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Abstract 
Novel, high-throughput technologies are challenging the 
core of algorithmic methods available in Computer 
Science. Microarray technologies give Life Sciences 
researchers the opportunity to simultaneously measure 
thousands of gene expression levels under different 
conditions or coming from different cell lines. With 
appropriate data mining models and algorithms, this 
would lead to a systematic exploration of molecular 
classification of cancer, just one among many other 
exciting applications. The aim of this paper is to present a 
unified mathematical formalization for different feature 
selection problems and investigate their performance in 
classification of cancer cell-lines. We also present some 
results using the NCI60 dataset.  

Keywords: Data Mining, Feature Selection,  
Combinatorial Optimisation, NCI60. 

1 Introduction 

With the recent introduction of microarray technology, 
Life Science researchers are now able to simultaneously 
measure the expression level of thousands of genes in 
cells from a tissue sample or under different controlled 
conditions (Quackenbush, 2001). This allows an 
unprecedented range of possibilities.  To analyse this data 
we can use clustering/ordering algorithms (Cotta et al., 
2003), classification methods (Dash and Liu, 1997) 
and/or their combinations as we do in this contribution.  

A primary difficulty faced is that the amount of data 
coming from mic roarray experiments can be very large. 
In most cases there are many more genes available (the 
features of interest) than samples.  Typically the ratio 
between samples and genes is about 1/100. It is possible 
to find low cardinality explanations for the process of 
interest but many of these genes may be totally unrelated 
to the research question. The correlations that lead to 
these explanations can just be explained due to the low 
sample to features ratio. This means that clustering and/or 
classification methods should take this into account.1 
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This paper is concerned with how to reduce the large 
amount of data coming from microarray experiments, by 
trying to select relevant genes with the purpose to help 
understand the reasons behind different outcomes. We 
thus present new models and algorithms which may have 
important uses in the wide field of the Feature Selection 
problem (Dash and Liu, 1997, 2003; Frank, 2002). The 
Feature Selection problem is an important component in 
areas such as gene discovery, disease diagnosis, drug 
discovery, cancer research (Marks, 2000) and predictive 
genomic medicine. 

Feature Selection, as proposed in this paper, is used to 
reduce the dimensionality of the data but not beyond a 
point in which we may have missed a subset of genes 
which actually relate well with the biological process we 
are trying to uncover. The Feature Selection problem can 
be defined as trying to find a reduced set of features, 
which optimizes some goal (consistency, error rate, etc.) 
(Frank, 2002). While this may be an elusive goal, in this 
paper we present two mathematical models (see Sections 
2.2 and 2.3) which are able to reduce the number of genes 
selected to groups of between 4.92 and 1.82 percent of 
the genes, yet maintaining a relatively large number of 
within class similarities. The solutions presented 
guarantee an optimal number of within class similarities 
(under some extra constraints explained in Section 4). 
Our solutions also guarantee an optimal (maximum) 
dissimilarity for samples in different classes . What this 
means is that, if there exists a pair of samples that belong 
to different classes, differing in a_max features then all 
other pairs of examples from different classes would have 
at least a_max with different types of attribute values.  

In this paper, the proposed integer programming models 
and the mathematical formalization allow a discussion of 
pre-processing rules used in combinatorial optimization 
to reduce the size of the instances. The optimality of our 
solutions has been verified by the utilization of the 
CPLEX (a mathematical programming software 
package). We illustrate the usefulness of the proposed 
approach using a dataset known as NCI60 from Cancer 
Microarray Project, Stanford, available online (Ross et 
al., 2000). We present different results and a detailed 
comparative analysis. 

The paper is organized as follows. In Section 2, we 
present integer programming models for different feature 
selection problems. In Section 3, we describe the 
instances we used for our computational tests. Finally, in 



Sections 4 and 5, we will present the computational 
results and conclusions. 

2 Mathematical Models  

2.1 Min Feature Set  

The Min Feature Set problem we consider in this paper 
can be understood as follows. Consider a matrix G = gij, 
1 = i = e, 1 = j = n, where e is the number of 
experiments/samples, n is the number of features (genes) 
and gij represents the level of activity of gene j in the 
experiment i. We are considering that gij is the result of a 
measurement and can be represented, without loss of 
generality, as an integer. Ideally, we should represent gij 
values as belonging to a small cardinality domain of 
different types of values (true/false or high/medium/low, 
etc.). Consider also a vector T = ti, where 1 = i = e and ti 
represents the class that corresponds to the experiment i. 
The objective is to find the minimum cardinality set of 
features (genes), denoted as S, such that for all pairs of 
experiments that belong to different classes, there exists 
at least one feature (gene) that belongs to S, and such that 
the level of activity is different among experiments for 
such a feature. In other words,  

for all pairs  )q,p(  with qp tt ≠   

Sj ∈∃  such that qjpj gg ≠ . 

To illustrate, suppose that one instance of the problem is 
the following Boolean matrix G and the Boolean vector T 
below. In this case, the minimum feature set for this 
instance is S = {F4, F5}. 

G5x5       T5 
 F1 F2 F3 F4 F5  Class 

E1 1 0 0 0 1  0 
E2 0 1 1 0 1  0 
E3 1 0 0 0 0  1 
E4 1 1 1 1 1  1 
E5 0 1 0 1 1  1 

The k-Feature Set problem is NP-complete (Davies and 
Russel, 1994). Cotta and Moscato (2003) showed that the 
parameterized version of Min Feature Set problem (when 
the parameter is the cardinality of the feature set) is W[2]-
Complete. 

With the purpose to write an integer programming model, 
first we define a matrix A = a ij, 1 = i = m, 1 = j = n, where 
m is the number of pairs of examples that belong to 
different classes, n is the number of features, and aij is 1 if 
gpj ? gqj or 0 if gpj = gqj, where tp ? tq. In other words, aij 
represents whether the features types in the pair of 
examples that belong to different classes (p,q) are 
different or not. Using the previous illustrative instance of 
the problem,  the matrix A would be: 

 F1 F2 F3 F4 F5 
E1,E3 0 0 0 0 1 
E1,E4 0 1 1 1 0 
E1,E5 1 1 0 1 0 
E2,E3 1 1 1 0 1 
E2,E4 1 0 0 1 0 
E2,E5 0 0 1 1 0 

The objective is to choose a minimum subset S of features 
(columns) which have at least one ‘1’ value in each line. 
That is, a minimum set of features corresponds to the 
minimum subset of columns having ones that cover all 
pair of examples. Notice that the minimum feature set in 
the example is S = {4,5}.  

An integer programming model for the Min Feature Set 
can be as  shown below, where the variable  xj = 1 if the 
feature j is chosen; and 0, otherwise.  

Min ∑
=

n

1j
jx     (1) 

0xA j

n

1j
ij >∑

=

  i=1,…, m  (2) 

xj = 0 or 1.    

Note that the model (1-2) represents also the Set 
Covering problem. The Set Covering problem is a 
classical problem in combinatorial optimization for which 
many techniques have been developed (Caprara, Toth and 
Fischetti, 2000).  

2.1.1 Reductions for Min Feature Set 

Reductions for Min Feature Set are rules that can be 
applied to an instance to try to eliminate, a priori, some 
rows and columns from matrix A and, consequently, 
reduce the instance size. We describe four reduction rules 
for the Min Feature Set problem below. These reductions 
rules are the same for the Set Covering Problem and it  is 
possible to find them in references about Integer 
Programming such as Garfinkel and Nemhauser (1972). 

Reduction R0 

If aij = 0 for all j, then, the instance is infeasible, since the 
constraint (2) cannot be satisfied. In other words, if no 
feature can distinguish a pair of examples that belong to 
different classes, then the instance is infeasible.  

Reduction R1 

If aij = 0 for all j ? k and aik = 1, then xk = 1. In other 
words, if just one feature distinguishes a pair of examples 
that belong to different classes, then this feature must be 
in any feasible cardinality solution. In addition, all rows i 
such that aik = 1, can be deleted, since the feature k  will 
cover these lines. Finally, column k can be deleted. 

In the example given, the feature F5 should be in the 
solution, since it is the only one that covers the pair of 
examples (E1,E3). We can delete row 1 and 4, since the 
pair of examples (E1,E3) and (E2,E3) are covered by the 
inclusion of feature F5 in our solution.  

Reduction R2 

A feature j covers a subset W if aij = 1 for all i ∈ W. If a 
feature j1 covers a subset W1 and j2 covers a subset W2 
and W2 ⊆ W1, then feature j2 is dominated by feature j1 
and consequently, can be deleted. 

In the example above, after being updated with the result 
of reduction R1, the feature F4 covers the set W4 = 
{(E1,E4), (E1,E5), (E2,E4), (E2,E5)}. The feature F3 



 

covers the set W3 = {(E1,E4), (E2,E5)}. Since, W3 ⊆ W4, 
F3 is redundant and can be deleted. Notice that, with the 
same rule we can delete F1 and F2. Now, using the 
reduction rule R1, feature F4 is chosen and the instance is 
solved to optimality (as the reduction rules are safe 
procedures that do not miss at least one optimal solution 
of the original instance after they reduce it). 

Reduction R3 

Let }1a/j{Q ji1 1
== and }1a/j{Q ji2 2

== . If Q1 ⊆ Q2 

then row i2 can be deleted. In other words, if a pair of 
examples i1 is covered by the set of features Q1 and a pair 
of examples i2 is covered by the set of features Q2 and Q1 
⊆ Q2, we can delete the pair i2, since it will be covered by 
any of the features chosen to cover the pair i1. 

In the example, the pair of examples (E1,E3) is covered 
by Q1 = {F5} and the pair of examples (E2,E3) is covered 
by Q2 = {F1,F2,F3,F5}. Since Q1 ⊆ Q2, the pair of 
examples (E2,E3) can be deleted from matrix A. Notice 
that when we choose a feature to cover the pair (E1,E3) 
we inevitably will cover the pair (E2,E3). 

Although the Min Feature Set is an NP-hard optimization 
problem, the reduction rules can be very useful in practice 
to reduce the instance size before we apply a method 
(either a polynomial-time heuristic or an exact 
exponential time algorithm) to find one of the optimal 
solutions. 

2.2 Min α-β Feature Set  

A generalization of the Min Feature Set is the Min α-β 
Feature Set introduced by Cotta, Sloper and Moscato 
(2004). This generalization could be very useful when the 
dataset is noisy and a larger number of different features 
needs to be considered.  

The problem is defined as follows. We have the same 
input as for Min Feature Set, i.e., matrix G = g ij, 1 = i = e, 
1 = j = n, where e is the number of experiments/samples  
and n is the number of features (genes) and a vector T = 
ti, where 1 = i = e and ti represents the class (outcome) of 
the experiment i. In addition, the input also includes two 
integer values α =1 and β = 0. The objective is again to 
find the minimum set of genes (features) S, but the two 
conditions below also need to be satisfied.  

Condition 1 For all pairs of samples that belong to 
different classes, at least α features that belong to S have 
different feature types. In other words,  

For all pairs  )q,p(  with qp tt ≠ , 

define   }gg|Sj{S qjpj1 ≠∈=  

So,   α≥1S . 

Condition 2 For all pairs of samples that belong to the 
same class, at least β features that belong to S have 
identical feature types. In other words,  

For all pairs  )q,p(  with qp tt =  

define  }gg/Sj{S qjpj2 =∈=  

So,   β≥2S . 

To illustrate, consider the same matrix G defined 
previously. Observe that, if we have as input the values 
α=1 and β=1, the Min α-β Feature Set cannot be S = 
{F4,F5}, since the examples E3 and E4, which belong to 
the same class are completely different for the features F4 
and F5. For α=1 and β=1 the minimum cardinality 
(α=1/β=1) feature set is S = {F1,F3,F5}. 

For an integer programming formulation for this problem, 
we will define two matrices, A and B. Matrix A will be 
the same defined before, that is, A = a ij, 1 = i = m, 1 = j = 
n, where n is the number of features, m is the number of 
pairs of examples that belong to different classes and aij is 
1 if gpj ? gqj or 0 if gpj = gqj, where tp ? tq. Matrix B will 
be B = bij, 1 = i = m’, 1 = j = n, where n is the number of 
features, m’ is the number of pairs of examples that 
belong to the same classes and bij is 1 if gpj = gqj or 0 if gpj 
? gqj, where tp = tq. 

Using the previous example, the matrix B would be 

 F1 F2 F3 F4 F5 
E1,E2 0 0 0 1 1 
E3,E4 1 0 0 0 0 
E3,E5 0 0 1 0 0 
E4,E5 0 1 0 1 1 

The mathematical model can be written as: 

Min ∑
=

n

1j
jx     (3) 

α≥∑
=

j

n

1j
ij xA  i=1,…, m  (4) 

β≥∑
=

j

n

1j
ij xB  i=1,…, m’ (5) 

xj = 0 or 1    

2.2.1 Reductions for Min α-β Feature Set 

We define below reduction rules for Min α-β Feature Set 
as described before for Min Feature Set Problem. 
Consider the following definitions: 

}1a/j{Q ij
i
a ==  and }1b/j{Q lj

l
b == . 

The sets i
aQ and l

bQ represent the features that can cover a 

pair of samples i and l, respectively, from matrix A and B. 
Let i

ar  be an integer that represents the number of 

features that remain to cover the pair the samples i by α. 
Equivalently, l

br  represents the numb er of features that 

remain to cover the pair the samples l by β. At the 
beginning of the application of the reduction rules i

ar =α 

and l
br =β. 

Reduction R0 

If | i
aQ | < i

ar , for at least one row i from matrix A, then 

the instance is infeasible, since the constraint (4) cannot 



be satisfied. Analogously, if | l
bQ | < l

br , for at least one 
row l from matrix B, the instance is infeasible, since 
constraint (5) cannot be satisfied. In other words, if at 
least there is one pair of examples that belong to different 
classes and does not have at least i

ar  features that have 
different types for them, then the instance is infeasible 
(analogously for the within class similarity constraint). 

Reduction R1 

If | i
aQ | = i

ar , for any pair of examples i, then xj = 1 for all 

j ∈ i
aQ . In other words, if a pair of examples i is covered 

by exactly i
ar  features, then all these features should be in 

any optimal solution.  Next, for all j ∈ i
aQ , it is necessary 

to update all i
ar /aij=1 and l

br /bij=1. Finally, we can delete 

all rows i from A such that i
ar = 0, all rows l from B such 

that l
br = 0 and all columns j ∈ i

aQ . 

Analogously, if | l
bQ | = l

br , for any l, then  xj = 1 for all j 

∈ l
bQ . In other words, if a pair of examples is covered by 

exactly l
br  features, then all these features should be in 

the solution. Next, for all j ∈ l
bQ , it is necessary to update 

all i
ar /aij=1 and l

br /bij=1. Finally, again, we can delete all 

rows i from A such that i
ar = 0, all rows l from B such that 

l
br = 0 and all columns j ∈ i

aQ . 

Consider α=β=1 in the example. The feature F5 should 
be in the solution, since it is the only one that covers the 
pair of examples (E1,E3) when we examine the matrix A . 
Also we can delete rows 1 and 4 from matrix A, since the 
pair of examples (E1,E3) and (E2,E3) are covered by 
feature F5 with α=1.  

In the matrix B we can delete the rows 1 and 4, since the 
feature F5 will cover the pair of examples (E1,E2) and 
(E4,E5). We conclude that features F1 and F3 should be 
in the solution, since only F1 covers the pair of examples 
(E3,E4) and only F3 covers the pair of examples (E3,E5) . 
We also can delete the rows 2, 3 and 6 from matrix A , 
since features F1 and F3 cover all pair of examples that 
remain in the matrix A. Notice that we could reduce the 
entire instance and finish with the solution {F1,F3,F5}. 

Reduction R2 

A feature j covers a subset Wα if aij = 1 for all i ∈ Wα. 
Respectively, a feature j covers a subset Wβ if bij = 1 for 
all i ∈ Wβ. If a feature j1 covers a subset 1Wα  and 1Wβ  ;  j2 

covers a subset 2Wα  and 2Wβ ; 2Wα  ⊆ 1Wα  and 2Wβ  ⊆ 
1Wβ ; and for all i ∈ 2Wα  we have | i

aQ | > i
ar   and for all i 

∈ 2Wβ  we have | i
bQ | > l

br  ; then j2 is redundant and can 

be deleted.  

Reduction R3 

If 1i
aQ ⊆ 2i

aQ and 1i
ar = 2i

ar or 1l
bQ ⊆ 2i

aQ and 1l
br = 2i

ar , then row 
i2 from matrix A can be deleted. In other words, if a pair 
of examples i1 is covered by the set of features 1i

aQ ; a pair 
of examples i2 is covered by the set of 
features 2i

aQ and 1i
aQ ⊆ 2i

aQ ; then the pair of samples i2 can 
be deleted, if the number of features that remain to cover 
the pair the samples i1 is greater than the number of 
features that remain to cover the pair the samples i2 
( 1i

ar = 2i
ar ). Equivalent interpretation can be done if 

1l
bQ ⊆ 2i

aQ and 1l
br = 2i

ar . Analogously, if 1l
bQ  ⊆ 2l

bQ  

and 1l
br = 2l

br  or 1i
aQ  ⊆ 2l

bQ  and 1i
ar = 2l

br then row l2 from 

matrix B  can be deleted.  

2.3 Max Cover α-β Feature Set 

Another mathematical model we introduce is obtained by 
fixing the number of features in a value nfix and the 
objective is to find a set of nfix features that maximize the 
coverage. The coverage represents the number of pair of 
examples that belong to different classes (matrix A) plus 
the number of pair of examp les that belong to the same 
class (matrix B) that the set of features cover, including 
repetitions. The coverage of a feature j is: 

∑∑
==

+=
'm

1i
ij

m

1i
ijj BAc  

The mathematical model is described below. 

Max ∑
=

n

1j
jj xc     (6) 

α≥∑
=

j

n

1j
ij xA  i=1,…, m  (7) 

β≥∑
=

j

n

1j
ij xB  i=1,…, m’ (8) 

∑
=

≤
n

j
fixj nx

1

   (9) 

xi = 0 or 1    

This model can be useful, for example, when an instance 
has more than one optimal solution when we use the 
model (3-5). 

3 The NCI60 Instance  

Ross et al. (2000) introduced an important dataset for the 
molecular classification of different types of cancer. The 
data corresponds to gene expression in 64 cell lines using 
DNA microarrays robotically spotting 9,703 cDNAs. The 
cDNAs included approximately 8,000 different genes. At 
the time of presenting this dataset, 3,700 of the genes 
represented previously characterized human proteins and 
2,400 were identified only by ESTs. We are working with 
a dataset available on the authors’ website supplement 



 

containing gene expression of 6,831 genes corresponding 
to Figure 2b of their paper.  

There are several good reasons to use this instance for our 
studies. In their original paper, Ross et al. have identified 
several groups of genes that correspond to some of the 
tissue characteristics of the cell lines. Of particular 
interest for the objectives of our paper are two groupings 
named “Leukaemia Cluster” and “Melanoma Cluster” 
corresponding to Figures 3a and 3c of Ross et al., 
respectively. These have been visually identified from a 
hierarchical clustering as a highly-expressed group of 
genes in the leukaemia-derived and in most of the 
melanoma-derived cell lines. It is, however, very difficult 
to identify, from a hierarchical clustering, an analogous 
group of genes that is highly under-expressed and that is a 
robust significant marker of differential expression within 
the same cell-line and that at the same time discriminates 
well all other types of lines. The approach we present in 
this paper has been designed to uncover such groups if 
they exist. To our knowledge, no other method has been 
able to identify some of the key genes that allow such an 
interpretation linking both the highly expressed or under 
expressed gene expression of groups of genes on this 
dataset.  

In addition, Waddell and Kishino (2000) discussed that 
such a dataset, even if excellent in technical terms (with a 
claimed coefficient of variation due to experimental 
errors of approximately between 20 and 30%), may be of 
low information content. They argue that Ross et al. did 
not emphasise on the impact of mutation on cell lines 
upon their analysis. As a consequence, there are cases of 
genes that were expected to have a clear relationship (for 
instance, TP53/Waf1 or p16/Rb) which have a weak pair 
relationship in this instance. It is then possible that the 
expression profiles, conditioned to the mutation status of 
group of “key player” genes, would be part of the 
explanation. On the other hand, the expression profiles on 
a large number of genes may help to classify cancers even 
in the presence of large systematic errors. Our approach is 
designed to give a relatively larger number of genes, 
uncovering a more informative set of under expressed 
genes in the NCI60 dataset, which in turn may help to 
discover the genetic pathways at play in this case.    

4 Computational Results  

There are three main reasons motivating the design of our 
computational experiments: a) the discussion of the 
previous section, b) the possibility of a direct comparison 
with Ross et al., Figures 3a and 3c (“Leukaemia Cluster” 
and “Melanoma Cluster”), and c) the absence of clear 
highly-expressed analogous clusters for Colon and Renal 
cell-lines. Towards this end, we have developed the 
following series of experiments to uncover the key genes 
that could expla in these classes. 

We have first completed all missing values for the NCI60 
dataset using the LSImpute_EMarray algorithm recently 
introduced by Bø, Dysvik and Jonassen (2004). Our 
choice was based on its relatively low running time and 
good performance on the NCI60 dataset as independently 
verified by the original authors.  For the estimation of the 

missing values we have used the initial set of 64 cell lines 
and 6,381 genes. We have calculated the standard 
deviation of the expression values in the instance 
(0.7904).  

After the missing values have been completed we worked 
with a reduced set, comprising five different groups of 
similar number of cell lines. These groups have been 
chosen based on their tissue or origin as well as the 
similarity of the overall gene expression profile. The five 
groups and their associated 41 cell lines are described in 
Figure 1. 

 

Figure 1. The five cancer groups with the respective 
cell-lines in the same order they appear in our figures 

and in Ross et al (2000). 

We note that Ovarian-like is a class that contains ovarian 
cell lines with the addition of NCI-H460, A549, EKVX 
from Non-Small cell Lung cancer (NSL class in Ross et 
al) and cell-lines DU-145 and PC-3, from Prostate cell 
lines, which nevertheless have similar gene expression 
profiles. Analogously, cell lines NCI-H23 and NCI-H522 
(from NSL class in Ross et al.) have not been included 
due to their dissimilar gene expression patterns with the 
other cell lines in this group. There are three cell lines for 
K562 and all are part of the group in our study. 

We have then proceeded to establish a series of 
computational experiences. In each one, only two classes 
are given. For instance, to identify differentially 
expressed genes in Melanoma cell-lines, we aim at 
identifying ‘Melanoma vs. all-others’, where all others in 
this case correspond to the other four remaining (Renal, 
Ovarian-like, Leukaemia and Colon) bundled as a single 
group (not-Melanoma). A threshold of 1.5 times the 
standard deviation (calculated using the entire dataset) is 
used to reduce the feature types. This quantizes the gene 
expression values in only three types (low, mid, high), 
with ‘low’ corresponding to all gene expression values 
below a threshold of -1.1856, with ‘high’ corresponding 
to expression values above 1.1856, and with ‘mid’ being 
assigned to all other expression values.  

For each one of these five different instances of the 
problem Renal (RE), Ovarian-like (OV), Leukaemia 
(LE), Colon (CO) and Melanoma (ML), we have done the 
following: 

1) We have created an instance following the two 
modified conditions from the ones presented in Sec. 2.2: 



Modified Condition 1 

For all pair of cell lines that belong to different classes, 
there should be at least α genes that belong to S (which is 
the a-ß feature set we are looking for), such that the level 
of activity is markedly different (low in one and high in 
the other). In other words: 

For all pairs  )q,p(  with qp tt ≠ , 

define    }highglowg/Sj{S qjpj1 =∧=∈= . 

So,   α≥1S . 

Modified Condition 2 

For all pair of cell lines that belong to the same class, 
there should be at least ß genes that belong to S, such that 
the level of activity is either ‘high’ or ‘low’ in both (but 
not ‘mid’ in both cases). Analogously we can write:  

For all pairs  )q,p(  with qp tt = ,  define 

}gg)highglowg/(Sj{S qjpjpjpj2 =∧=∨=∈= . 

So,   β≥2S . 

2) We have then found, for each of the instances, the 
maximum number of a that could be obtained by any 
optimal a-ß feature set. The obtained values were 24 for 
RE, 16 for OV, 45 for LE, 16 for CO, and 46 for ML. 
This means, for instance, that a priori we know that there 
is no pair of cell lines, with one belonging to the seven 
Renal cell lines and the other belonging to anyone of the 
other four groups, having more than 25 genes markedly 
differing in ‘high’ vs. ‘low’ expression values.  

3)  We then find, for each of the instances, the size of the 
minimum cardinality a-ß feature set, with ß=0 and with a 
being fixed to the maximum a priori value which is 
possible for that instance. We have solved each of these 
problems to optimality using CPLEX (a mathematical 
programming software package). We found that there 
exists: a a=24-ß=0 feature set (with an optimal number 
of k=198 genes) for RE, a a=16-ß=0 feature set with 
k=140 genes for OV, a=45-ß=0 feature set with k=307 
genes for LE, a a=16-ß=0 feature set with k=116 for CO, 
and a a=46-ß=0 feature set with k=314 for ML.  

4) Finally, we aim to try to find the maximum ß 
achievable by a Max Cover a-ß Feature Set (with a fixed 
to the previously obtained maximum a priori values), for 
each of the optimal cardinalities obtained in the previous 
step. We have solved each of this Max Cover a-ß Feature 
Set problems to optimality so we found that there exist: a 
Max Cover 24-ß=0 feature set (with an optimal number 
of k=198  genes,) for RE (in this case it was not possible 
to increase the value of ß without increasing the 
cardinality of the set), a 16-ß=3 feature set with k=140 
genes for OV, 45-ß=8 feature set with k=307 genes for 
LE, a 16-ß=4 feature set with k=116 for CO, and a 46-
ß=9 feature set with k=314 for ML.  

These solutions are shown in Figures 2 to 6. An ordering 
algorithm has been independently applied to each of these 
subsets of genes to highlight the correlations between 
genes. It is clear that our method has uncovered a 

significantly large number of genes that are differentially 
under-expressed and can contribute to our understanding 
of the mechanisms that control regulation in these 
diseases. Our figures illustrate another source of useful 
information that is obtained by good orderings of the 
identified genes. For instance, a large number of genes 
are differentially expressed in Leukaemia and Melanoma 
(see the lower half of both Figures 2 and 5) yet markedly 
up-regulated in the other cell-lines. Figure 2 shows 
Leukaemia cell-lines as highly characterized by a large 
number of under-expressed genes. This figure contrasts 
with the solution for the Ovarian-like group (Figure 4) 
where it seems to be the case that a finer distinction 
between cell-lines is necessary for proper classification, 
yet some genes appear to be up-regulated in contrast with 
down-regulation in the Leukaemia, Colon and Melanoma 
groups. Finally the results for Melanoma can be seen in 
the context of a direct comparison with Figure 3c of Ross 
et al. (2000). We uncover a large number of down-
regulated genes, absent in previous articles that also use 
the same dataset, which may give new insights on the 
molecular mechanisms of this disease.  

 

 
Figure 2. The Leukaemia Max Cover (a=45, ß=8) gene 
subset containing 307 up and down regulated genes. 
The Leukaemia group is located between columns 18 
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and 25. Although a group of up-regulated genes in 
these cell lines is clear near the top of the figure, these 
cell lines markedly differ from other cell lines in being 
mostly down regulated. 

 

 

Figure 3. The Colon Max Cover (a=16, ß=4) gene 
subset containing 116 up and down regulated genes. 
The Colon group is located between columns 26 and 
32. A group of up regulated genes in these cell-lines 
and down regulated in the Melanoma class is easy to 
spot in the lower-right corner of the figure.  

 

 

Figure 4. The Ovarian-like Max Cover (a=16, ß=3) 
gene subset containing 140 up and down regulated 
genes. The Ovarian-like group is located between 
columns 8 and 17. Although several up and down 
regulated genes help to characterize this group, it is 

difficult to find a distinguishing subset of genes which 
differentially are up and down regulated across of all 
other types of cell lines. This may be a consequence of 
our decision of grouping different cell lines in this 
class. 

 

 
Figure 5. The Melanoma Max Cover (a=46, ß=9) gene 
subset containing 314 up and down regulated genes. 
The Melanoma group is located between columns 33 
and 41. Although a group of up regulated genes in 
these cell lines is clear near the bottom right corner of 
the figure (and some of these have been previously 
reported), the solution here presented shows a 
relatively larger number of down-regulated genes. 
Near the upper right corner of the figure we can find 
a subset which is down-regulated, sharing this with 
the Leukaemia group, yet is markedly different for all 
other cell lines.   

5 Conclusion 

We have presented new models and algorithms that have 
shown to be very useful to address the molecular 
classification of cancer from microarray data. The 
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methods are general and their applicability is not limited 
to the field of Bioinformatics. They are mainly based on a 
generalization of the k-feature set problem called (a-ß) k-
feature set which was recently introduced by Cotta, 
Sloper and Moscato (2004). The results indicate that the 
method allows a good balance of discrimination between 
classes as well as a within-class consistency. This allows 
Life Science researchers to uncover a larger number of 
genetic pathways that could lead, in turn, to a broad 
picture of differential genetic regulation mechanisms .  

 

 

Figure 6. The Renal Max Cover (a=24,ß=0) gene 
subset containing 198 up and down regulated genes. 
The Renal group is located between columns 1 and 7. 
It is possible to identify a subset of genes which are 
markedly differently expressed between this group 
and almost all other cell lines. Near the left bottom 
corner, a group of genes are over expressed and they 
are in sharp contrast with the Melanoma group.  

Our contribution also highlights the importance of safe 
data reduction methods that keep optimal solutions and 
maintain the relevant information in the data. It also 
contrasts with previous research using the same dataset, 
mainly based on clustering, which has been limited to 
uncovering highly-expressed genes. This is only one part 
of the necessary information to understand the genetic 
network dynamics. Our methods also provide a 
significant number of down-regulated genes, which have 
been not previously identified in this dataset. The large 
number of such genes in the Melanoma group of cell-
lines (given in the Appendix) is indicative of the 
relevance and flexibility of the method, which would help 
to uncover yet unknown mechanisms that link genes, 
their products, and disease.     
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Appendix 

Genes under expressed in the melanoma group (as 
defined in Section 4). The genes in bold face correspond 
to those that their average expression in the group is 
below 1.5 times the standard deviation on the whole 
dataset. 

Gene ID Protein   Information 
R60169 GDA   Guanine deaminase 
N74260 AKR1C1   Aldo -keto reductase family 1, member C1 
H68500 EST  
T73242 AKR1C4  Aldo-keto reductase family 1, member C4  
H14348 EST  
AA055808 TACSTD1  Tumor-associated calcium signal 

transducer 1  
AA046815 MAL2  Mal, T-cell differentiation protein 2  
W40286 ANXA3  Annexin A3 
AA055664 CDKN2A  Cyclin-dependent kinase inhibitor 2A 

(melanoma) 
AA029948 LOC255743  hypothetical protein LOC255743 
AA036758 S100A4  S100 malignant transformation suppression1  
AA056401 DSP  Desmoplakin 
H73761 LGP1  D11lgp1e-like 
W74492 CLDN4  Claudin 4  
AA021558 EST  
N75339 MAP7  Microtubule-associated protein 7  
H28438 SCNN1A  Sodium channel, nonvoltage-gated 1 alpha 
H29546 NTSR1  Neurotensin receptor 1 (high affinity) 
W90688 MAP7  Microtubule-associated protein 7) 
AA053012 DSP  Desmoplakin) 
N98225 HOOK1  Hook homolog 1 (Drosophila) 
AA031287 SPINT2  Serine protease inhibitor, Kunitz type, 2  
R05776 LLGL2  Lethal giant larvae homolog 2 

(Drosophila) 
AA035637 JUP  Junction plakoglobin 
W90086 FLJ22390  Hypothetical protein FLJ22390 
AA053218 GRB7  Growth factor receptor-bound protein 7  
AA055668 MRPL37  Mitochondrial ribosomal protein L37 
AA052978 KRT8  Keratin 8  
N39570 EST  
AA037485 p30  Nuclear protein p30 
AA054974 ABLIM1  Actin binding LIM protein 1  
N30586 NEBL  Nebulette 
R14348 MAP3K5  Apoptosis signal regulating kinase 
W72586 MDK  Midkine (neurite growth-promoting 

factor 2) 
N39598 C11orf9  Chromosome 11 open reading frame 9  
N74639 ACF  Apobec-1 complementation factor 
N29319 LIPG  Endothelial lipase precursor 
H90431 ADRB2  Adrenergic, beta-2-, receptor, surface 
W81425 CSRP3  Cysteine and glycine-rich protein 3 (cardiac 

LIM protein) 
W92029 EST  
N62509 IL20RA  Interleukin 20 receptor, alpha 
N64535 AIG1  Androgen-induced 1  
AA029096 PRKCA  Protein kinase C, alpha 
AA007361 pp9099  PH domain-containing protein 
T77041 MGC45562  Hypothetical protein MGC45562 
AA055661 TPD52L1  Tumor protein D52-like 1  
AA046274 EST  
H62012 CCL15  Chemokine (C-C motif) ligand 15 
R36703 EST  
R34833 F3  Coagulation factor III (thromboplastin, 

tissue factor) 
H29272 STYK1  Protein kinase STYK1 
AA054706 EST  
AA004583 TFPI  Tissue factor pathway inhibitor 
J03037 CA2  Carbonic anhydrase II 
AA026089 EGFR  Epidermal growth factor receptor 
W40283 IL8  Interleukin 8  
T77816 CCL2  Chemokine (C-C motif) ligand 2  
R71338 EST  
H72506 ANPEP  CD13 antigen 
AA002125 API1  Apoptosis inhibitor 1  
N33794 AK3  Adenylate kinase 3  
R16561 API1  Apoptosis inhibitor 1  
N35886 JUB  Jub, ajuba homolog (Xenopus laevis) 

Gene ID Protein   Information 
T85905 AXL  AXL receptor tyrosine kinase 
T84764 FBN1  Fibrillin 1 (Marfan syndrome) 
N34799 FOSL2  FOS-like antigen 2  
H8719  EST  
T60389 EST  
H24357 NRG1  Glial growth factor 2  
AA040872 CYP1B1  Cytochrome P450, family 1, subfamily B, 

polypeptide 1  
R66239 PHLDB2  Pleckstrin homology-like domain, family 

B, member 2  
R51025 EML1  Echinoderm microtubule associated protein 

like 1  
N98463 PLOD2  procollagen-lysine (lysine hydroxylase) 2  
N71998 ITGA3  Integrin, alpha 3 (antigen CD49C 
AA027942 MATN2  Matrilin 2  
R52480 PAK3  p21 (CDKN1A)-activated kinase 3  
W72569 NUDT1  nudix (Nucleoside diphosphate linked 

moiety X)-type motif 1  
AA056022 CSPG2  chondroitin sulfate proteoglycan 2 (versican) 
W72468 FAM13A1  Family with sequence similarity 13, member 

A1 
H16591 VCAM1  Vascular cell adhesion molecule 1  
H14976 EST  
AA043311 DPYSL3   Dihydropyrimidinase-like 3  
AA046572 SERPINE1  Plasminogen activator inhibitor type 1  
N50928 SYT6  Synaptotagmin VI  
N47888 DNER  Delta-notch-like EGF repeat-containing 

transmembrane 
AA054564 COL4A1  Collagen, type IV, alpha 1  
W48793 CDH2  Cadherin 2, type 1, N -cadherin (neuronal) 
T66144 EST  
R21876 EST  
AA017445 TFPI2  Tissue factor pathway inhibitor 2  
N20008 PLCB4  Phospholipase C, beta 4  
AA046069 FSTL1  Follistatin-like 1  
AA004839 NNMT  Nicotinamide N -methyltransferase 
AA040161 PLK2  Polo-like kinase 2 (Drosophila) 
AA018579 GUCY1B3  Guanylate cyclase 1, soluble, beta 3  
H08669 SPOCK  Sparc/osteonectin, cwcv and kazal-like 

domains proteoglycan (testican) 
AA053251 TMEPAI  Transmembrane, prostate androgen 

induced RNA 
R02280 CSF1  Colony stimulating factor 1 (macrophage) 
H18456 EST  
N63138 PRICKLE1  Prickle-like 1 (Drosophila) 
T65562 CD24  CD24 antigen (small cell lung carcinoma 

cluster 4 antigen) 
AA045437  Human transglutaminase mRNA 
AA040727 PLAU  Plasminogen activator, urokinase 
W52295 FGF2  Basic fibroblast growth factor 
AA043983 TNFAIP2  Tumor necrosis factor, alpha -induced 

protein 2  
AA057835 HIP-55  Src homology 3 domain-containing 

protein HIP-55 
H17799 EST  
N99930 BDG29  BDG -29 protein 
AA043311 DPYSL3  Dihydropyrimidinase-like 3  
N26801 AVPI1  Arginine vasopressin-induced 1  
H11003 EDN1  Endothelin 1  
W93567 D2S448  Melanoma associated gene, p53-

Responsive gene 2  
AA029313 D2S448  Melanoma associated gene, p53-

Responsive gene 2  
AA029129 EFEMP1  EGF-containing fibulin-like extracellular 

matrix protein 1  
AA040442 EFEMP1  EGF-containing fibulin-like extracellular 

matrix protein 1  
H15934 ITGA6  Integrin, alpha 6  
AA031646 NDUFA5  NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 5, 13kDa 
AA057239 MAP1B  Microtubule-associated protein 1B 
N72559 RAB31  RAB31, member RAS oncogene family 
AA047819 KIAA1789  KIAA1789 protein 
T47150 MAP1B  Microtubule-associated protein 1B 
N20213 MAP1B   Microtubule-associated protein 1B 
R21059 NFKBIE  Nuclear factor of kappa light polypeptide 

gene enhancer in B -cells inhibitor 
AA045135 RAB31  RAB31, member RAS oncogene family 
H65731 CDH13  Cadherin 13, H -cadherin (heart) 
N69835 PBX1  Pre-B-cell leukemia transcription factor 1  
AA031267 CNDP2  CNDP dipeptidase 2 (metallopeptidase M20 

family) 
AA055520 C1S  Complement component 1, s subcomponent 
AA026597 EST  
AA046484 SLC16A2  Solute carrier family 16 (monocarboxylic 

acid transporters) 
AA035018 ADAM12  A disintegrin and metalloproteinase domain 

12 (meltrin alpha) 
AA041382 C1R  Complement component 1, r subcomponent 



Gene ID Protein   Information 
AA004204 COL5A2  Collagen, type V, alpha 2  
AA029242 EST  
H47744 PBX1  Pre-B-cell leukemia transcription factor 1  
H28104 THY1  Cell surface antigen 
W95604 SLC1A3  Solute carrier family 1  
AA035639 SET7  SET domain-containing protein 7 
W94080 MRPL34  Mitochondrial ribosomal protein L34  
R48580 EST  
N94496 ELL2  Elongation factor, RNA polymerase II, 2  
N70732 EDG2  Endothelial differentiation gene 2  
H04749 FLJ38507  Colon carcinoma related protein 
W40153 IF  I factor (complement) 
AA037699 LTBP1  Latent transforming growth factor beta 

binding protein 1  
AA045303 IFITM2  Interferon induced transmembrane 

protein 2 (1-8D) 
AA040523 ANXA1  Annexin A1 
H18455 AGPAT4  Lysophosphatidic acid acyltransferase, 

delta 
W84538 CXCL12  Chemokine (C-X-C motif) ligand 12 

(stromal cell-derived factor 1) 
N63378 PLAGL1  ZAC tumor supressor gene 
R17461 C6orf148  Chromosome 6 open reading frame 148 
AA033932 C20orf112  Chromosome 20 open reading frame 112 
N71869 RAFTLIN  Raft-linking protein  
T61473 NOD27  Nucleotide-binding oligomerization domains 

27 
N93476 EDG1  Endothelial differentiation, sphingolipid 

G-protein-coupled receptor, 1  
AA054556 RAB31  RAB31, member RAS oncogene family 
AA046218 PRG1  Proteoglycan 1, secretory granule 
R09913 FADS2  Fatty acid desaturase 2  
AA047647 C5orf13  Chromosome 5 open reading frame 13 
AA033975 RAC2  Ras-related C3 botulinum toxin substrate 2  
R20579 SOX1  SRY (sex determining region Y) -box 1  
H17425 ITGB2  Integrin, beta 2, antigen CD18 (p95) 
AA046482 ARHGDIB  Rho GDP dissociation inhibitor (GDI) beta 
W70076 FABP5  Fatty acid binding protein 5 (psoriasis-

associated) 
AA005018 CGI-49  CGI-49 protein  
R78402 FCGR2B  Fc fragment of IgG, low affinity IIb, receptor 

for (CD32) 
W92100 EST  
W78928 GALC  Galactosylceramidase (Krabbe disease) 
N41032 CAPG  Capping protein (actin filament), gelsolin-

like 
W86212 C6orf85  Chromosome 6 open reading frame 85 
N52363 ATP11A  ATPase, Class VI, type 11A 
W86859 CDH1  Cadherin 1, type 1, E -cadherin (epithelial) 
W94793 SOX9  SRY (sex determining region Y)-box 9 
AA047106 CAV1  Caveolin 1, caveolae protein, 22kDa 

 


