of the ( )111 LUn1 −+ •  values that 11n  can take, the p-
value associated with its Pearson chi-squared statistic can be calculated. Determining the proportion 
of those p-values that are less than the level of significance, α , will provide an indication of how 
likely a set of marginal frequencies will lead to a statistically significant association between the two 
dichotomous variables. Such a proportion is termed here the empirical version of the AAI and is 
denoted by EAα .  
 Since this index only measures the proportion of those possible 2× 2 contingency tables where 
a statistically significant association exists it considers only the extent to which the variables may be 
associated, not the extent to which they are associated. In terms of Fig. 1 and Fig. 2, this index 
reflects the proportion of possible 1P  values whose chi-squared statistic exceeds the critical value, 
but will not reflect the area of the shaded regions. Thus such an index will not take into account that 
the more significant association structures will occur at, and near, the boundaries of 1P  (see Fig 1. 
and Fig. 2), only that an association exists. Therefore, generally, αα < AA E  and DE AA αα < , 
especially when the sample size is not deemed to be considered too small. In the case of small 
sample sizes (say, n < 200), or where a cell value is less than 10, the p-value from Fisher’s exact test 
may be considered instead of the p-value from the Pearson chi-squared statistic. However we shall 
focus our attention on the p-value obtained from a chi-squared test of independence. 
 
3. Examples 
 
3.1 Surface Plot of the Indices 
 
 Consider a 2× 2 contingency table with a sample of size n = 100. To observe the behaviour of 
the indices αA , DAα  and EAα , surface plots are constructed for •1n  and 1n •  varying from 1 to 99 at 
increments of 1. Fig. 3, Fig. 4 and Fig. 5 are these plots for αA , DAα  and EAα  respectively and were 
calculated with 05.0=α . 
 Fig 3. shows that the aggregate association index of (5) is locally maximised along a 
saddlepoint defined when 11 nn •• =  and 21 nn •• = . Global maximums of the index exist when either 

11 nLn =•  or 11 nUn =• . It also shows that the index reaches a minimum when •1n  lies close to the 
limits of [ ]11 nU,nL  and 20 < 1n •  < 80. Such results show that it is extremely difficult to determine 
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the likely values of the cells of the 2× 2 table. However, since we are more concerned with the nature 
of the association here, the marginal frequencies prove to be useful. 
 Fig. 4. shows that the index D05.0A  behaves in a very similar manner to 05.0A . In fact, Fig. 4 
appears virtually indistinguishable when compared with Fig. 3. As we shall see in Section 3.2 this is 
because the sample size is relatively large. Thus, if we were to consider a plot similar to Fig 2. it 
would consist of many bins and provide a value of the index very similar to that of the continuous 
version. 
 

 
Fig. 3. Surface plot of 05.0A  for n = 100 

 
 

 
Fig. 4. Surface plot of D05.0A  for n = 100 
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Fig. 5. Surface plot of E05.0A  for n = 100 

 
Fig 5. graphically shows the index E05.0A  for these computed contingency tables. While the 

index is generally below 0.75 there appears to be some information in the margins for concluding 
that an association exists between the two dichotomous variables. Table 3 provides a summary of the 

E05.0A  values for a selection of valid •1n  and 1n •  marginal frequencies. It shows that, generally there will 
be at least 50% of contingency tables that will exhibit a significant statistical association at the 0.05 level of 
significance. For those situations where such an association is not significant, they arise in the same situations 
as those defined above for small 05.0A  and D05.0A  values. Table 2 provides a tabular summary of D05.0A  for 
a selection of valid of •1n  and 1n •  values. 

 
 

 Table 2  
Value of D05.0A  for various •1n  and 1n •  and n = 100. 

 1n •  

•1n  1 10 20 30 40 50 60 70 80 90 99 
1 96.15 57.04 4.62 0.00 0.00 0.00 0.00 0.00 4.62 57.04 96.15 

10 57.04 90.60 79.34 65.22 50.59 43.76 50.59 65.22 79.34 90.60 57.04 
20 4.62 79.34 89.14 81.13 72.54 68.43 72.54 81.13 89.14 79.34 4.62 
30 0.00 65.22 81.13 87.97 82.39 79.69 82.39 87.97 81.13 65.22 0.00 
40 0.00 50.59 72.54 82.39 87.99 86.11 87.99 82.39 72.54 50.59 0.00 
50 0.00 43.76 68.43 79.69 86.11 90.33 86.11 79.69 68.43 43.76 0.00 
60 0.00 50.59 72.54 82.39 87.99 86.11 87.99 82.39 72.54 50.59 0.00 
70 0.00 65.22 81.13 87.97 82.39 79.69 82.39 87.97 81.13 65.22 0.00 
80 4.62 79.34 89.14 81.13 72.54 68.43 72.54 81.13 89.14 79.34 4.62 
90 57.04 90.60 79.34 65.22 50.59 43.76 50.59 65.22 79.34 90.60 57.04 
99 96.15 57.04 4.62 0.00 0.00 0.00 0.00 0.00 4.62 57.04 96.15 
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 Table 3 
Value of E05.0A  for various •1n  and 1n •  and n = 100. 

 1n •  

•1n  1 10 20 30 40 50 60 70 80 90 99 
1 50.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00 50.00 50.00 

10 50.00 72.73 54.55 54.55 54.55 54.55 54.55 54.55 54.55 72.73 50.00 
20 50.00 54.55 66.67 66.67 66.67 66.67 66.67 66.67 66.67 54.55 50.00 
30 0.00 54.55 66.67 70.97 70.97 70.97 70.97 70.97 66.67 54.55 0.00 
40 0.00 54.55 66.67 70.97 78.05 78.05 78.05 70.97 66.67 54.55 0.00 
50 0.00 54.55 66.67 70.97 78.05 82.35 78.05 70.97 66.67 54.55 0.00 
60 0.00 54.55 66.67 70.97 78.05 78.05 78.05 70.97 66.67 54.55 0.00 
70 0.00 54.55 66.67 70.97 70.97 70.97 70.97 70.97 66.67 54.55 0.00 
80 50.00 54.55 66.67 66.67 66.67 66.67 66.67 66.67 66.67 54.55 50.00 
90 50.00 72.73 54.55 54.55 54.55 54.55 54.55 54.55 54.55 72.73 50.00 
99 50.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00 50.00 50.00 

 
3.2 Example – Fisher’s (1935) Twin Data 
 
 Consider the 2× 2 contingency table of Table 4. This table was considered by Fisher (1935) 
and used by Beh (2008) to illustrate a simple application of (3). Fisher’s data studies 30 criminal 
twins and classifies them according to whether they are a monozygotic twin or dizygotic twin. The 
table also classifies whether their same sex twin has been convicted of a criminal offence. We shall, 
for now, overlook the problem surrounding the applicability of using the Pearson chi-squared 
statistic in cases where the cell frequencies are not greater than five. In such cases Yates continuity 
correction can be used. However, as we shall see, we will investigate the implications of the indices 
proposed here when the small sample size of Table 4 increases by a constant positive factor. 
 The Pearson chi-squared statistic for Table 4 is 13.032, and with a p-value of 0.0003, shows 
that there is a statistically significant association between the type of criminal twin and whether their 
same sex sibling has been convicted of a crime. For this data 7692.013/10P1 ==  and shows that 
about 77% of those monozygotic criminal twins in the sample have a same sex sibling who has also 
been convicted of a crime. 
 

Table 4. 
Fisher’s (1935) same sex criminal twin data set 

 Convicted Not Convicted Total 

Monozygotic 10 3 13 
Dizygotic 2 15 17 

Total 12 18 30 
 
Suppose now that only the marginal information of Table 4 is known. The issue is to determine how 
likely it is that the two variables are associated with each other using only this information. 
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 For the marginal frequencies of Table 4, the Pearson chi-squared statistic can be written as a 
function of 1P  such that 
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This function is graphically depicted in Fig. 6. Based on the interval (1), 1P  lies within [0, 0.9231] 
and the shaded region of the figure indicates where there exists a statistically significant association 
between the two dichotomous variables of Table 4 at the 0.05 level of significance. Fig. 6 also shows 
that the Pearson chi-squared statistic is minimised at zero when 4.0pP 11 == •  which coincides with 
independence between the two variables. Note also that the statistic has two global maximums 
existing at the limits of the bounds of 1P  where the a absolute maximum is 26.1537 at 9231.0P1 = . 
 To determine the extent to which the variables of Table 4 are associated (given only the 
marginal information), we shall calculate the area of the shaded region of Fig. 6, and consider the 
discrete version of the region, as well as the empirical version of the AAI. Beh (2008) determined 
that the AAI using (3), or alternatively (5), is 83.61A 05.0 = . Similarly it was shown that the 
empirical version of the index is 54.61A E05.0 =  and compares very well with the original version of 
the index. By considering (6) the discrete AAI is 09.66A D05.0 = . Therefore, it is likely that a 2× 2 
contingency table with the marginal information structure of Table 4 will reflect a statistically 
significant association between the two dichotomous variables. Such results indicate that even for a 
relatively small sample size of 30, such an association is likely to exist since these indices are greater 
than 50. 
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Fig. 6. Plot of ( )1

2 PX  versus 1P  for Table 2 
 

 To investigate the behaviour of the three indices as the sample size increases, consider the case 
where we multiply each of the marginal frequencies by a positive integer C, and let C vary between 1 
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and 100 in increments of 1. Therefore we will consider what impact C has on the margins such that 
( ) ( )18,12,17,13CCn,Cn,Cn,Cn 2121 =•••• .  
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 Fig. 7 shows that since the three indices are well above 75 for nearly all C considered it is 
highly likely that there will be a statistically significant association between the two dichotomous 
variables if the cell values were known. Even for relatively small sample sizes (where C is small) the 
difference between  05.0A  and D05.0A  is practically zero. However, as expected, E05.0A  is consistently 
smaller than its two counterparts, but shows that over 80% of contingency tables generated with this 
marginal information structure will lead to an association between the two dichotomous variables at 
the 5% level of significance. A comparison of the difference between each pair of indices is shown 
in Fig. 8 and reflects that for all multiples of the original sample size of n = 30 there is virtually a 
zero difference between αA  and DAα . 

 
4 The Direction of the Association 
 
4.1 Aggregate Positive and Negative Index 
 

The aggregate association index allows one to quantify the extent to which the two 
dichotomous variables may be associated based only on the information provided by the marginal 
frequencies. However it also allows us to identify the direction of this association. By keeping the 
marginal frequencies fixed in a 2× 2 table, some 11n  (and hence 1P ) will lead to a significantly 
positive association between the variables, while other 1P  values will lead to a significant negative 
association. For a single 2× 2 contingency table Beh (2008) showed that the Pearson product 
moment correlation, ρ , can be expressed in terms of 1P  and the marginal information such that 
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Since 1P  is bounded by (1), this correlation is bounded by the interval 
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and was also considered by Duncan and Davis (1953). Since equation (7) is a linear function in terms 
of 1P  it may be expressed graphically as a straight line – see Fig. 9 - where the domain of the 
function (representing the valid 1P  values) is bounded by (1) and the range of the function is 
bounded by (8).  
 One may consider instead the aggregate association index (3). By comparing (7) with (4): 
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 Therefore one may determine, for a given α  and known marginal frequencies, the extent to 
which there is a significant positive association by observing the shaded area on the right side of Fig. 
1. By denoting this portion of αA  by +

αA , we can consider  
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as an index that measures the extent to which the marginal information reflect a significant positive 
association. Here, +

αA  is referred to as the aggregate positive association index. Similarly, we can 
consider 
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as an index that quantifies the extent to which the marginal information reflect a significant negative 
association between the two dichotomous variables. Here −

αA  is referred to as the aggregate negative 
association index. Note that −

α
+
αα += AAA . Therefore, this allows us to partition the aggregate 

association index, αA , to reflect significant positive association and a significant negative 
association index. 
 

 
Fig. 9. Graphical representation of the correlation of two dichotomous  

variables when only the marginal frequencies are known. 
 
 Discrete versions of +

αA  and −
αA  can also be obtained, although they will not be considered in 

this discussion. 
 
4.1 Surface Plot of +

05.0A  
 

Consider again the contingency tables generated in Section 3.1 where n = 100. The aggregate 
positive association index, +

05.0A , is plotted against •1n  and 1n•  in Fig. 10. Its shows that if 50n1 <•  
and 50n 1 <•  then it is highly likely that the association between the two dichotomous variables will 
be positive. The symmetry of Fig. 10 about •• = 21 nn  also indicates that is the case if both 50n1 >•  
and 50n 1 >• . In both cases, the strongest evidence that there exists a significant positive association 
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exists when 4.0pp 11 <≈ •• , or 6.0pp 11 >≈ •• . There is some evidence to suggest that a weak 
positive association will occur when •1n  and 1n•  lie on the limits of their permissible range. However 
in these cases Fig. 4 suggests that the marginal frequencies are not very informative in providing an 
indication of the nature of the association between the variables. 
 

 
Fig. 10: Surface plot of +

05.0A  for n = 100 
 
4.2 Fisher’s (1935) Data Revisited 
 

Consider again Table 4. Recall that for this 2× 2 contingency table 83.61A 05.0 =  of which 
43.46A 05.0 =+  and 40.15A 05.0 =− . Therefore based solely on the marginal information of Table 4 we 

can determine that the dichotomous variables are far more likely to be significantly positively 
associated than significantly negatively associated.  This is not surprising keeping in mind the 
comments made in section 4.1, since 43.030/13p1 ==•  and 40.030/12p 1 ==• . If we assumed that 
there existed a significant association between the variables (since 83.61A =α ) then the probability 
of this significant association being positive is 46.43/61.83 = 0.751 
 To observe the behaviour of the aggregate positive association index, +

05.0A , and the aggregate 
negative association index, −

05.0A , as the sample size increases by a factor of C (see Section 3.2) 
consider Fig 11. This figure shows that, just like 05.0A , the aggregate positive association index +

05.0A  
stabilises to approximately 68.8 as C increases. Thus, there is evidence to suggest that as the sample 
size increases there is a very good chance that the two dichotomous variables of Table 1 are 
significantly positively associated. 
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Fig. 11. +

05.0A  and −
05.0A for Table 4 (as C increases from 1 to 100). 

 
5. Discussion 

 
 This paper has elaborated further on the aggregate association index proposed by Beh (2008). 
Such an index provides an indication of the possibility that there exists a statistically significant 
association between two dichotomous variables given the presence of only the marginal frequencies. 
Where such an association exists, the direction (positive or negative) of the association can also be 
examined. However, such an index does not provide a means of inferring the value of the unknown 
cells. Therefore, the purpose of the indices is not to infer the individual level correlation of the 
variables, but instead to provide a measure reflecting how likely the two variables may be associated. 
 The issue of determining how much information the margins of a 2× 2 table provide for 
inferring the cell values is a long standing problem R. A. Fisher grappled with in 1935. By 
considering the indices described in this paper the likely association structure can be determined by 
considering either the continuous, or discrete, version of the aggregate association index. In practice, 
the discrete version, DAα , is a more ideal measure of the likely association than αA  since DAα  takes 
into account that there are a discrete number of possible values that 1P  can have. However, as 
demonstrated in the examples, if the sample size is considered large, then there is a negligible 
difference between them. 
 An obvious next step to the development of the procedure outlined in this paper is to 
investigate the applicability of these indices for G (>1) 2× 2 contingency tables. One option is to 
consider the use of the indices where each table is considered separately. Another strategy is to 
incorporate their use in ecological inference (eg King, 1997; Steel, Beh & Chambers, 2004; 
Wakefield, 2004). There have been proposals made in the ecological inference literature to 
incorporate additional (covariate) information to better estimate parameters that reflect individual 
level data – see, for example, King (1997), Chambers and Steel (2001), and Wakefield (2004). 
Considering covariate information, in conjunction with the marginal information, when calculating 
the AAI has the potential to lead to a better understanding of the association structure between two 
dichotomous variables. However further consideration of these issues is beyond the scope of this 
paper. 
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